Skip to main content
Erschienen in: Cancer and Metastasis Reviews 2/2021

04.04.2021 | Non-Thematic Review

Mucins reprogram stemness, metabolism and promote chemoresistance during cancer progression

verfasst von: Saravanakumar Marimuthu, Sanchita Rauth, Koelina Ganguly, Chunmeng Zhang, Imayavaramban Lakshmanan, Surinder K. Batra, Moorthy P. Ponnusamy

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 2/2021

Einloggen, um Zugang zu erhalten

Abstract

Mucins are high-molecular-weight glycoproteins dysregulated in aggressive cancers. The role of mucins in disease progression, tumor proliferation, and chemotherapy resistance has been studied extensively. This article provides a comprehensive review of mucin’s function as a physical barrier and the implication of mucin overexpression in impeded drug delivery to solid tumors. Mucins regulate the epithelial to mesenchymal transition (EMT) of cancer cells via several canonical and non-canonical oncogenic signaling pathways. Furthermore, mucins play an extensive role in enriching and maintaining the cancer stem cell (CSC) population, thereby sustaining the self-renewing and chemoresistant cellular pool in the bulk tumor. It has recently been demonstrated that mucins regulate the metabolic reprogramming during oncogenesis and cancer progression, which account for tumor cell survival, proliferation, and drug-resistance. This review article focuses on delineating mucin’s role in oncogenic signaling and aberrant regulation of gene expressions, culminating in CSC maintenance, metabolic rewiring, and development of chemoresistance, tumor progression, and metastasis.
Literatur
9.
Zurück zum Zitat Pothuraju, R., Krishn, S. R., Gautam, S. K., Pai, P., Ganguly, K., Chaudhary, S., Rachagani, S., Kaur, S., & Batra, S. K. (2020). Mechanistic and functional shades of mucins and associated glycans in colon cancer. Cancers (Basel), 12(3). https://doi.org/10.3390/cancers12030649. Pothuraju, R., Krishn, S. R., Gautam, S. K., Pai, P., Ganguly, K., Chaudhary, S., Rachagani, S., Kaur, S., & Batra, S. K. (2020). Mechanistic and functional shades of mucins and associated glycans in colon cancer. Cancers (Basel), 12(3). https://​doi.​org/​10.​3390/​cancers12030649.
14.
17.
Zurück zum Zitat Suh, H., Pillai, K., & Morris, D. L. (2017). Mucins in pancreatic cancer: Biological role, implications in carcinogenesis and applications in diagnosis and therapy. American Journal of Cancer Research, 7(6), 1372–1383.PubMedPubMedCentral Suh, H., Pillai, K., & Morris, D. L. (2017). Mucins in pancreatic cancer: Biological role, implications in carcinogenesis and applications in diagnosis and therapy. American Journal of Cancer Research, 7(6), 1372–1383.PubMedPubMedCentral
23.
Zurück zum Zitat van de Wiel-van Kemenade, E., Ligtenberg, M. J., de Boer, A. J., Buijs, F., Vos, H. L., Melief, C. J., Hilkens, J., & Figdor, C. G. (1993). Episialin (MUC1) inhibits cytotoxic lymphocyte-target cell interaction. Journal of Immunology, 151(2), 767–776. van de Wiel-van Kemenade, E., Ligtenberg, M. J., de Boer, A. J., Buijs, F., Vos, H. L., Melief, C. J., Hilkens, J., & Figdor, C. G. (1993). Episialin (MUC1) inhibits cytotoxic lymphocyte-target cell interaction. Journal of Immunology, 151(2), 767–776.
32.
Zurück zum Zitat Wang, W., Abbruzzese, J. L., Evans, D. B., Larry, L., Cleary, K. R., & Chiao, P. J. (1999). The nuclear factor-kappa B RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clinical Cancer Research, 5(1), 119–127.PubMed Wang, W., Abbruzzese, J. L., Evans, D. B., Larry, L., Cleary, K. R., & Chiao, P. J. (1999). The nuclear factor-kappa B RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clinical Cancer Research, 5(1), 119–127.PubMed
