Skip to main content
Erschienen in: CNS Drugs 9/2009

01.09.2009 | Review Article

Neuropeptide and Sigma Receptors as Novel Therapeutic Targets for the Pharmacotherapy of Depression

verfasst von: Konstantinos A. Paschos, Stavroula Veletza, Dr Ekaterini Chatzaki

Erschienen in: CNS Drugs | Ausgabe 9/2009

Einloggen, um Zugang zu erhalten

Abstract

Among the most prevalent of mental illnesses, depression is increasing in incidence in the Western world. It presents with a wide variety of symptoms that involve both the CNS and the periphery. Multiple pharmacological observations led to the development of the monoamine theory as a biological basis for depression, according to which diminished neurotransmission within the CNS, including that of the dopamine, noradrenaline (norepinephrine) and serotonin systems, is the leading cause of the disorder. Current conventional pharmacological antidepressant therapies, using selective monoamine reuptake inhibitors, tricyclic antidepressants and monoamine oxidase inhibitors, aim to enhance monoaminergic neurotransmission. However, the use of these agents presents severe disadvantages, including a delay in the alleviation of depressive symptoms, significant adverse effects and high frequencies of non-responding patients.
Neuroendocrinological data of recent decades reveal that depression and anxiety disorders may occur simultaneously due to hypothalamus-pituitary-adrenal (HPA) axis hyperactivity. As a result, the stress-diathesis model was developed, which attempts to associate genetic and environmental influences in the aetiology of depression. The amygdala and the hippocampus control the activity of the HPA axis in a counter-balancing way, and a plethora of regulatory neuropeptide signalling pathways are involved. Intervention at these molecular targets may lead to alternative antidepressant therapeutic solutions that are expected to overcome the limitations of existing antidepressants. This prospect is based on preclinical evidence from pharmacological and genetic modifications of the action of neuropeptides such as corticotropin-releasing factor, substance P, galanin, vasopressin and neuropeptide Y. The recent synthesis of orally potent non-peptide micromolecules that can selectively bind to various neuropeptide receptors permits the onset of clinical trials to evaluate their efficacy against depression.
Literatur
1.
Zurück zum Zitat Bland RC. Epidemiology of affective disorders: a review. Can J Psychiatry 1997 May; 42(4): 367–77PubMed Bland RC. Epidemiology of affective disorders: a review. Can J Psychiatry 1997 May; 42(4): 367–77PubMed
2.
Zurück zum Zitat Kessler RC, Berglund P, Demler O, et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 2003 Jun 18; 289(23): 3095–105PubMedCrossRef Kessler RC, Berglund P, Demler O, et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 2003 Jun 18; 289(23): 3095–105PubMedCrossRef
3.
Zurück zum Zitat Maletic V, Robinson M, Oakes T, et al. Neurobiology of depression: an integrated view of key findings. Int J Clin Pract 2007 Dec; 61(12): 2030–40PubMedCrossRef Maletic V, Robinson M, Oakes T, et al. Neurobiology of depression: an integrated view of key findings. Int J Clin Pract 2007 Dec; 61(12): 2030–40PubMedCrossRef
4.
Zurück zum Zitat American Psychiatric Association. Diagnostic and statistical manual for mental disorders. 4th ed. Washington, DC: American Psychiatric Press, 2000 American Psychiatric Association. Diagnostic and statistical manual for mental disorders. 4th ed. Washington, DC: American Psychiatric Press, 2000
5.
Zurück zum Zitat Nemeroff CB, Vale WW. The neurobiology of depression: inroads to treatment and new drug discovery. J Clin Psychiatry 2005; 66 Suppl. 7: 5–13 Nemeroff CB, Vale WW. The neurobiology of depression: inroads to treatment and new drug discovery. J Clin Psychiatry 2005; 66 Suppl. 7: 5–13
6.
Zurück zum Zitat Tierney JG. Treatment-resistant depression: managed care considerations. J Manag Care Pharm 2007 Jul; 13(6 Suppl. A): S2–7PubMed Tierney JG. Treatment-resistant depression: managed care considerations. J Manag Care Pharm 2007 Jul; 13(6 Suppl. A): S2–7PubMed
7.
Zurück zum Zitat Hirschfeld RM. History and evolution of the mono-amine hypothesis of depression. J Clin Psychiatry 2000; 61 Suppl. 6: 4–6 Hirschfeld RM. History and evolution of the mono-amine hypothesis of depression. J Clin Psychiatry 2000; 61 Suppl. 6: 4–6
8.
9.
Zurück zum Zitat Kramer MS, Cutler N, Feighner J, et al. Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 1998 Sep 11; 281(5383): 1640–5PubMedCrossRef Kramer MS, Cutler N, Feighner J, et al. Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 1998 Sep 11; 281(5383): 1640–5PubMedCrossRef
10.
Zurück zum Zitat Kramer MS, Winokur A, Kelsey J, et al. Demonstration of the efficacy and safety of a novel substance P (NK1) receptor antagonist in major depression. Neuropsychopharmacology 2004 Feb; 29(2): 385–92PubMedCrossRef Kramer MS, Winokur A, Kelsey J, et al. Demonstration of the efficacy and safety of a novel substance P (NK1) receptor antagonist in major depression. Neuropsychopharmacology 2004 Feb; 29(2): 385–92PubMedCrossRef
11.
Zurück zum Zitat Zobel AW, Nickel T, Kunzel HE, et al. Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. J Psychiatr Res 2000 May–Jun; 34(3): 171–81PubMedCrossRef Zobel AW, Nickel T, Kunzel HE, et al. Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. J Psychiatr Res 2000 May–Jun; 34(3): 171–81PubMedCrossRef
12.
Zurück zum Zitat Ising M, Zimmermann US, Kunzel HE, et al. High-affinity CRF1 receptor antagonist NBI-34041: preclinical and clinical data suggest safety and efficacy in attenuating elevated stress response. Neuropsychopharmacology 2007 Sep; 32(9): 1941–9PubMedCrossRef Ising M, Zimmermann US, Kunzel HE, et al. High-affinity CRF1 receptor antagonist NBI-34041: preclinical and clinical data suggest safety and efficacy in attenuating elevated stress response. Neuropsychopharmacology 2007 Sep; 32(9): 1941–9PubMedCrossRef
13.
Zurück zum Zitat Pande AC, Geneve J, Scherrer B. Igmesine binding novelsigma ligand has antidepressant properties. Int J Neuropsychopharmacol 1998; 1: S8–9 Pande AC, Geneve J, Scherrer B. Igmesine binding novelsigma ligand has antidepressant properties. Int J Neuropsychopharmacol 1998; 1: S8–9
14.
Zurück zum Zitat Konkel M, Wetzel JM, Talisman J, inventors. H. Lundbeck A/S, assignee. 3-Imino-2-indolones for the treatment of depression and/or anxiety. US patent 7,166, 635. 2007 Jan 23 Konkel M, Wetzel JM, Talisman J, inventors. H. Lundbeck A/S, assignee. 3-Imino-2-indolones for the treatment of depression and/or anxiety. US patent 7,166, 635. 2007 Jan 23
15.
Zurück zum Zitat Brosen K. Some aspects of genetic polymorphism in the biotransformation of antidepressants. Therapie 2004 Jan–Feb; 59(1): 5–12PubMedCrossRef Brosen K. Some aspects of genetic polymorphism in the biotransformation of antidepressants. Therapie 2004 Jan–Feb; 59(1): 5–12PubMedCrossRef
16.
Zurück zum Zitat Gillman PK. Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol 2007 Jul; 151(6): 737–48PubMedCrossRef Gillman PK. Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol 2007 Jul; 151(6): 737–48PubMedCrossRef
17.
Zurück zum Zitat Skinner MH, Kuan HY, Pan A, et al. Duloxetine is both an inhibitor and a substrate of cytochrome P4502D6 in healthy volunteers. Clin Pharmacol Ther 2003 Mar; 73(3): 170–7PubMedCrossRef Skinner MH, Kuan HY, Pan A, et al. Duloxetine is both an inhibitor and a substrate of cytochrome P4502D6 in healthy volunteers. Clin Pharmacol Ther 2003 Mar; 73(3): 170–7PubMedCrossRef
18.
Zurück zum Zitat Rich-Edwards J, Krieger N, Majzoub J, et al. Maternal experiences of racism and violence as predictors of preterm birth: rationale and study design. Paediatr Perinat Epidemiol 2001 Jul; 15 Suppl. 2: 124–35CrossRef Rich-Edwards J, Krieger N, Majzoub J, et al. Maternal experiences of racism and violence as predictors of preterm birth: rationale and study design. Paediatr Perinat Epidemiol 2001 Jul; 15 Suppl. 2: 124–35CrossRef
19.
Zurück zum Zitat Loir B, Perez Sanchez C, Ghanem G, et al. Expression of the MC1 receptor gene in normal and malignant human melanocytes: a semiquantitative RT-PCR study. Cell Mol Biol 1999 Nov; 45(7): 1083–92PubMed Loir B, Perez Sanchez C, Ghanem G, et al. Expression of the MC1 receptor gene in normal and malignant human melanocytes: a semiquantitative RT-PCR study. Cell Mol Biol 1999 Nov; 45(7): 1083–92PubMed
20.
Zurück zum Zitat Bourin M, David DJ, Jolliet P, et al. Mechanism of action of antidepressants and therapeutic perspectives. Therapie 2002 Jul–Aug; 57(4): 385–96PubMed Bourin M, David DJ, Jolliet P, et al. Mechanism of action of antidepressants and therapeutic perspectives. Therapie 2002 Jul–Aug; 57(4): 385–96PubMed
21.
Zurück zum Zitat Holmes A, Heilig M, Rupniak NM, et al. Neuropeptide systems as novel therapeutic targets for depression and anxiety disorders. Trends Pharmacol Sci 2003 Nov; 24(11): 580–8PubMedCrossRef Holmes A, Heilig M, Rupniak NM, et al. Neuropeptide systems as novel therapeutic targets for depression and anxiety disorders. Trends Pharmacol Sci 2003 Nov; 24(11): 580–8PubMedCrossRef
22.
Zurück zum Zitat Mello AA, Mello MF, Carpenter LL, et al. Update on stress and depression: the role of the hypothalamic-pituitary-adrenal (HPA) axis. Rev Bras Psiquiatr 2003 Oct; 25(4): 231–8PubMedCrossRef Mello AA, Mello MF, Carpenter LL, et al. Update on stress and depression: the role of the hypothalamic-pituitary-adrenal (HPA) axis. Rev Bras Psiquiatr 2003 Oct; 25(4): 231–8PubMedCrossRef
23.
Zurück zum Zitat Pariante CM, Lightman SL. The HPA axis in major depression: classical theories and new developments. Trends Neurosci 2008 Sep; 31(9): 464–8PubMedCrossRef Pariante CM, Lightman SL. The HPA axis in major depression: classical theories and new developments. Trends Neurosci 2008 Sep; 31(9): 464–8PubMedCrossRef
24.
Zurück zum Zitat Stein MB, Jang KL, Taylor S, et al. Genetic and environmental influences on trauma exposure and posttraumatic stress disorder symptoms: a twin study. Am J Psychiatry 2002 Oct; 159(10): 1675–81PubMedCrossRef Stein MB, Jang KL, Taylor S, et al. Genetic and environmental influences on trauma exposure and posttraumatic stress disorder symptoms: a twin study. Am J Psychiatry 2002 Oct; 159(10): 1675–81PubMedCrossRef
25.
Zurück zum Zitat Sanchez MM, Ladd CO, Plotsky PM. Early adverse experience as a developmental risk factor for later psychopathology: evidence from rodent and primate models. Dev Psychopathol 2001 Summer; 13(3): 419–49PubMedCrossRef Sanchez MM, Ladd CO, Plotsky PM. Early adverse experience as a developmental risk factor for later psychopathology: evidence from rodent and primate models. Dev Psychopathol 2001 Summer; 13(3): 419–49PubMedCrossRef
26.
Zurück zum Zitat Corcoran C, Walker E, Huot R, et al. The stress cascade and schizophrenia: etiology and onset. Schizophr Bull 2003; 29(4): 671–92PubMedCrossRef Corcoran C, Walker E, Huot R, et al. The stress cascade and schizophrenia: etiology and onset. Schizophr Bull 2003; 29(4): 671–92PubMedCrossRef
27.
Zurück zum Zitat McCleery JM, Bhagwagar Z, Smith KA, et al. Modelling a loss event: effect of imagined bereavement on the hypothalamic-pituitary-adrenal axis. Psychol Med 2000 Jan; 30(1): 219–23PubMedCrossRef McCleery JM, Bhagwagar Z, Smith KA, et al. Modelling a loss event: effect of imagined bereavement on the hypothalamic-pituitary-adrenal axis. Psychol Med 2000 Jan; 30(1): 219–23PubMedCrossRef
28.
Zurück zum Zitat Lupien SJ, de Leon M, de Santi S, et al. Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nat Neurosci 1998 May; 1(1): 69–73PubMedCrossRef Lupien SJ, de Leon M, de Santi S, et al. Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nat Neurosci 1998 May; 1(1): 69–73PubMedCrossRef
29.
Zurück zum Zitat Heinrichs SC, Koob GF. Corticotropin-releasing factor in brain: a role in activation, arousal, and affect regulation. J Pharmacol Exp Ther 2004 Nov; 311(2): 427–40PubMedCrossRef Heinrichs SC, Koob GF. Corticotropin-releasing factor in brain: a role in activation, arousal, and affect regulation. J Pharmacol Exp Ther 2004 Nov; 311(2): 427–40PubMedCrossRef
30.
Zurück zum Zitat Nemeroff CB. Recent advances in the neurobiology of depression. Psychopharmacol Bull 2002 Summer; 36 Suppl. 2: 6–23 Nemeroff CB. Recent advances in the neurobiology of depression. Psychopharmacol Bull 2002 Summer; 36 Suppl. 2: 6–23
31.
Zurück zum Zitat Newport DJ, Nemeroff CB. Neurobiology of posttraumatic stress disorder. Curr Opin Neurobiol 2000 Apr; 10(2): 211–8PubMedCrossRef Newport DJ, Nemeroff CB. Neurobiology of posttraumatic stress disorder. Curr Opin Neurobiol 2000 Apr; 10(2): 211–8PubMedCrossRef
32.
Zurück zum Zitat Sapolsky RM, Armanini MP, Packan DR, et al. Glucocorticoid feedback inhibition of adrenocorticotropic hormone secretagogue release: relationship to corticosteroid receptor occupancy in various limbic sites. Neuroendocrinology 1990 Mar; 51(3): 328–36PubMedCrossRef Sapolsky RM, Armanini MP, Packan DR, et al. Glucocorticoid feedback inhibition of adrenocorticotropic hormone secretagogue release: relationship to corticosteroid receptor occupancy in various limbic sites. Neuroendocrinology 1990 Mar; 51(3): 328–36PubMedCrossRef
33.
Zurück zum Zitat Rybakowski JK, Twardowska K. The dexamethasone/ corticotropin-releasing hormone test in depression in bipolar and unipolar affective illness. J Psychiatr Res 1999 Sep–Oct; 33(5): 363–70PubMedCrossRef Rybakowski JK, Twardowska K. The dexamethasone/ corticotropin-releasing hormone test in depression in bipolar and unipolar affective illness. J Psychiatr Res 1999 Sep–Oct; 33(5): 363–70PubMedCrossRef
34.
Zurück zum Zitat Holsboer F, Ising M. Central CRH system in depression and anxiety: evidence from clinical studies with CRH1 receptor antagonists. Eur J Pharmacol 2008 Apr 7; 583(2–3): 350–7PubMedCrossRef Holsboer F, Ising M. Central CRH system in depression and anxiety: evidence from clinical studies with CRH1 receptor antagonists. Eur J Pharmacol 2008 Apr 7; 583(2–3): 350–7PubMedCrossRef
35.
Zurück zum Zitat Tanapat P, Hastings NB, Rydel TA, et al. Exposure to fox odor inhibits cell proliferation in the hippocampus of adult rats via an adrenal hormone-dependent mechanism. J Comp Neurol 2001 Sep 3; 437(4): 496–504PubMedCrossRef Tanapat P, Hastings NB, Rydel TA, et al. Exposure to fox odor inhibits cell proliferation in the hippocampus of adult rats via an adrenal hormone-dependent mechanism. J Comp Neurol 2001 Sep 3; 437(4): 496–504PubMedCrossRef
36.
Zurück zum Zitat Wang SH, Zhang ZJ, Guo YJ, et al. Hippocampal neurogenesis and behavioural studies on adult ischemic rat response to chronic mild stress. Behav Brain Res 2008 May 16; 189(1): 9–16PubMedCrossRef Wang SH, Zhang ZJ, Guo YJ, et al. Hippocampal neurogenesis and behavioural studies on adult ischemic rat response to chronic mild stress. Behav Brain Res 2008 May 16; 189(1): 9–16PubMedCrossRef
37.
Zurück zum Zitat de Kloet ER, Joels M, Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev 2005 Jun; 6(6): 463–75CrossRef de Kloet ER, Joels M, Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev 2005 Jun; 6(6): 463–75CrossRef
38.
Zurück zum Zitat Colla M, Kronenberg G, Deuschle M, et al. Hippocampal volume reduction and HPA-system activity in major depression. J Psychiatr Res 2007 Oct; 41(7): 553–60PubMedCrossRef Colla M, Kronenberg G, Deuschle M, et al. Hippocampal volume reduction and HPA-system activity in major depression. J Psychiatr Res 2007 Oct; 41(7): 553–60PubMedCrossRef
39.
Zurück zum Zitat Frodl T, Meisenzahl EM, Zetzsche T, et al. Hippocampal and amygdala changes in patients with major depressive disorder and healthy controls during a 1-year follow-up. J Clinical Psychiatr 2004 Apr; 65(4): 492–9CrossRef Frodl T, Meisenzahl EM, Zetzsche T, et al. Hippocampal and amygdala changes in patients with major depressive disorder and healthy controls during a 1-year follow-up. J Clinical Psychiatr 2004 Apr; 65(4): 492–9CrossRef
40.
Zurück zum Zitat Neumeister A, Wood S, Bonne O, et al. Reduced hippocampal volume in unmedicated, remitted patients with major depression versus control subjects. Biol Psychiatry 2005 Apr 15; 57(8): 935–7PubMedCrossRef Neumeister A, Wood S, Bonne O, et al. Reduced hippocampal volume in unmedicated, remitted patients with major depression versus control subjects. Biol Psychiatry 2005 Apr 15; 57(8): 935–7PubMedCrossRef
41.
Zurück zum Zitat Rupniak NM. New insights into the antidepressant actions of substance P (NK1 receptor) antagonists. Can J Physiol Pharmacol 2002 May; 80(5): 489–94PubMedCrossRef Rupniak NM. New insights into the antidepressant actions of substance P (NK1 receptor) antagonists. Can J Physiol Pharmacol 2002 May; 80(5): 489–94PubMedCrossRef
42.
Zurück zum Zitat Kramer MS. Update on substance P (NK-1 receptor) antagonists in clinical trials for depression. Neuropeptides 2000 Oct; 34(5): 255PubMedCrossRef Kramer MS. Update on substance P (NK-1 receptor) antagonists in clinical trials for depression. Neuropeptides 2000 Oct; 34(5): 255PubMedCrossRef
43.
Zurück zum Zitat Krase W, Koch M, Schnitzler HU. Substance P is involved in the sensitization of the acoustic startle response by footshocks in rats. Behav Brain Res 1994 Jul 29; 63(1): 81–8PubMedCrossRef Krase W, Koch M, Schnitzler HU. Substance P is involved in the sensitization of the acoustic startle response by footshocks in rats. Behav Brain Res 1994 Jul 29; 63(1): 81–8PubMedCrossRef
44.
Zurück zum Zitat Unger T, Carolus S, Demmert G, et al. Substance P induces a cardiovascular defense reaction in the rat: pharmacological characterization. Circ Res 1988 Oct; 63(4): 812–20PubMedCrossRef Unger T, Carolus S, Demmert G, et al. Substance P induces a cardiovascular defense reaction in the rat: pharmacological characterization. Circ Res 1988 Oct; 63(4): 812–20PubMedCrossRef
45.
Zurück zum Zitat Teixeira RM, Santos AR, Ribeiro SJ, et al. Effects of central administration of tachykinin receptor agonists and antagonists on plus-maze behavior in mice. Eur J Pharmacol 1996 Sep 5; 311(1): 7–14PubMedCrossRef Teixeira RM, Santos AR, Ribeiro SJ, et al. Effects of central administration of tachykinin receptor agonists and antagonists on plus-maze behavior in mice. Eur J Pharmacol 1996 Sep 5; 311(1): 7–14PubMedCrossRef
46.
Zurück zum Zitat Sadowski S, Huang RR, Fong TM, et al. Characterization of the binding of [125I-iodo-histidyl, methyl-Phe7] neurokinin B to the neurokinin-3 receptor. Neuropeptides 1993 Jun; 24(6): 317–9PubMedCrossRef Sadowski S, Huang RR, Fong TM, et al. Characterization of the binding of [125I-iodo-histidyl, methyl-Phe7] neurokinin B to the neurokinin-3 receptor. Neuropeptides 1993 Jun; 24(6): 317–9PubMedCrossRef
47.
Zurück zum Zitat Tattersall FD, Rycroft W, Hargreaves RJ, et al. The tachykinin NK1 receptor antagonist CP-99,994 attenuates cisplatin induced emesis in the ferret. Eur J Pharmacol 1993 Nov 30; 250(1): R5–6PubMedCrossRef Tattersall FD, Rycroft W, Hargreaves RJ, et al. The tachykinin NK1 receptor antagonist CP-99,994 attenuates cisplatin induced emesis in the ferret. Eur J Pharmacol 1993 Nov 30; 250(1): R5–6PubMedCrossRef
48.
Zurück zum Zitat Tattersall FD, Rycroft W, Marmont N, et al. Enantiospecific inhibition of emesis induced by nicotine in the house musk shrew (Suncus murinus) by the neurokinin1 (NK1) receptor antagonist CP-99, 994. Neuropharmacology 1995 Dec; 34(12): 1697–9PubMedCrossRef Tattersall FD, Rycroft W, Marmont N, et al. Enantiospecific inhibition of emesis induced by nicotine in the house musk shrew (Suncus murinus) by the neurokinin1 (NK1) receptor antagonist CP-99, 994. Neuropharmacology 1995 Dec; 34(12): 1697–9PubMedCrossRef
49.
Zurück zum Zitat Rupniak NM, Carlson EJ, Webb JK, et al. Comparison of the phenotype of NK1R-/- mice with pharmacological blockade of the substance P (NK1) receptor in assays for antidepressant and anxiolytic drugs. Behav Pharmacol 2001 Nov; 12(6–7): 497–508PubMedCrossRef Rupniak NM, Carlson EJ, Webb JK, et al. Comparison of the phenotype of NK1R-/- mice with pharmacological blockade of the substance P (NK1) receptor in assays for antidepressant and anxiolytic drugs. Behav Pharmacol 2001 Nov; 12(6–7): 497–508PubMedCrossRef
50.