36.
Zurück zum Zitat Carraway, K. L., Perez, A., Idris, N., Jepson, S., Arango, M., Komatsu, M., Haq, B., Price-Schiavi A., Zhang, J., & Carraway, C. (2002). Muc4/sialomucin complex, the intramembrane ErbB2 ligand, in cancer and epithelia: To protect and to survive. Progress in Nucleic Acid Research and Molecular Biology, 71, 149–185. https://doi.org/10.1016/s0079-6603(02)71043-x. Carraway, K. L., Perez, A., Idris, N., Jepson, S., Arango, M., Komatsu, M., Haq, B., Price-Schiavi A., Zhang, J., & Carraway, C. (2002). Muc4/sialomucin complex, the intramembrane ErbB2 ligand, in cancer and epithelia: To protect and to survive. Progress in Nucleic Acid Research and Molecular Biology, 71, 149–185. https://​doi.​org/​10.​1016/​s0079-6603(02)71043-x.
40.
42.
Zurück zum Zitat Sheng, Y., Ng, C. P., Lourie, R., Shah, E. T., He, Y., Wong, K. Y., Seim, I., Oancea, I., Morais, C., Jeffery, P. L., Hooper, J., Gobe, G. C., & McGuckin, M. A. (2017). MUC13 overexpression in renal cell carcinoma plays a central role in tumor progression and drug resistance. International Journal of Cancer, 140(10), 2351–2363. https://doi.org/10.1002/ijc.30651.CrossRefPubMed Sheng, Y., Ng, C. P., Lourie, R., Shah, E. T., He, Y., Wong, K. Y., Seim, I., Oancea, I., Morais, C., Jeffery, P. L., Hooper, J., Gobe, G. C., & McGuckin, M. A. (2017). MUC13 overexpression in renal cell carcinoma plays a central role in tumor progression and drug resistance. International Journal of Cancer, 140(10), 2351–2363. https://​doi.​org/​10.​1002/​ijc.​30651.CrossRefPubMed
43.
Zurück zum Zitat Xu, Z., Liu, Y., Yang, Y., Wang, J., Zhang, G., Liu, Z., Fu, H., Wang, Z., Liu, H., & Xu, J. (2017). High expression of Mucin13 associates with grimmer postoperative prognosis of patients with non-metastatic clear-cell renal cell carcinoma. Oncotarget, 8(5), 7548–7558. https://doi.org/10.18632/oncotarget.13692. Xu, Z., Liu, Y., Yang, Y., Wang, J., Zhang, G., Liu, Z., Fu, H., Wang, Z., Liu, H., & Xu, J. (2017). High expression of Mucin13 associates with grimmer postoperative prognosis of patients with non-metastatic clear-cell renal cell carcinoma. Oncotarget, 8(5), 7548–7558. https://​doi.​org/​10.​18632/​oncotarget.​13692.
45.
Zurück zum Zitat Das, S., Rachagani, S., Torres-Gonzalez, M. P., Lakshmanan, I., Majhi, P. D., Smith, L. M., Wagner, K., & Batra, S. K. (2015). Carboxyl-terminal domain of MUC16 imparts tumorigenic and metastatic functions through nuclear translocation of JAK2 to pancreatic cancer cells. Oncotarget, 6(8), 5772–5787. https://doi.org/10.18632/oncotarget.3308. Das, S., Rachagani, S., Torres-Gonzalez, M. P., Lakshmanan, I., Majhi, P. D., Smith, L. M., Wagner, K., & Batra, S. K. (2015). Carboxyl-terminal domain of MUC16 imparts tumorigenic and metastatic functions through nuclear translocation of JAK2 to pancreatic cancer cells. Oncotarget, 6(8), 5772–5787. https://​doi.​org/​10.​18632/​oncotarget.​3308.
55.
Zurück zum Zitat Stroopinsky, D., Rosenblatt, J., Ito, K., Mills, H., Yin, L., Rajabi, H., Vasir, B., Kufe, T., Luptakova, K., Arnason, J., Nardella, C., Levine, J. D., Joyce, R. M., Galinsky, I., Reiter, Y., Stone, R. M., Pandolfi, P. P., Kufe, D., & Avigan, D. (2013). MUC1 is a potential target for the treatment of acute myeloid leukemia stem cells. Cancer Research, 73(17), 5569–5579. https://doi.org/10.1158/0008-5472.Can-13-0677.CrossRefPubMedPubMedCentral Stroopinsky, D., Rosenblatt, J., Ito, K., Mills, H., Yin, L., Rajabi, H., Vasir, B., Kufe, T., Luptakova, K., Arnason, J., Nardella, C., Levine, J. D., Joyce, R. M., Galinsky, I., Reiter, Y., Stone, R. M., Pandolfi, P. P., Kufe, D., & Avigan, D. (2013). MUC1 is a potential target for the treatment of acute myeloid leukemia stem cells. Cancer Research, 73(17), 5569–5579. https://​doi.