Zurück zum Zitat Cheeta S, Tucci S, Sandhu J, et al. Anxiolytic actions of the substance P (NK1) receptor antagonist L-760735 and the 5-HT1A agonist 8-OH-DPAT in the social interaction test in gerbils. Brain Res 2001 Oct 12; 915(2): 170–5PubMedCrossRef Cheeta S, Tucci S, Sandhu J, et al. Anxiolytic actions of the substance P (NK1) receptor antagonist L-760735 and the 5-HT1A agonist 8-OH-DPAT in the social interaction test in gerbils. Brain Res 2001 Oct 12; 915(2): 170–5PubMedCrossRef
51.
Zurück zum Zitat Varty GB, Cohen-Williams ME, Morgan CA, et al. The gerbil elevated plus-maze II: anxiolytic-like effects of selective neurokinin NK1 receptor antagonists. Neuropsychopharmacology 2002 Sep; 27(3): 371–9PubMedCrossRef Varty GB, Cohen-Williams ME, Morgan CA, et al. The gerbil elevated plus-maze II: anxiolytic-like effects of selective neurokinin NK1 receptor antagonists. Neuropsychopharmacology 2002 Sep; 27(3): 371–9PubMedCrossRef
52.
Zurück zum Zitat Geracioti Jr TD, Carpenter LL, Owens MJ, et al. Elevated cerebrospinal fluid substance P concentrations in post-traumatic stress disorder and major depression. Am J Psychiatry 2006 Apr; 163(4): 637–43PubMedCrossRef Geracioti Jr TD, Carpenter LL, Owens MJ, et al. Elevated cerebrospinal fluid substance P concentrations in post-traumatic stress disorder and major depression. Am J Psychiatry 2006 Apr; 163(4): 637–43PubMedCrossRef
53.
Zurück zum Zitat Stockmeier CA, Shi X, Konick L, et al. Neurokinin-1 receptors are decreased in major depressive disorder. Neuroreport 2002 Jul 2; 13(9): 1223–7PubMedCrossRef Stockmeier CA, Shi X, Konick L, et al. Neurokinin-1 receptors are decreased in major depressive disorder. Neuroreport 2002 Jul 2; 13(9): 1223–7PubMedCrossRef
54.
Zurück zum Zitat Cascieri MA, Ber E, Fong TM, et al. Characterization of the binding of a potent, selective, radioiodinated antagonist to the human neurokinin-1 receptor. Mol Pharmacol 1992 Sep; 42(3): 458–63PubMed Cascieri MA, Ber E, Fong TM, et al. Characterization of the binding of a potent, selective, radioiodinated antagonist to the human neurokinin-1 receptor. Mol Pharmacol 1992 Sep; 42(3): 458–63PubMed
55.
Zurück zum Zitat Cascieri MA, Chicchi GG, Liang T. Demonstration of two distinct tachykinin receptors in rat brain cortex. J Biol Chem 1985 Feb 10; 260(3): 1501–7PubMed Cascieri MA, Chicchi GG, Liang T. Demonstration of two distinct tachykinin receptors in rat brain cortex. J Biol Chem 1985 Feb 10; 260(3): 1501–7PubMed
56.
Zurück zum Zitat Adell A. Antidepressant properties of substance P antagonists: relationship to monoaminergic mechanisms? Curr Drug Targets 2004 Apr; 3(2): 113–21 Adell A. Antidepressant properties of substance P antagonists: relationship to monoaminergic mechanisms? Curr Drug Targets 2004 Apr; 3(2): 113–21
57.
Zurück zum Zitat Keller M, Montgomery S, Ball W, et al. Lack of efficacy of the substance P (neurokinin1 receptor) antagonist aprepitant in the treatment of major depressive disorder. Biol Psychiatry 2006 Feb 1; 59(3): 216–23PubMedCrossRef Keller M, Montgomery S, Ball W, et al. Lack of efficacy of the substance P (neurokinin1 receptor) antagonist aprepitant in the treatment of major depressive disorder. Biol Psychiatry 2006 Feb 1; 59(3): 216–23PubMedCrossRef
58.
Zurück zum Zitat Furmark T, Appel L, Michelgard A, et al. Cerebral blood flow changes after treatment of social phobia with the neurokinin-1 antagonist GR205171, citalopram, or placebo. Biol Psychiatry 2005 Jul 15; 58(2): 132–42PubMedCrossRef Furmark T, Appel L, Michelgard A, et al. Cerebral blood flow changes after treatment of social phobia with the neurokinin-1 antagonist GR205171, citalopram, or placebo. Biol Psychiatry 2005 Jul 15; 58(2): 132–42PubMedCrossRef
59.
Zurück zum Zitat Brocco M, Dekeyne A, Mannoury la Cour C, et al. Cellular and behavioural profile of the novel, selective neurokinin1 receptor antagonist, vestipitant: a comparison to other agents. Eur Neuropsychopharmacol 2008 Oct; 18(10): 729–50PubMedCrossRef Brocco M, Dekeyne A, Mannoury la Cour C, et al. Cellular and behavioural profile of the novel, selective neurokinin1 receptor antagonist, vestipitant: a comparison to other agents. Eur Neuropsychopharmacol 2008 Oct; 18(10): 729–50PubMedCrossRef
60.
Zurück zum Zitat Hartman JM, Berger A, Baker K, et al. Quality of life and pain in premenopausal women with major depressive disorder: the POWER Study. Health Qual Life Outcomes 2006; 4: 2PubMedCrossRef Hartman JM, Berger A, Baker K, et al. Quality of life and pain in premenopausal women with major depressive disorder: the POWER Study. Health Qual Life Outcomes 2006; 4: 2PubMedCrossRef
61.
Zurück zum Zitat Guiard BP, Przybylski C, Guilloux JP, et al. Blockade of substance P (neurokinin 1) receptors enhances extracellular serotonin when combined with a selective serotonin reuptake inhibitor: an in vivo microdialysis study in mice. J Neurochem 2004 Apr; 89(1): 54–63PubMedCrossRef Guiard BP, Przybylski C, Guilloux JP, et al. Blockade of substance P (neurokinin 1) receptors enhances extracellular serotonin when combined with a selective serotonin reuptake inhibitor: an in vivo microdialysis study in mice. J Neurochem 2004 Apr; 89(1): 54–63PubMedCrossRef
62.
Zurück zum Zitat Ebner K, Singewald N. The role of substance P in stress and anxiety responses. Amino Acids 2006 Oct; 31(3): 251–72PubMedCrossRef Ebner K, Singewald N. The role of substance P in stress and anxiety responses. Amino Acids 2006 Oct; 31(3): 251–72PubMedCrossRef
63.
Zurück zum Zitat Regoli D, Boudon A, Fauchere JL. Receptors and antagonists for substance P and related peptides. Pharmacol Rev 1994 Dec; 46(4): 551–99PubMed Regoli D, Boudon A, Fauchere JL. Receptors and antagonists for substance P and related peptides. Pharmacol Rev 1994 Dec; 46(4): 551–99PubMed
64.
Zurück zum Zitat Steinberg R, Marco N, Voutsinos B, et al. Expression and presence of septal neurokinin-2 receptors controlling hippocampal acetylcholine release during sensory stimulation in rat. Eur J Neurosci 1998 Jul; 10(7): 2337–45PubMedCrossRef Steinberg R, Marco N, Voutsinos B, et al. Expression and presence of septal neurokinin-2 receptors controlling hippocampal acetylcholine release during sensory stimulation in rat. Eur J Neurosci 1998 Jul; 10(7): 2337–45PubMedCrossRef
65.
Zurück zum Zitat Preston Z, Richardson PJ, Pinnock RD, et al. NK-3 receptors are expressed on mouse striatal gamma-aminobutyric acid-ergic interneurones and evoke [(3)H] gamma-aminobutyric acid release. Neurosci Lett 2000 Apr 21; 284(1–2): 89–92PubMedCrossRef Preston Z, Richardson PJ, Pinnock RD, et al. NK-3 receptors are expressed on mouse striatal gamma-aminobutyric acid-ergic interneurones and evoke [(3)H] gamma-aminobutyric acid release. Neurosci Lett 2000 Apr 21; 284(1–2): 89–92PubMedCrossRef
66.
Zurück zum Zitat Steinberg R, Alonso R, Griebel G, et al. Selective blockade of neurokinin-2 receptors produces antidepressant-like effects associated with reduced corticotropin-releasing factor function. J Pharmacol Exp Ther 2001 Nov; 299(2): 449–58PubMed Steinberg R, Alonso R, Griebel G, et al. Selective blockade of neurokinin-2 receptors produces antidepressant-like effects associated with reduced corticotropin-releasing factor function. J Pharmacol Exp Ther 2001 Nov; 299(2): 449–58PubMed
67.
Zurück zum Zitat Griebel G, Moindrot N, Aliaga C, et al. Characterization of the profile of neurokinin-2 and neurotensin receptor antagonists in the mouse defense test battery. Neurosci Biobehav Rev 2001 Dec; 25(7-8): 619–26PubMedCrossRef Griebel G, Moindrot N, Aliaga C, et al. Characterization of the profile of neurokinin-2 and neurotensin receptor antagonists in the mouse defense test battery. Neurosci Biobehav Rev 2001 Dec; 25(7-8): 619–26PubMedCrossRef
68.
Zurück zum Zitat Griebel G. Is there a future for neuropeptide receptor ligands in the treatment of anxiety disorders? Pharmacol Ther 1999 Apr; 82(1): 1–61PubMedCrossRef Griebel G. Is there a future for neuropeptide receptor ligands in the treatment of anxiety disorders? Pharmacol Ther 1999 Apr; 82(1): 1–61PubMedCrossRef
69.
Zurück zum Zitat Emonds-Alt X, Vilain P, Goulaouic P, et al. A potent and selective non-peptide antagonist of the neurokinin A (NK2) receptor. Life Sci 1992; 50(15): PL101–6PubMedCrossRef Emonds-Alt X, Vilain P, Goulaouic P, et al. A potent and selective non-peptide antagonist of the neurokinin A (NK2) receptor. Life Sci 1992; 50(15): PL101–6PubMedCrossRef
70.
Zurück zum Zitat Chardenot P, Roubert C, Galiegue S, et al. Expression profile and up-regulation of PRAX-1 mRNA by antidepressant treatment in the rat brain. Mol Pharmacol 2002 Dec; 62(6): 1314–20PubMedCrossRef Chardenot P, Roubert C, Galiegue S, et al. Expression profile and up-regulation of PRAX-1 mRNA by antidepressant treatment in the rat brain. Mol Pharmacol 2002 Dec; 62(6): 1314–20PubMedCrossRef
71.
Zurück zum Zitat Dableh LJ, Yashpal K, Rochford J, et al. Antidepressant-like effects of neurokinin receptor antagonists in the forced swim test in the rat. Eur J Pharmacol 2005 Jan 10; 507(1–3): 99–105PubMedCrossRef Dableh LJ, Yashpal K, Rochford J, et al. Antidepressant-like effects of neurokinin receptor antagonists in the forced swim test in the rat. Eur J Pharmacol 2005 Jan 10; 507(1–3): 99–105PubMedCrossRef
72.
Zurück zum Zitat Salome N, Stemmelin J, Cohen C, et al. Selective blockade of NK2 or NK3 receptors produces anxiolytic- and antidepressant-like effects in gerbils. Pharmacol Biochem Behav 2006 Apr; 83(4): 533–9PubMedCrossRef Salome N, Stemmelin J, Cohen C, et al. Selective blockade of NK2 or NK3 receptors produces anxiolytic- and antidepressant-like effects in gerbils. Pharmacol Biochem Behav 2006 Apr; 83(4): 533–9PubMedCrossRef
73.
Zurück zum Zitat Micale V, Tamburella A, Leggio GM, et al. Behavioral effects of saredutant, a tachykinin NK2 receptor antagonist, in experimental models of mood disorders under basal and stress-related conditions. Pharmacol Biochem Behav 2008 Sep; 90(3): 463–9PubMedCrossRef Micale V, Tamburella A, Leggio GM, et al. Behavioral effects of saredutant, a tachykinin NK2 receptor antagonist, in experimental models of mood disorders under basal and stress-related conditions. Pharmacol Biochem Behav 2008 Sep; 90(3): 463–9PubMedCrossRef
75.
Zurück zum Zitat Ribeiro SJ, Teixeira RM, Calixto JB, et al. Tachykinin NK (3)receptor involvement in anxiety. Neuropeptides 1999 Apr; 33(2): 181–8PubMedCrossRef Ribeiro SJ, Teixeira RM, Calixto JB, et al. Tachykinin NK (3)receptor involvement in anxiety. Neuropeptides 1999 Apr; 33(2): 181–8PubMedCrossRef
76.
Zurück zum Zitat Kask A, Harro J, von Horsten S, et al. The neurocircuitry and receptor subtypes mediating anxiolytic-like effects of neuropeptide Y. Neurosci Biobehav Rev 2002 May; 26(3): 259–83PubMedCrossRef Kask A, Harro J, von Horsten S, et al. The neurocircuitry and receptor subtypes mediating anxiolytic-like effects of neuropeptide Y. Neurosci Biobehav Rev 2002 May; 26(3): 259–83PubMedCrossRef
77.
Zurück zum Zitat Harro J. CCK and NPY as anti-anxiety treatment targets: promises, pitfalls, and strategies. Amino Acids 2006 Oct; 31(3): 215–30PubMedCrossRef Harro J. CCK and NPY as anti-anxiety treatment targets: promises, pitfalls, and strategies. Amino Acids 2006 Oct; 31(3): 215–30PubMedCrossRef
78.
Zurück zum Zitat Heilig M, Zachrisson O, Thorsell A, et al. Decreased cerebrospinal fluid neuropeptide Y (NPY) in patients with treatment refractory unipolar major depression: preliminary evidence for association with preproNPY gene polymorphism. J Psychiatr Res 2004 Mar–Apr; 38(2): 113–21PubMedCrossRef Heilig M, Zachrisson O, Thorsell A, et al. Decreased cerebrospinal fluid neuropeptide Y (NPY) in patients with treatment refractory unipolar major depression: preliminary evidence for association with preproNPY gene polymorphism. J Psychiatr Res 2004 Mar–Apr; 38(2): 113–21PubMedCrossRef
79.
Zurück zum Zitat Karl T, Herzog H. Behavioral profiling of NPY in aggression and neuropsychiatric diseases. Peptides 2007 Feb; 28(2): 326–33PubMedCrossRef Karl T, Herzog H. Behavioral profiling of NPY in aggression and neuropsychiatric diseases. Peptides 2007 Feb; 28(2): 326–33PubMedCrossRef
80.
Zurück zum Zitat Lin S, Boey D, Herzog H. NPY and Y receptors: lessons from transgenic and knockout models. Neuropeptides 2004 Aug; 38(4): 189–200PubMedCrossRef Lin S, Boey D, Herzog H. NPY and Y receptors: lessons from transgenic and knockout models. Neuropeptides 2004 Aug; 38(4): 189–200PubMedCrossRef
81.
Zurück zum Zitat Smialowska M, Bajkowska M, Heilig M, et al. Pharmacological studies on the monoaminergic influence on the synthesis and expression of neuropeptide Y and corticotropin releasing factor in rat brain amygdala. Neuropeptides 2001 Apr; 35(2): 82–91PubMedCrossRef Smialowska M, Bajkowska M, Heilig M, et al. Pharmacological studies on the monoaminergic influence on the synthesis and expression of neuropeptide Y and corticotropin releasing factor in rat brain amygdala. Neuropeptides 2001 Apr; 35(2): 82–91PubMedCrossRef
82.
Zurück zum Zitat Tsagarakis S, Tsigos C, Vasiliou V, et al. The desmopressin and combined CRH-desmopressin tests in the differential diagnosis of ACTH-dependent Cushing’s syndrome: constraints imposed by the expression of V2 vasopressin receptors in tumors with ectopic ACTH secretion. J Clin Endocrinol Metab 2002 Apr; 87(4): 1646–53PubMedCrossRef Tsagarakis S, Tsigos C, Vasiliou V, et al. The desmopressin and combined CRH-desmopressin tests in the differential diagnosis of ACTH-dependent Cushing’s syndrome: constraints imposed by the expression of V2 vasopressin receptors in tumors with ectopic ACTH secretion. J Clin Endocrinol Metab 2002 Apr; 87(4): 1646–53PubMedCrossRef
83.
Zurück zum Zitat Redrobe JP, Dumont Y, Quirion R. Neuropeptide Y (NPY) and depression: from animal studies to the human condition. Life Sci 2002 Nov 8; 71(25): 2921–37PubMedCrossRef Redrobe JP, Dumont Y, Quirion R. Neuropeptide Y (NPY) and depression: from animal studies to the human condition. Life Sci 2002 Nov 8; 71(25): 2921–37PubMedCrossRef
84.
Zurück zum Zitat Vezzani A, Sperk G, Colmers WF. Neuropeptide Y: emerging evidence for a functional role in seizure modulation. Trends Neurosci 1999 Jan; 22(1): 25–30PubMedCrossRef Vezzani A, Sperk G, Colmers WF. Neuropeptide Y: emerging evidence for a functional role in seizure modulation. Trends Neurosci 1999 Jan; 22(1): 25–30PubMedCrossRef
85.
Zurück zum Zitat Redrobe JP, Dumont Y, Quirion R. Neuropeptide Y (NPY) and depression: from animal studies to the human condition. Life Sci 2002 Nov 8; 71(25): 2921–37PubMedCrossRef Redrobe JP, Dumont Y, Quirion R. Neuropeptide Y (NPY) and depression: from animal studies to the human condition. Life Sci 2002 Nov 8; 71(25): 2921–37PubMedCrossRef
86.
Zurück zum Zitat Widdowson PS, Henderson L, Pickavance L, et al. Hypothalamic NPY status during positive energy balance and the effects of the NPY antagonist, BW 1229U91, on the consumption of highly palatable energy-rich diet. Peptides 1999; 20(3): 367–72PubMedCrossRef Widdowson PS, Henderson L, Pickavance L, et al. Hypothalamic NPY status during positive energy balance and the effects of the NPY antagonist, BW 1229U91, on the consumption of highly palatable energy-rich diet. Peptides 1999; 20(3): 367–72PubMedCrossRef
87.
Zurück zum Zitat Westrin A, Ekman R, Traskman-Bendz L. Alterations of corticotropin releasing hormone (CRH) and neuropeptide Y (NPY) plasma levels in mood disorder patients with a recent suicide attempt. Eur Neuropsychopharmacol 1999 Mar; 9(3): 205–11PubMedCrossRef Westrin A, Ekman R, Traskman-Bendz L. Alterations of corticotropin releasing hormone (CRH) and neuropeptide Y (NPY) plasma levels in mood disorder patients with a recent suicide attempt. Eur Neuropsychopharmacol 1999 Mar; 9(3): 205–11PubMedCrossRef
88.
Zurück zum Zitat Zhou JR, Xu Z, Jiang CL. Neuropeptide Y promotes TGF-beta1 production in RAW264.7 cells by activating PI3K pathway via Y1 receptor. Neurosci Bull 2008 Jun; 24(3): 155–9PubMedCrossRef Zhou JR, Xu Z, Jiang CL. Neuropeptide Y promotes TGF-beta1 production in RAW264.7 cells by activating PI3K pathway via Y1 receptor. Neurosci Bull 2008 Jun; 24(3): 155–9PubMedCrossRef
89.
Zurück zum Zitat Michel MC, Beck-Sickinger A, Cox H, et al. XVI: International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacol Rev 1998 Mar; 50(1): 143–50PubMed Michel MC, Beck-Sickinger A, Cox H, et al. XVI: International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacol Rev 1998 Mar; 50(1): 143–50PubMed
90.
Zurück zum Zitat Primeaux SD, Wilson SP, Cusick MC, et al. Effects of altered amygdalar neuropeptide Y expression on anxiety-related behaviors. Neuropsychopharmacology 2005 Sep; 30(9): 1589–97PubMedCrossRef Primeaux SD, Wilson SP, Cusick MC, et al. Effects of altered amygdalar neuropeptide Y expression on anxiety-related behaviors. Neuropsychopharmacology 2005 Sep; 30(9): 1589–97PubMedCrossRef
91.
Zurück zum Zitat Redrobe JP, Dumont Y, Fournier A, et al. The neuropeptide Y (NPY) Y1 receptor subtype mediates NPY-induced antidepressant-like activity in the mouse forced swimming test. Neuropsychopharmacology 2002 May; 26(5): 615–24PubMedCrossRef Redrobe JP, Dumont Y, Fournier A, et al. The neuropeptide Y (NPY) Y1 receptor subtype mediates NPY-induced antidepressant-like activity in the mouse forced swimming test. Neuropsychopharmacology 2002 May; 26(5): 615–24PubMedCrossRef
92.
Zurück zum Zitat Sajdyk TJ, Schober DA, Gehlert DR. Neuropeptide Y receptor subtypes in the basolateral nucleus of the amygdala modulate anxiogenic responses in rats. Neuropharmacology 2002 Dec; 43(7): 1165–72PubMedCrossRef Sajdyk TJ, Schober DA, Gehlert DR. Neuropeptide Y receptor subtypes in the basolateral nucleus of the amygdala modulate anxiogenic responses in rats. Neuropharmacology 2002 Dec; 43(7): 1165–72PubMedCrossRef
93.
Zurück zum Zitat King PJ, Widdowson PS, Doods HN, et al. Regulation of neuropeptide Y release by neuropeptide Y receptor ligands and calcium channel antagonists in hypothalamic slices. J Neurochem 1999 Aug; 73(2): 641–6PubMedCrossRef King PJ, Widdowson PS, Doods HN, et al. Regulation of neuropeptide Y release by neuropeptide Y receptor ligands and calcium channel antagonists in hypothalamic slices. J Neurochem 1999 Aug; 73(2): 641–6PubMedCrossRef
94.
Zurück zum Zitat Redrobe JP, Dumont Y, Herzog H, et al. Neuropeptide Y (NPY) Y2 receptors mediate behaviour in two animal models of anxiety: evidence from Y2 receptor knockout mice. Behav Brain Res 2003 May 15; 141(2): 251–5PubMedCrossRef Redrobe JP, Dumont Y, Herzog H, et al. Neuropeptide Y (NPY) Y2 receptors mediate behaviour in two animal models of anxiety: evidence from Y2 receptor knockout mice. Behav Brain Res 2003 May 15; 141(2): 251–5PubMedCrossRef
95.
Zurück zum Zitat Tschenett A, Singewald N, Carli M, et al. Reduced anxiety and improved stress coping ability in mice lacking NPY-Y2 receptors. Eur J Neurosci 2003 Jul; 18(1): 143–8PubMedCrossRef Tschenett A, Singewald N, Carli M, et al. Reduced anxiety and improved stress coping ability in mice lacking NPY-Y2 receptors. Eur J Neurosci 2003 Jul; 18(1): 143–8PubMedCrossRef
96.