​org/​10.​1158/​0008-5472.​Can-13-0677.CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat Curry, J. M., Thompson, K. J., Rao, S. G., Besmer, D. M., Murphy, A. M., Grdzelishvili, V. Z., Ahrens, W. A., McKillop, I. H., Sindram, D., Iannitti, D. A., Martinie, J. B., & Mukherjee, P. (2013). The use of a novel MUC1 antibody to identify cancer stem cells and circulating MUC1 in mice and patients with pancreatic cancer. Journal of Surgical Oncology, 107(7), 713–722. https://doi.org/10.1002/jso.23316.CrossRefPubMed Curry, J. M., Thompson, K. J., Rao, S. G., Besmer, D. M., Murphy, A. M., Grdzelishvili, V. Z., Ahrens, W. A., McKillop, I. H., Sindram, D., Iannitti, D. A., Martinie, J. B., & Mukherjee, P. (2013). The use of a novel MUC1 antibody to identify cancer stem cells and circulating MUC1 in mice and patients with pancreatic cancer. Journal of Surgical Oncology, 107(7), 713–722. https://​doi.​org/​10.​1002/​jso.​23316.CrossRefPubMed
63.
Zurück zum Zitat Ganguly, K., Krishn, S. R., Rachagani, S., Jahan, R., Shah, A., Nallasamy, P., Rauth, S., Atri, P., Cox, J. L., Pothuraju, R., Smith, L. M., Ayala, S., Evans, C., Ponusamy, M. P., Kumar, S., Kaur, S., & Batra, S. K. (2020). Secretory mucin 5 AC promotes neoplastic progression by augmenting KLF4-mediated pancreatic cancer cell stemness. Cancer Research. https://doi.org/10.1158/0008-5472.Can-20-1293. Ganguly, K., Krishn, S. R., Rachagani, S., Jahan, R., Shah, A., Nallasamy, P., Rauth, S., Atri, P., Cox, J. L., Pothuraju, R., Smith, L. M., Ayala, S., Evans, C., Ponusamy, M. P., Kumar, S., Kaur, S., & Batra, S. K. (2020). Secretory mucin 5 AC promotes neoplastic progression by augmenting KLF4-mediated pancreatic cancer cell stemness. Cancer Research. https://​doi.​org/​10.​1158/​0008-5472.​Can-20-1293.
67.
Zurück zum Zitat Comamala, M., Pinard, M., Thériault, C., Matte, I., Albert, A., Boivin, M., Beaudin, J., Piché, A., & Rancourt, C. (2011). Downregulation of cell surface CA125/MUC16 induces epithelial-to-mesenchymal transition and restores EGFR signalling in NIH:OVCAR3 ovarian carcinoma cells. British Journal of Cancer, 104(6), 989–999. https://doi.org/10.1038/bjc.2011.34.CrossRefPubMedPubMedCentral Comamala, M., Pinard, M., Thériault, C., Matte, I., Albert, A., Boivin, M., Beaudin, J., Piché, A., & Rancourt, C. (2011). Downregulation of cell surface CA125/MUC16 induces epithelial-to-mesenchymal transition and restores EGFR signalling in NIH:OVCAR3 ovarian carcinoma cells. British Journal of Cancer, 104(6), 989–999. https://​doi.​org/​10.​1038/​bjc.​2011.​34.CrossRefPubMedPubMedCentral
69.
Zurück zum Zitat Roy, L. D., Sahraei, M., Subramani, D. B., Besmer, D., Nath, S., Tinder, T. L., Bajaj, E., Shanmugam, K., Lee, Y. Y., Hwang, S. I. L., Gendler, S. J., & Mukherjee, P. (2011). MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition. Oncogene, 30(12), 1449–1459. https://doi.org/10.1038/onc.2010.526.CrossRefPubMed Roy, L. D., Sahraei, M., Subramani, D. B., Besmer, D., Nath, S., Tinder, T. L., Bajaj, E., Shanmugam, K., Lee, Y. Y., Hwang, S. I. L., Gendler, S. J., & Mukherjee, P. (2011). MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition. Oncogene, 30(12), 1449–1459. https://​doi.​org/​10.​1038/​onc.​2010.​526.CrossRefPubMed
71.