Zurück zum Zitat Sajdyk TJ, Schober DA, Smiley DL, et al. Neuropeptide YY2 receptors mediate anxiety in the amygdala. Pharmacol Biochem Behav 2002 Mar; 71(3): 419–23PubMedCrossRef Sajdyk TJ, Schober DA, Smiley DL, et al. Neuropeptide YY2 receptors mediate anxiety in the amygdala. Pharmacol Biochem Behav 2002 Mar; 71(3): 419–23PubMedCrossRef
97.
Zurück zum Zitat Painsipp E, Wultsch T, Edelsbrunner ME, et al. Reduced anxiety-like and depression-related behavior in neuropeptide Y Y4 receptor knockout mice. Genes Brain Behav 2008 Jul; 7(5): 532–42PubMedCrossRef Painsipp E, Wultsch T, Edelsbrunner ME, et al. Reduced anxiety-like and depression-related behavior in neuropeptide Y Y4 receptor knockout mice. Genes Brain Behav 2008 Jul; 7(5): 532–42PubMedCrossRef
98.
Zurück zum Zitat Kordower JH, Le HK, Mufson EJ. Galanin immunoreactivity in the primate central nervous system. J Comp Neurol 1992 May 22; 319(4): 479–500PubMedCrossRef Kordower JH, Le HK, Mufson EJ. Galanin immunoreactivity in the primate central nervous system. J Comp Neurol 1992 May 22; 319(4): 479–500PubMedCrossRef
99.
Zurück zum Zitat Perez SE, Wynick D, Steiner RA, et al. Distribution of galaninergic immunoreactivity in the brain of the mouse. J Comp Neurol 2001 May 28; 434(2): 158–85PubMedCrossRef Perez SE, Wynick D, Steiner RA, et al. Distribution of galaninergic immunoreactivity in the brain of the mouse. J Comp Neurol 2001 May 28; 434(2): 158–85PubMedCrossRef
100.
Zurück zum Zitat Xu ZQ, Bartfai T, Langel U, et al. Effects of three galanin analogs on the outward current evoked by galanin in locus coeruleus. Ann N Y Acad Sci 1998 Dec 21; 863: 459–65PubMedCrossRef Xu ZQ, Bartfai T, Langel U, et al. Effects of three galanin analogs on the outward current evoked by galanin in locus coeruleus. Ann N Y Acad Sci 1998 Dec 21; 863: 459–65PubMedCrossRef
101.
Zurück zum Zitat Xu ZQ, Zhang X, Pieribone VA, et al. Galanin-5-hydroxytryptamine interactions: electrophysiological, immunohistochemical and in situ hybridization studies on rat dorsal raphe neurons with a note on galanin R1 and R2 receptors. Neuroscience 1998 Nov; 87(1): 79–94PubMedCrossRef Xu ZQ, Zhang X, Pieribone VA, et al. Galanin-5-hydroxytryptamine interactions: electrophysiological, immunohistochemical and in situ hybridization studies on rat dorsal raphe neurons with a note on galanin R1 and R2 receptors. Neuroscience 1998 Nov; 87(1): 79–94PubMedCrossRef
102.
Zurück zum Zitat Branchek TA, Smith KE, Gerald C, et al. Galanin receptor subtypes. Trends Pharmacol Sci 2000 Mar; 21(3): 109–17PubMedCrossRef Branchek TA, Smith KE, Gerald C, et al. Galanin receptor subtypes. Trends Pharmacol Sci 2000 Mar; 21(3): 109–17PubMedCrossRef
103.
Zurück zum Zitat Smith KE, Walker MW, Artymyshyn R, et al. Cloned human and rat galanin GALR3 receptors: pharmacology and activation of G-protein inwardly rectifying K+ channels. J Biol Chem 1998 Sep 4; 273(36): 23321–6PubMedCrossRef Smith KE, Walker MW, Artymyshyn R, et al. Cloned human and rat galanin GALR3 receptors: pharmacology and activation of G-protein inwardly rectifying K+ channels. J Biol Chem 1998 Sep 4; 273(36): 23321–6PubMedCrossRef
104.
Zurück zum Zitat Wang S, Gustafson EL. Galanin receptor subtypes. Drug News Perspect 1998 Oct; 11(8): 458–68PubMed Wang S, Gustafson EL. Galanin receptor subtypes. Drug News Perspect 1998 Oct; 11(8): 458–68PubMed
105.
Zurück zum Zitat Wrenn CC, Crawley JN. Pharmacological evidence supporting a role for galanin in cognition and affect. Prog Neuropsychopharmacol Biol Psychiatry 2001 Jan; 25(1): 283–99PubMedCrossRef Wrenn CC, Crawley JN. Pharmacological evidence supporting a role for galanin in cognition and affect. Prog Neuropsychopharmacol Biol Psychiatry 2001 Jan; 25(1): 283–99PubMedCrossRef
106.
Zurück zum Zitat Kuteeva E, Hokfelt T, Wardi T, et al. Galanin, galanin receptor subtypes and depression-like behaviour. Cell Mol Life Sci 2008 Jun; 65(12): 1854–63PubMedCrossRef Kuteeva E, Hokfelt T, Wardi T, et al. Galanin, galanin receptor subtypes and depression-like behaviour. Cell Mol Life Sci 2008 Jun; 65(12): 1854–63PubMedCrossRef
107.
Zurück zum Zitat Yoshitake T, Yoshitake S, Yamaguchi M, et al. Activation of 5-HT (1A) autoreceptors enhances the inhibitory effect of galanin on hippocampal 5-HT release in vivo. Neuropharmacology 2003 Feb; 44(2): 206–13PubMedCrossRef Yoshitake T, Yoshitake S, Yamaguchi M, et al. Activation of 5-HT (1A) autoreceptors enhances the inhibitory effect of galanin on hippocampal 5-HT release in vivo. Neuropharmacology 2003 Feb; 44(2): 206–13PubMedCrossRef
108.
Zurück zum Zitat Kask K, Berthold M, Bartfai T. Galanin receptors: involvement in feeding, pain, depression and Alzheimer’s disease. Life Sci 1997; 60(18): 1523–33PubMedCrossRef Kask K, Berthold M, Bartfai T. Galanin receptors: involvement in feeding, pain, depression and Alzheimer’s disease. Life Sci 1997; 60(18): 1523–33PubMedCrossRef
109.
Zurück zum Zitat Bartfai T, Lu X, Badie-Mahdavi H, et al. Galmic, a non-peptide galanin receptor agonist, affects behaviors in seizure, pain, and forced-swim tests. Proc Natl Acad Sci U S A 2004 Jul 13; 101(28): 10470–5PubMedCrossRef Bartfai T, Lu X, Badie-Mahdavi H, et al. Galmic, a non-peptide galanin receptor agonist, affects behaviors in seizure, pain, and forced-swim tests. Proc Natl Acad Sci U S A 2004 Jul 13; 101(28): 10470–5PubMedCrossRef
110.
Zurück zum Zitat Lu X, Lundstrom L, Langel U, et al. Galanin receptor ligands. Neuropeptides 2005 Jun; 39(3): 143–6PubMedCrossRef Lu X, Lundstrom L, Langel U, et al. Galanin receptor ligands. Neuropeptides 2005 Jun; 39(3): 143–6PubMedCrossRef
111.
Zurück zum Zitat Weiss JM, Bonsall RW, Demetrikopoulos MK, et al. Galanin: a significant role in depression? Ann N Y Acad Sci 1998 Dec 21; 863: 364–82PubMedCrossRef Weiss JM, Bonsall RW, Demetrikopoulos MK, et al. Galanin: a significant role in depression? Ann N Y Acad Sci 1998 Dec 21; 863: 364–82PubMedCrossRef
112.
Zurück zum Zitat Rajarao SJ, Platt B, Sukoff SJ, et al. Anxiolytic-like activity of the non-selective galanin receptor agonist, galnon. Neuropeptides 2007 Oct; 41(5): 307–20PubMedCrossRef Rajarao SJ, Platt B, Sukoff SJ, et al. Anxiolytic-like activity of the non-selective galanin receptor agonist, galnon. Neuropeptides 2007 Oct; 41(5): 307–20PubMedCrossRef
113.
Zurück zum Zitat Kuteeva E, Wardi T, Hokfelt T, et al. Galanin enhances and a galanin antagonist attenuates depression-like behaviour in the rat. Eur Neuropsychopharmacol 2007 Jan; 17(1): 64–9PubMedCrossRef Kuteeva E, Wardi T, Hokfelt T, et al. Galanin enhances and a galanin antagonist attenuates depression-like behaviour in the rat. Eur Neuropsychopharmacol 2007 Jan; 17(1): 64–9PubMedCrossRef
114.
Zurück zum Zitat Swanson CJ, Blackburn TP, Zhang X, et al. Anxiolytic- and antidepressant-like profiles of the galanin-3 receptor (Gal3) antagonists SNAP 37889 and SNAP 398299. Proc Natl Acad Sci U S A 2005 Nov 29; 102(48): 17489–94PubMedCrossRef Swanson CJ, Blackburn TP, Zhang X, et al. Anxiolytic- and antidepressant-like profiles of the galanin-3 receptor (Gal3) antagonists SNAP 37889 and SNAP 398299. Proc Natl Acad Sci U S A 2005 Nov 29; 102(48): 17489–94PubMedCrossRef
115.
Zurück zum Zitat Lundstrom L, Elmquist A, Bartfai T, et al. Galanin and its receptors in neurological disorders. Neuromolecular Med 2005; 7(1–2): 157–80PubMedCrossRef Lundstrom L, Elmquist A, Bartfai T, et al. Galanin and its receptors in neurological disorders. Neuromolecular Med 2005; 7(1–2): 157–80PubMedCrossRef
116.
Zurück zum Zitat Barr AM, Kinney JW, Hill MN, et al. A novel, systemically active, selective galanin receptor type-3 ligand exhibits antidepressant-like activity in preclinical tests. Neurosci Lett 2006 Sep 11; 405(1–2): 111–5PubMedCrossRef Barr AM, Kinney JW, Hill MN, et al. A novel, systemically active, selective galanin receptor type-3 ligand exhibits antidepressant-like activity in preclinical tests. Neurosci Lett 2006 Sep 11; 405(1–2): 111–5PubMedCrossRef
117.
Zurück zum Zitat Lu X, Ross B, Sanchez-Alavez M, et al. Phenotypic analysis of GalR2 knockout mice in anxiety- and depression-related behavioral tests. Neuropeptides 2008 Aug; 42(4): 387–97PubMedCrossRef Lu X, Ross B, Sanchez-Alavez M, et al. Phenotypic analysis of GalR2 knockout mice in anxiety- and depression-related behavioral tests. Neuropeptides 2008 Aug; 42(4): 387–97PubMedCrossRef
118.
Zurück zum Zitat Barr AM, Kinney JW, Hill MN, et al. A novel, systemically active, selective galanin receptor type-3 ligand exhibits antidepressant-like activity in preclinical tests. Neurosci Lett 2006 Sep 11; 405(1–2): 111–5PubMedCrossRef Barr AM, Kinney JW, Hill MN, et al. A novel, systemically active, selective galanin receptor type-3 ligand exhibits antidepressant-like activity in preclinical tests. Neurosci Lett 2006 Sep 11; 405(1–2): 111–5PubMedCrossRef
119.
Zurück zum Zitat Gottsch ML, Zeng H, Hohmann JG, et al. Phenotypic analysis of mice deficient in the type 2 galanin receptor (GALR2). Mol Cell Biol 2005 Jun; 25(11): 4804–11PubMedCrossRef Gottsch ML, Zeng H, Hohmann JG, et al. Phenotypic analysis of mice deficient in the type 2 galanin receptor (GALR2). Mol Cell Biol 2005 Jun; 25(11): 4804–11PubMedCrossRef
120.
Zurück zum Zitat Kuteeva E, Calza L, Holmberg K, et al. Distribution of galanin in the brain of a galanin-overexpressing transgenic mouse. Neuropeptides 2005 Jun; 39(3): 293–8PubMedCrossRef Kuteeva E, Calza L, Holmberg K, et al. Distribution of galanin in the brain of a galanin-overexpressing transgenic mouse. Neuropeptides 2005 Jun; 39(3): 293–8PubMedCrossRef
121.
Zurück zum Zitat Bailey KR, Pavlova MN, Rohde AD, et al. Galanin receptor subtype 2 (GalR2) null mutant mice display an anxiogenic-like phenotype specific to the elevated plusmaze. Pharmacol Biochem Behav 2007 Jan; 86(1): 8–20PubMedCrossRef Bailey KR, Pavlova MN, Rohde AD, et al. Galanin receptor subtype 2 (GalR2) null mutant mice display an anxiogenic-like phenotype specific to the elevated plusmaze. Pharmacol Biochem Behav 2007 Jan; 86(1): 8–20PubMedCrossRef
122.
Zurück zum Zitat Lu X, Ross B, Sanchez-Alavez M, et al. Phenotypic analysis of GalR2 knockout mice in anxiety- and depression-related behavioral tests. Neuropeptides 2008 Aug; 42(4): 387–97PubMedCrossRef Lu X, Ross B, Sanchez-Alavez M, et al. Phenotypic analysis of GalR2 knockout mice in anxiety- and depression-related behavioral tests. Neuropeptides 2008 Aug; 42(4): 387–97PubMedCrossRef
123.
Zurück zum Zitat Holmes A, Li Q, Koenig EA, et al. Phenotypic assessment of galanin overexpressing and galanin receptor R1 knockout mice in the tail suspension test for depression-related behavior. Psychopharmacology 2005 Mar; 178(2–3): 276–85PubMedCrossRef Holmes A, Li Q, Koenig EA, et al. Phenotypic assessment of galanin overexpressing and galanin receptor R1 knockout mice in the tail suspension test for depression-related behavior. Psychopharmacology 2005 Mar; 178(2–3): 276–85PubMedCrossRef
124.
Zurück zum Zitat Wang J, Mack AL, Coop A, et al. Novel sigma (sigma) receptor agonists produce antidepressant-like effects in mice. Eur Neuropsychopharmacol 2007 Nov; 17(11): 708–16PubMedCrossRef Wang J, Mack AL, Coop A, et al. Novel sigma (sigma) receptor agonists produce antidepressant-like effects in mice. Eur Neuropsychopharmacol 2007 Nov; 17(11): 708–16PubMedCrossRef
125.
Zurück zum Zitat Vaughan J, Donaldson C, Bittencourt J, et al. Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature 1995 Nov 16; 378(6554): 287–92PubMedCrossRef Vaughan J, Donaldson C, Bittencourt J, et al. Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature 1995 Nov 16; 378(6554): 287–92PubMedCrossRef
126.
Zurück zum Zitat Lewis K, Li C, Perrin MH, et al. Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor. Proc Natl Acad Sci U S A 2001 Jun 19; 98(13): 7570–5PubMedCrossRef Lewis K, Li C, Perrin MH, et al. Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor. Proc Natl Acad Sci U S A 2001 Jun 19; 98(13): 7570–5PubMedCrossRef
127.
Zurück zum Zitat Reyes TM, Lewis K, Perrin MH, et al. Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc Natl Acad Sci U S A 2001 Feb 27; 98(5): 2843–8PubMedCrossRef Reyes TM, Lewis K, Perrin MH, et al. Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc Natl Acad Sci U S A 2001 Feb 27; 98(5): 2843–8PubMedCrossRef
128.
Zurück zum Zitat Kasckow JW, Lupien SJ, Behan DP, et al. Circulating human corticotropin-releasing factor-binding protein levels following cortisol infusions. Life Sci 2001 Jun 1; 69(2): 133–42PubMedCrossRef Kasckow JW, Lupien SJ, Behan DP, et al. Circulating human corticotropin-releasing factor-binding protein levels following cortisol infusions. Life Sci 2001 Jun 1; 69(2): 133–42PubMedCrossRef
129.
Zurück zum Zitat Raffin-Sanson ML, de Keyzer Y, Bertagna X. Proopiomelanocortin circulating polypeptide precursor with multiple functions: from physiology to pathological conditions. Eur J Endocrinol 2003 Aug; 149(2): 79–90PubMedCrossRef Raffin-Sanson ML, de Keyzer Y, Bertagna X. Proopiomelanocortin circulating polypeptide precursor with multiple functions: from physiology to pathological conditions. Eur J Endocrinol 2003 Aug; 149(2): 79–90PubMedCrossRef
130.
Zurück zum Zitat Hiroi N, Wong ML, Licinio J, et al. Expression of corticotropin releasing hormone receptors type I and type II mRNA in suicide victims and controls. Mol Psychiatr 2001 Sep; 6(5): 540–6CrossRef Hiroi N, Wong ML, Licinio J, et al. Expression of corticotropin releasing hormone receptors type I and type II mRNA in suicide victims and controls. Mol Psychiatr 2001 Sep; 6(5): 540–6CrossRef
131.
Zurück zum Zitat Chalmers DT, Lovenberg TW, De Souza EB. Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression. J Neurosci 1995 Oct; 15(10): 6340–50PubMed Chalmers DT, Lovenberg TW, De Souza EB. Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression. J Neurosci 1995 Oct; 15(10): 6340–50PubMed
132.
Zurück zum Zitat Grino M, Chrousos GP, Margioris AN. The corticotropin releasing hormone gene is expressed in human placenta. Biochem Biophys Res Comm 1987 Nov 13; 148(3): 1208–14PubMedCrossRef Grino M, Chrousos GP, Margioris AN. The corticotropin releasing hormone gene is expressed in human placenta. Biochem Biophys Res Comm 1987 Nov 13; 148(3): 1208–14PubMedCrossRef
133.
Zurück zum Zitat Imperatore A, Florio P, Torres PB, et al. Urocortin 2 and urocortin 3 are expressed by the human placenta, deciduas, and fetal membranes. Am J Obstet Gynecol 2006 Jul; 195(1): 288–95PubMedCrossRef Imperatore A, Florio P, Torres PB, et al. Urocortin 2 and urocortin 3 are expressed by the human placenta, deciduas, and fetal membranes. Am J Obstet Gynecol 2006 Jul; 195(1): 288–95PubMedCrossRef
134.
Zurück zum Zitat Makrigiannakis A, Zoumakis E, Margioris AN, et al. The corticotropin-releasing hormone (CRH) in normal and tumoral epithelial cells of human endometrium. J Clin Endocrinol Metab 1995 Jan; 80(1): 185–9PubMedCrossRef Makrigiannakis A, Zoumakis E, Margioris AN, et al. The corticotropin-releasing hormone (CRH) in normal and tumoral epithelial cells of human endometrium. J Clin Endocrinol Metab 1995 Jan; 80(1): 185–9PubMedCrossRef
135.
Zurück zum Zitat Zoumakis E, Chatzaki E, Charalampopoulos I, et al. Cycle and age-related changes in corticotropin-releasing hormone levels in human endometrium and ovaries. Gynecol Endocrinol 2001 Apr; 15(2): 98–102PubMed Zoumakis E, Chatzaki E, Charalampopoulos I, et al. Cycle and age-related changes in corticotropin-releasing hormone levels in human endometrium and ovaries. Gynecol Endocrinol 2001 Apr; 15(2): 98–102PubMed
136.
Zurück zum Zitat Brar BK, Stephanou A, Okosi A, et al. CRH-like peptides protect cardiac myocytes from lethal ischaemic injury. Mol Cell Endocrinol 1999 Dec 20; 158(1–2): 55–63PubMedCrossRef Brar BK, Stephanou A, Okosi A, et al. CRH-like peptides protect cardiac myocytes from lethal ischaemic injury. Mol Cell Endocrinol 1999 Dec 20; 158(1–2): 55–63PubMedCrossRef
137.
Zurück zum Zitat Chatzaki E, Minas V, Zoumakis E, et al. CRF receptor antagonists: utility in research and clinical practice. Curr Med Chem 2006; 13(23): 2751–60PubMedCrossRef Chatzaki E, Minas V, Zoumakis E, et al. CRF receptor antagonists: utility in research and clinical practice. Curr Med Chem 2006; 13(23): 2751–60PubMedCrossRef
138.
Zurück zum Zitat Carpenter LL, Tyrka AR, McDougle CJ, et al. Cerebrospinal fluid corticotropin-releasing factor and perceived early-life stress in depressed patients and healthy control subjects. Neuropsychopharmacology 2004 Apr; 29(4): 777–84PubMedCrossRef Carpenter LL, Tyrka AR, McDougle CJ, et al. Cerebrospinal fluid corticotropin-releasing factor and perceived early-life stress in depressed patients and healthy control subjects. Neuropsychopharmacology 2004 Apr; 29(4): 777–84PubMedCrossRef
139.
Zurück zum Zitat Nemeroff CB, Bissette G, Akil H, et al. Neuropeptide concentrations in the cerebrospinal fluid of depressed patients treated with electroconvulsive therapy: corticotrophin-releasing factor, beta-endorphin and somatostatin. Br J Psychiatry 1991 Jan; 158: 59–63PubMedCrossRef Nemeroff CB, Bissette G, Akil H, et al. Neuropeptide concentrations in the cerebrospinal fluid of depressed patients treated with electroconvulsive therapy: corticotrophin-releasing factor, beta-endorphin and somatostatin. Br J Psychiatry 1991 Jan; 158: 59–63PubMedCrossRef
140.
Zurück zum Zitat Nemeroff CB, Widerlov E, Bissette G, et al. Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science 1984 Dec 14; 226(4680): 1342–4PubMedCrossRef Nemeroff CB, Widerlov E, Bissette G, et al. Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science 1984 Dec 14; 226(4680): 1342–4PubMedCrossRef
141.
Zurück zum Zitat Banki CM, Bissette G, Arato M, et al. CSF corticotropin-releasing factor-like immunoreactivity in depression and schizophrenia. Am J Psychiatry 1987 Jul; 144(7): 873–7PubMed Banki CM, Bissette G, Arato M, et al. CSF corticotropin-releasing factor-like immunoreactivity in depression and schizophrenia. Am J Psychiatry 1987 Jul; 144(7): 873–7PubMed
142.
Zurück zum Zitat Nemeroff CB, Bissette G. Neuropeptides, dopamine, and schizophrenia. Annals Ann N Y Acad Sci 1988; 537: 273–91CrossRef Nemeroff CB, Bissette G. Neuropeptides, dopamine, and schizophrenia. Annals Ann N Y Acad Sci 1988; 537: 273–91CrossRef
143.
Zurück zum Zitat Arato M, Banki CM, Bissette G, et al. Elevated CSF CRF in suicide victims. Biol Psychiatry 1989 Feb 1; 25(3): 355–9PubMedCrossRef Arato M, Banki CM, Bissette G, et al. Elevated CSF CRF in suicide victims. Biol Psychiatry 1989 Feb 1; 25(3): 355–9PubMedCrossRef
144.