Zurück zum Zitat Lakshmanan, I., Rachagani, S., Hauke, R., Krishn, S. R., Paknikar, S., Seshacharyulu, P., Karmakar, S., Nimmakayala, R. K., Kaushik, G., Johansson, S. L., Carey, G. B., Ponnusamy, M. P., Kaur, S., Batra, S. K., & Ganti, A. K. (2016). MUC5AC interactions with integrin β4 enhances the migration of lung cancer cells through FAK signaling. Oncogene, 35(31), 4112–4121. https://doi.org/10.1038/onc.2015.478.CrossRefPubMedPubMedCentral Lakshmanan, I., Rachagani, S., Hauke, R., Krishn, S. R., Paknikar, S., Seshacharyulu, P., Karmakar, S., Nimmakayala, R. K., Kaushik, G., Johansson, S. L., Carey, G. B., Ponnusamy, M. P., Kaur, S., Batra, S. K., & Ganti, A. K. (2016). MUC5AC interactions with integrin β4 enhances the migration of lung cancer cells through FAK signaling. Oncogene, 35(31), 4112–4121. https://​doi.​org/​10.​1038/​onc.​2015.​478.CrossRefPubMedPubMedCentral
76.
Zurück zum Zitat Muniyan, S., Haridas, D., Chugh, S., Rachagani, S., Lakshmanan, I., Gupta, S., Seshacharyulu, P., Smith, L. M., Ponnusamy, M. P., & Batra S. K. (2016). MUC16 contributes to the metastasis of pancreatic ductal adenocarcinoma through focal adhesion mediated signaling mechanism. Genes & Cancer, 7(3–4), 110–124. https://doi.org/10.18632/genesandcancer.104. Muniyan, S., Haridas, D., Chugh, S., Rachagani, S., Lakshmanan, I., Gupta, S., Seshacharyulu, P., Smith, L. M., Ponnusamy, M. P., & Batra S. K. (2016). MUC16 contributes to the metastasis of pancreatic ductal adenocarcinoma through focal adhesion mediated signaling mechanism. Genes & Cancer, 7(3–4), 110–124. https://​doi.​org/​10.​18632/​genesandcancer.​104.
80.
Zurück zum Zitat Chaika, N. V., Gebregiworgis, T., Lewallen, M. E., Purohit, V., Radhakrishnan, P., Liu, X., Zhang, B., Mehla, K., Brown, R. B., Caffrey, T., Yu, F., Johnson, K. R., Powers, R., Hollingsworth, M. A., & Singh, P. K. (2012). MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 109(34), 13787–13792. https://doi.org/10.1073/pnas.1203339109.CrossRefPubMedPubMedCentral Chaika, N. V., Gebregiworgis, T., Lewallen, M. E., Purohit, V., Radhakrishnan, P., Liu, X., Zhang, B., Mehla, K., Brown, R. B., Caffrey, T., Yu, F., Johnson, K. R., Powers, R., Hollingsworth, M. A., & Singh, P. K. (2012). MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 109(34), 13787–13792. https://​doi.​org/​10.​1073/​pnas.​1203339109.CrossRefPubMedPubMedCentral
86.
Zurück zum Zitat Chiyoda, T., Hart, P. C., Eckert, M. A., McGregor, S. M., Lastra, R. R., Hamamoto, R., Nakamura, Y., Yamada, S. D., Olopade, O. I., Lengyel, E., & Romero, I. L. (2017). Loss of BRCA1 in the cells of origin of ovarian cancer induces glycolysis: A window of opportunity for ovarian cancer Chemoprevention. Cancer Prevention Research (Philadelphia, Pa.), 10(4), 255–266. https://doi.org/10.1158/1940-6207.Capr-16-0281.CrossRef Chiyoda, T., Hart, P. C., Eckert, M. A., McGregor, S. M., Lastra, R. R., Hamamoto, R., Nakamura, Y., Yamada, S. D., Olopade, O. I., Lengyel, E., & Romero, I. L. (2017). Loss of BRCA1 in the cells of origin of ovarian cancer induces glycolysis: A window of opportunity for ovarian cancer Chemoprevention. Cancer Prevention Research (Philadelphia, Pa.), 10(4), 255–266. https://​doi.​org/​10.​1158/​1940-6207.​Capr-16-0281.CrossRef
91.
94.
Zurück zum Zitat Shukla, S. K., Gunda, V., Abrego, J., Haridas, D., Mishra, A., Souchek, J., Chaika, N. V., Yu, F., Sasson, A. R., Lazenby, A. J., Batra, S. K., & Singh, P. K. (2015). MUC16-mediated activation of mTOR and c-Myc reprograms pancreatic cancer metabolism. Oncotarget, 6(22), 19118–19131. https://doi.org/10.18632/oncotarget.4078. Shukla, S. K., Gunda, V., Abrego, J., Haridas, D., Mishra, A., Souchek, J., Chaika, N. V., Yu, F., Sasson, A. R., Lazenby, A. J., Batra, S. K., & Singh, P. K. (2015). MUC16-mediated activation of mTOR and c-Myc reprograms pancreatic cancer metabolism. Oncotarget, 6(22), 19118–19131. https://​doi.​org/​10.​18632/​oncotarget.​4078.