Zurück zum Zitat Habib KE, Weld KP, Rice KC, et al. Oral administration of a corticotropin-releasing hormone receptor antagonist significantly attenuates behavioral, neuroendocrine, and autonomic responses to stress in primates. Proc Natl Acad Sci U S A 2000 May 23; 97(11): 6079–84PubMedCrossRef Habib KE, Weld KP, Rice KC, et al. Oral administration of a corticotropin-releasing hormone receptor antagonist significantly attenuates behavioral, neuroendocrine, and autonomic responses to stress in primates. Proc Natl Acad Sci U S A 2000 May 23; 97(11): 6079–84PubMedCrossRef
145.
Zurück zum Zitat Bradley RG, Binder EB, Epstein MP, et al. Influence of child abuse on adult depression: moderation by the corticotropin-releasing hormone receptor gene. Arch Gen Psychiatry 2008 Feb; 65(2): 190–200PubMedCrossRef Bradley RG, Binder EB, Epstein MP, et al. Influence of child abuse on adult depression: moderation by the corticotropin-releasing hormone receptor gene. Arch Gen Psychiatry 2008 Feb; 65(2): 190–200PubMedCrossRef
146.
Zurück zum Zitat Heinrichs SC, De Souza EB, Schulteis G, et al. Brain penetrance, receptor occupancy and antistress in vivo efficacy of a small molecule corticotropin releasing factor type I receptor selective antagonist. Neuropsycho-pharmacology 2002 Aug; 27(2): 194–202CrossRef Heinrichs SC, De Souza EB, Schulteis G, et al. Brain penetrance, receptor occupancy and antistress in vivo efficacy of a small molecule corticotropin releasing factor type I receptor selective antagonist. Neuropsycho-pharmacology 2002 Aug; 27(2): 194–202CrossRef
147.
Zurück zum Zitat Nielsen DM, Carey GJ, Gold LH. Antidepressant-like activity of corticotropin-releasing factor type-1 receptor antagonists in mice. Eur J Pharmacol 2004 Sep 19; 499(1–2): 135–46PubMedCrossRef Nielsen DM, Carey GJ, Gold LH. Antidepressant-like activity of corticotropin-releasing factor type-1 receptor antagonists in mice. Eur J Pharmacol 2004 Sep 19; 499(1–2): 135–46PubMedCrossRef
148.
Zurück zum Zitat Alonso R, Griebel G, Pavone G, et al. Blockade of CRF (1) or V (1b) receptors reverses stress-induced suppression of neurogenesis in a mouse model of depression. Mol Psychiatry 2004 Mar; 9(3): 278–86, 24PubMedCrossRef Alonso R, Griebel G, Pavone G, et al. Blockade of CRF (1) or V (1b) receptors reverses stress-induced suppression of neurogenesis in a mouse model of depression. Mol Psychiatry 2004 Mar; 9(3): 278–86, 24PubMedCrossRef
149.
Zurück zum Zitat Keck ME, Holsboer F. Hyperactivity of CRH neuronal circuits as a target for therapeutic interventions in affective disorders. Peptides 2001 May; 22(5): 835–44PubMedCrossRef Keck ME, Holsboer F. Hyperactivity of CRH neuronal circuits as a target for therapeutic interventions in affective disorders. Peptides 2001 May; 22(5): 835–44PubMedCrossRef
150.
Zurück zum Zitat Bale TL, Contarino A, Smith GW, et al. Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nat Genet 2000 Apr; 24(4): 410–4PubMedCrossRef Bale TL, Contarino A, Smith GW, et al. Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nat Genet 2000 Apr; 24(4): 410–4PubMedCrossRef
151.
Zurück zum Zitat Bale TL, Anderson KR, Roberts AJ, et al. Corticotropin-releasing factor receptor-2-deficient mice display abnormal homeostatic responses to challenges of increased dietary fat and cold. Endocrinology 2003 Jun; 144(6): 2580–7PubMedCrossRef Bale TL, Anderson KR, Roberts AJ, et al. Corticotropin-releasing factor receptor-2-deficient mice display abnormal homeostatic responses to challenges of increased dietary fat and cold. Endocrinology 2003 Jun; 144(6): 2580–7PubMedCrossRef
152.
Zurück zum Zitat Nielsen DM. Corticotropin-releasing factor type-1 receptor antagonists: the next class of antidepressants? Life Sci 2006 Jan 25; 78(9): 909–19PubMedCrossRef Nielsen DM. Corticotropin-releasing factor type-1 receptor antagonists: the next class of antidepressants? Life Sci 2006 Jan 25; 78(9): 909–19PubMedCrossRef
153.
Zurück zum Zitat Kunzel HE, Ising M, Zobel AW, et al. Treatment with a CRH-1-receptor antagonist (R121919) does not affect weight or plasma leptin concentration in patients with major depression. J Psychiatr Res 2005 Mar; 39(2): 173–7PubMedCrossRef Kunzel HE, Ising M, Zobel AW, et al. Treatment with a CRH-1-receptor antagonist (R121919) does not affect weight or plasma leptin concentration in patients with major depression. J Psychiatr Res 2005 Mar; 39(2): 173–7PubMedCrossRef
154.
Zurück zum Zitat Kunzel HE, Zobel AW, Nickel T, et al. Treatment of depression with the CRH-1-receptor antagonist R121919: endocrine changes and side effects. J Psychiatr Res 2003 Nov–Dec; 37(6): 525–33PubMedCrossRef Kunzel HE, Zobel AW, Nickel T, et al. Treatment of depression with the CRH-1-receptor antagonist R121919: endocrine changes and side effects. J Psychiatr Res 2003 Nov–Dec; 37(6): 525–33PubMedCrossRef
155.
Zurück zum Zitat Held K, Kunzel H, Ising M, et al. Treatment with the CRH1-receptor-antagonist R121919 improves sleep-EEG in patients with depression. J Psychiatr Res 2004 Mar–Apr; 38(2): 129–36PubMedCrossRef Held K, Kunzel H, Ising M, et al. Treatment with the CRH1-receptor-antagonist R121919 improves sleep-EEG in patients with depression. J Psychiatr Res 2004 Mar–Apr; 38(2): 129–36PubMedCrossRef
156.
Zurück zum Zitat Tellew JE, Luo Z. Small molecule antagonists of the corticotropin releasing factor (CRF) receptor: recent medicinal chemistry developments. Curr Top Med Chem 2008; 8(6): 506–20PubMedCrossRef Tellew JE, Luo Z. Small molecule antagonists of the corticotropin releasing factor (CRF) receptor: recent medicinal chemistry developments. Curr Top Med Chem 2008; 8(6): 506–20PubMedCrossRef
157.
Zurück zum Zitat Ising M, Holsboer F. CRH-sub-1 receptor antagonists for the treatment of depression and anxiety. Exp Clin Psychopharmacol 2007 Dec; 15(6): 519–28PubMedCrossRef Ising M, Holsboer F. CRH-sub-1 receptor antagonists for the treatment of depression and anxiety. Exp Clin Psychopharmacol 2007 Dec; 15(6): 519–28PubMedCrossRef
158.
Zurück zum Zitat Gutman DA, Owens MJ, Skelton KH, et al. The corticotropin-releasing factor1 receptor antagonist R121919 attenuates the behavioral and endocrine responses to stress. J Pharmacol Exp Ther 2003 Feb; 304(2): 874–80PubMedCrossRef Gutman DA, Owens MJ, Skelton KH, et al. The corticotropin-releasing factor1 receptor antagonist R121919 attenuates the behavioral and endocrine responses to stress. J Pharmacol Exp Ther 2003 Feb; 304(2): 874–80PubMedCrossRef
159.
Zurück zum Zitat Buijs RM. Vasopressin and oxytocin localization and putative functions in the brain. Acta Neurochir (Wien) 1990; 47: 86–9 Buijs RM. Vasopressin and oxytocin localization and putative functions in the brain. Acta Neurochir (Wien) 1990; 47: 86–9
160.
Zurück zum Zitat Zhou JN, Riemersma RF, Unmehopa UA, et al. Alterations in arginine vasopressin neurons in the suprachiasmatic nucleus in depression. Arch Gen Psychiatry 2001 Jul; 58(7): 655–62PubMedCrossRef Zhou JN, Riemersma RF, Unmehopa UA, et al. Alterations in arginine vasopressin neurons in the suprachiasmatic nucleus in depression. Arch Gen Psychiatry 2001 Jul; 58(7): 655–62PubMedCrossRef
161.
Zurück zum Zitat Engelmann M, Landgraf R, Wotjak CT. The hypothalamic-neurohypophysial system regulates the hypothalamic-pituitary-adrenal axis under stress: an old concept revisited. Front Neuroendocrinol 2004 Sep–Dec; 25(3–4): 132–49PubMedCrossRef Engelmann M, Landgraf R, Wotjak CT. The hypothalamic-neurohypophysial system regulates the hypothalamic-pituitary-adrenal axis under stress: an old concept revisited. Front Neuroendocrinol 2004 Sep–Dec; 25(3–4): 132–49PubMedCrossRef
162.
Zurück zum Zitat Ring RH. The central vasopressinergic system: examining the opportunities for psychiatric drug development. Curr Pharm Des 2005; 11(2): 205–25PubMedCrossRef Ring RH. The central vasopressinergic system: examining the opportunities for psychiatric drug development. Curr Pharm Des 2005; 11(2): 205–25PubMedCrossRef
163.
Zurück zum Zitat Ostrowski NL, Lolait SJ, Young 3rd WS. Cellular localization of vasopressin V1a receptor messenger ribonucleic acid in adult male rat brain, pineal, and brain vasculature. Endocrinology 1994 Oct; 135(4): 1511–28PubMedCrossRef Ostrowski NL, Lolait SJ, Young 3rd WS. Cellular localization of vasopressin V1a receptor messenger ribonucleic acid in adult male rat brain, pineal, and brain vasculature. Endocrinology 1994 Oct; 135(4): 1511–28PubMedCrossRef
164.
Zurück zum Zitat Griebel G, Stemmelin J, Gal CS, et al. Non-peptide vasopressin V1b receptor antagonists as potential drugs for the treatment of stress-related disorders. Curr Pharm Des 2005; 11(12): 1549–59PubMedCrossRef Griebel G, Stemmelin J, Gal CS, et al. Non-peptide vasopressin V1b receptor antagonists as potential drugs for the treatment of stress-related disorders. Curr Pharm Des 2005; 11(12): 1549–59PubMedCrossRef
165.
Zurück zum Zitat Landgraf R, Gerstberger R, Montkowski A, et al. V1 vasopressin receptor antisense oligodeoxynucleotide into septum reduces vasopressin binding, social discrimination abilities, and anxiety-related behavior in rats. J Neurosci 1995 Jun; 15(6): 4250–8PubMed Landgraf R, Gerstberger R, Montkowski A, et al. V1 vasopressin receptor antisense oligodeoxynucleotide into septum reduces vasopressin binding, social discrimination abilities, and anxiety-related behavior in rats. J Neurosci 1995 Jun; 15(6): 4250–8PubMed
166.
Zurück zum Zitat Wigger A, Sanchez MM, Mathys KC, et al. Alterations in central neuropeptide expression, release, and receptor binding in rats bred for high anxiety: critical role of vasopressin. Neuropsychopharmacology 2004 Jan; 29(1): 1–14PubMedCrossRef Wigger A, Sanchez MM, Mathys KC, et al. Alterations in central neuropeptide expression, release, and receptor binding in rats bred for high anxiety: critical role of vasopressin. Neuropsychopharmacology 2004 Jan; 29(1): 1–14PubMedCrossRef
167.