101.
Zurück zum Zitat Martel, P. M., Bingham, C. M., McGraw, C. J., Baker, C. L., Morganelli, P. M., Meng, M. L., Armstrong, J. M., Moncur, J. T., & Kinlaw, W. B., (2006). S14 protein in breast cancer cells: Direct evidence of regulation by SREBP-1c, superinduction with progestin, and effects on cell growth. Experimental Cell Research, 312(3), 278–288. https://doi.org/10.1016/j.yexcr.2005.10.022. Martel, P. M., Bingham, C. M., McGraw, C. J., Baker, C. L., Morganelli, P. M., Meng, M. L., Armstrong, J. M., Moncur, J. T., & Kinlaw, W. B., (2006). S14 protein in breast cancer cells: Direct evidence of regulation by SREBP-1c, superinduction with progestin, and effects on cell growth. Experimental Cell Research, 312(3), 278–288. https://​doi.​org/​10.​1016/​j.​yexcr.​2005.​10.​022.
102.
104.
Zurück zum Zitat Furuta, E., Pai, S. K., Zhan, R., Bandyopadhyay, S., Watabe, M., Mo, Y. Y., Hirota, S., Hosobe, S., Tsukada, T., Miura, K., Kamada, S., Saito, K., Iiizumi, M., Liu, W., Ericsson, J., & Watabe, K. (2008). Fatty acid synthase gene is upregulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Research, 68(4), 1003–1011. https://doi.org/10.1158/0008-5472.Can-07-2489.CrossRefPubMed Furuta, E., Pai, S. K., Zhan, R., Bandyopadhyay, S., Watabe, M., Mo, Y. Y., Hirota, S., Hosobe, S., Tsukada, T., Miura, K., Kamada, S., Saito, K., Iiizumi, M., Liu, W., Ericsson, J., & Watabe, K. (2008). Fatty acid synthase gene is upregulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Research, 68(4), 1003–1011. https://​doi.​org/​10.​1158/​0008-5472.​Can-07-2489.CrossRefPubMed
106.
Zurück zum Zitat Panchamoorthy, G., Jin, C., Raina, D., Bharti, A., Yamamoto, M., Adeebge, D., Zhao, Q., Bronson, R., Jiang, S., Li, L., Suzuki, Y., Tagde, A., Ghoroghchian, P. P., Wong, K. K., Kharbanda, S., & Kufe, D. (2018). Targeting the human MUC1-C oncoprotein with an antibody-drug conjugate. JCI Insight, 3(12). https://doi.org/10.1172/jci.insight.99880. Panchamoorthy, G., Jin, C., Raina, D., Bharti, A., Yamamoto, M., Adeebge, D., Zhao, Q., Bronson, R., Jiang, S., Li, L., Suzuki, Y., Tagde, A., Ghoroghchian, P. P., Wong, K. K., Kharbanda, S., & Kufe, D. (2018). Targeting the human MUC1-C oncoprotein with an antibody-drug conjugate. JCI Insight, 3(12). https://​doi.​org/​10.​1172/​jci.​insight.​99880.
110.
Zurück zum Zitat Patel, S. P., Bristol, A., Saric, O., Wang, X. P., Dubeykovskiy, A., Arlen, P. M., & Morse, M. A. (2013). Anti-tumor activity of a novel monoclonal antibody, NPC-1C, optimized for recognition of tumor antigen MUC5AC variant in preclinical models. Cancer Immunology, Immunotherapy, 62(6), 1011–1019. https://doi.org/10.1007/s00262-013-1420-z.CrossRefPubMed Patel, S. P., Bristol, A., Saric, O., Wang, X. P., Dubeykovskiy, A., Arlen, P. M., & Morse, M. A. (2013). Anti-tumor activity of a novel monoclonal antibody, NPC-1C, optimized for recognition of tumor antigen MUC5AC variant in preclinical models. Cancer Immunology, Immunotherapy, 62(6), 1011–1019. https://​doi.​org/​10.​1007/​s00262-013-1420-z.CrossRefPubMed
Metadaten
Titel
Mucins reprogram stemness, metabolism and promote chemoresistance during cancer progression
verfasst von
Saravanakumar Marimuthu
Sanchita Rauth
Koelina Ganguly
Chunmeng Zhang
Imayavaramban Lakshmanan
Surinder K. Batra
Moorthy P. Ponnusamy
Publikationsdatum
04.04.2021
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 2/2021
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-021-09959-1

Weitere Artikel der Ausgabe 2/2021

Cancer and Metastasis Reviews 2/2021 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.