Zurück zum Zitat Young LJ, Nilsen R, Waymire KG, et al. Increased affiliative response to vasopressin in mice expressing the V1a receptor from a monogamous vole. Nature 1999 Aug 19; 400(6746): 766–8PubMedCrossRef Young LJ, Nilsen R, Waymire KG, et al. Increased affiliative response to vasopressin in mice expressing the V1a receptor from a monogamous vole. Nature 1999 Aug 19; 400(6746): 766–8PubMedCrossRef
168.
Zurück zum Zitat Zingg HH. Vasopressin and oxytocin receptors. Baillieres Clin Endocrinol Metab 1996 Jan; 10(1): 75–96PubMedCrossRef Zingg HH. Vasopressin and oxytocin receptors. Baillieres Clin Endocrinol Metab 1996 Jan; 10(1): 75–96PubMedCrossRef
169.
Zurück zum Zitat Landgraf R, Kessler MS, Bunck M, et al. Candidate genes of anxiety-related behavior in HAB/LAB rats and mice: focus on vasopressin and glyoxalase-I. Neurosci Biobehav Rev 2007; 31(1): 89–102PubMedCrossRef Landgraf R, Kessler MS, Bunck M, et al. Candidate genes of anxiety-related behavior in HAB/LAB rats and mice: focus on vasopressin and glyoxalase-I. Neurosci Biobehav Rev 2007; 31(1): 89–102PubMedCrossRef
170.
Zurück zum Zitat Merali Z, Kent P, Du L, et al. Corticotropin-releasing hormone, arginine vasopressin, gastrin-releasing peptide, and neuromedin B alterations in stress-relevant brain regions of suicides and control subjects. Biol Psychiatry 2006 Apr 1; 59(7): 594–602PubMedCrossRef Merali Z, Kent P, Du L, et al. Corticotropin-releasing hormone, arginine vasopressin, gastrin-releasing peptide, and neuromedin B alterations in stress-relevant brain regions of suicides and control subjects. Biol Psychiatry 2006 Apr 1; 59(7): 594–602PubMedCrossRef
171.
Zurück zum Zitat Purba JS, Hoogendijk WJ, Hofman MA, et al. Increased number of vasopressin- and oxytocin-expressing neurons in the paraventricular nucleus of the hypothalamus in depression. Arch Gen Psychiatry 1996 Feb; 53(2): 137–43PubMedCrossRef Purba JS, Hoogendijk WJ, Hofman MA, et al. Increased number of vasopressin- and oxytocin-expressing neurons in the paraventricular nucleus of the hypothalamus in depression. Arch Gen Psychiatry 1996 Feb; 53(2): 137–43PubMedCrossRef
172.
Zurück zum Zitat Meynen G, Unmehopa UA, van Heerikhuize JJ, et al. Increased arginine vasopressin mRNA expression in the human hypothalamus in depression: a preliminary report. Biol Psychiatry 2006 Oct 15; 60(8): 892–5PubMedCrossRef Meynen G, Unmehopa UA, van Heerikhuize JJ, et al. Increased arginine vasopressin mRNA expression in the human hypothalamus in depression: a preliminary report. Biol Psychiatry 2006 Oct 15; 60(8): 892–5PubMedCrossRef
173.
Zurück zum Zitat Brunner J, Keck ME, Landgraf R, et al. Vasopressin in CSF and plasma in depressed suicide attempters: preliminary results. Eur Neuropsychopharmacol 2002 Oct; 12(5): 489–94PubMedCrossRef Brunner J, Keck ME, Landgraf R, et al. Vasopressin in CSF and plasma in depressed suicide attempters: preliminary results. Eur Neuropsychopharmacol 2002 Oct; 12(5): 489–94PubMedCrossRef
174.
Zurück zum Zitat Inder WJ, Donald RA, Prickett TC, et al. Arginine vasopressin is associated with hypercortisolemia and suicide attempts in depression. Biol Psychiatry 1997 Oct 15; 42(8): 744–7PubMedCrossRef Inder WJ, Donald RA, Prickett TC, et al. Arginine vasopressin is associated with hypercortisolemia and suicide attempts in depression. Biol Psychiatry 1997 Oct 15; 42(8): 744–7PubMedCrossRef
175.
Zurück zum Zitat de Winter RF, van Hemert AM, DeRijk RH, et al. Anxious-retarded depression: relation with plasma vasopressin and cortisol. Neuropsychopharmacology 2003 Jan; 28(1): 140–7PubMedCrossRef de Winter RF, van Hemert AM, DeRijk RH, et al. Anxious-retarded depression: relation with plasma vasopressin and cortisol. Neuropsychopharmacology 2003 Jan; 28(1): 140–7PubMedCrossRef
176.
Zurück zum Zitat van Londen L, Goekoop JG, van Kempen GM, et al. Plasma levels of arginine vasopressin elevated in patients with major depression. Neuropsychopharmacology 1997 Oct; 17(4): 284–92PubMedCrossRef van Londen L, Goekoop JG, van Kempen GM, et al. Plasma levels of arginine vasopressin elevated in patients with major depression. Neuropsychopharmacology 1997 Oct; 17(4): 284–92PubMedCrossRef
177.
Zurück zum Zitat Sorensen PS, Gjerris A, Hammer M. Cerebrospinal fluid vasopressin in neurological and psychiatric disorders. J Neurol Neurosurg Psychiatry 1985 Jan; 48(1): 50–7PubMedCrossRef Sorensen PS, Gjerris A, Hammer M. Cerebrospinal fluid vasopressin in neurological and psychiatric disorders. J Neurol Neurosurg Psychiatry 1985 Jan; 48(1): 50–7PubMedCrossRef
178.
Zurück zum Zitat Overstreet DH, Griebel G. Antidepressant-like effects of the vasopressin V1b receptor antagonist SSR149415 in the Flinders Sensitive Line rat. Pharmacol Biochem Behav 2005 Sep; 82(1): 223–7PubMedCrossRef Overstreet DH, Griebel G. Antidepressant-like effects of the vasopressin V1b receptor antagonist SSR149415 in the Flinders Sensitive Line rat. Pharmacol Biochem Behav 2005 Sep; 82(1): 223–7PubMedCrossRef
179.
Zurück zum Zitat Salome N, Stemmelin J, Cohen C, et al. Differential roles of amygdaloid nuclei in the anxiolytic- and antidepressant-like effects of the V1b receptor antagonist, SSR149415, in rats. Psychopharmacology 2006 Aug; 187(2): 237–44PubMedCrossRef Salome N, Stemmelin J, Cohen C, et al. Differential roles of amygdaloid nuclei in the anxiolytic- and antidepressant-like effects of the V1b receptor antagonist, SSR149415, in rats. Psychopharmacology 2006 Aug; 187(2): 237–44PubMedCrossRef
180.
Zurück zum Zitat van West D, Del-Favero J, Aulchenko Y, et al. A major SNP haplotype of the arginine vasopressin 1B receptor protects against recurrent major depression. Mol Psychiatry 2004 Mar; 9(3): 287–92PubMedCrossRef van West D, Del-Favero J, Aulchenko Y, et al. A major SNP haplotype of the arginine vasopressin 1B receptor protects against recurrent major depression. Mol Psychiatry 2004 Mar; 9(3): 287–92PubMedCrossRef
181.
Zurück zum Zitat Surget A, Belzung C. Involvement of vasopressin in affective disorders. Eur J Pharmacol 2008 Apr 7; 583(2–3): 340–9PubMedCrossRef Surget A, Belzung C. Involvement of vasopressin in affective disorders. Eur J Pharmacol 2008 Apr 7; 583(2–3): 340–9PubMedCrossRef
182.
Zurück zum Zitat Griebel G, Simiand J, Serradeil-Le Gal C, et al. Anxiolytic- and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR149415, suggest an innovative approach for the treatment of stress-related disorders. Proc Natl Acad Sci U S A 2002 Apr 30; 99(9): 6370–5PubMedCrossRef Griebel G, Simiand J, Serradeil-Le Gal C, et al. Anxiolytic- and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR149415, suggest an innovative approach for the treatment of stress-related disorders. Proc Natl Acad Sci U S A 2002 Apr 30; 99(9): 6370–5PubMedCrossRef
183.
Zurück zum Zitat Stemmelin J, Lukovic L, Salome N, et al. Evidence that the lateral septum is involved in the antidepressant-like effects of the vasopressin V1b receptor antagonist, SSR 149415. Neuropsychopharmacology 2005 Jan; 30(1): 35–42PubMedCrossRef Stemmelin J, Lukovic L, Salome N, et al. Evidence that the lateral septum is involved in the antidepressant-like effects of the vasopressin V1b receptor antagonist, SSR 149415. Neuropsychopharmacology 2005 Jan; 30(1): 35–42PubMedCrossRef
184.
Zurück zum Zitat Simon NG, Guillon C, Fabio K, et al. Vasopressin antagonists as anxiolytics and antidepressants: recent developments. Recent Pat CNS Drug Discov 2008 Jun; 3(2): 77–93PubMedCrossRef Simon NG, Guillon C, Fabio K, et al. Vasopressin antagonists as anxiolytics and antidepressants: recent developments. Recent Pat CNS Drug Discov 2008 Jun; 3(2): 77–93PubMedCrossRef
185.
Zurück zum Zitat Griebel G, Simiand J, Stemmelin J, et al. The vasopressin V1b receptor as a therapeutic target in stress-related disorders. Curr Drug Targets 2003 Jun; 2(3): 191–200 Griebel G, Simiand J, Stemmelin J, et al. The vasopressin V1b receptor as a therapeutic target in stress-related disorders. Curr Drug Targets 2003 Jun; 2(3): 191–200
186.
Zurück zum Zitat Bermack JE, Debonnel G. The role of sigma receptors in depression. J Pharmacol Sci 2005 Mar; 97(3): 317–36PubMedCrossRef Bermack JE, Debonnel G. The role of sigma receptors in depression. J Pharmacol Sci 2005 Mar; 97(3): 317–36PubMedCrossRef
187.
Zurück zum Zitat Martin WR, Eades CG, Thompson JA, et al. The effects of morphine- and nalorphine-like drugs in the non-dependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 1976 Jun; 197(3): 517–32PubMed Martin WR, Eades CG, Thompson JA, et al. The effects of morphine- and nalorphine-like drugs in the non-dependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 1976 Jun; 197(3): 517–32PubMed
188.
Zurück zum Zitat Quirion R, Bowen WD, Itzhak Y, et al. A proposal for the classification of sigma binding sites. Trends Pharmacol Sci 1992 Mar; 13(3): 85–6PubMedCrossRef Quirion R, Bowen WD, Itzhak Y, et al. A proposal for the classification of sigma binding sites. Trends Pharmacol Sci 1992 Mar; 13(3): 85–6PubMedCrossRef
189.
Zurück zum Zitat Walker JM, Bowen WD, Walker FO, et al. Sigma receptors: biology and function. Pharmacol Rev 1990 Dec; 42(4): 355–402PubMed Walker JM, Bowen WD, Walker FO, et al. Sigma receptors: biology and function. Pharmacol Rev 1990 Dec; 42(4): 355–402PubMed
190.
Zurück zum Zitat Hashimoto K, Ishiwata K. Sigma receptor ligands: possible application as therapeutic drugs and as radiopharmaceuticals. Curr Pharm Des 2006; 12(30): 3857–76PubMedCrossRef Hashimoto K, Ishiwata K. Sigma receptor ligands: possible application as therapeutic drugs and as radiopharmaceuticals. Curr Pharm Des 2006; 12(30): 3857–76PubMedCrossRef
191.
Zurück zum Zitat Ukai M, Maeda H, Nanya Y, et al. Beneficial effects of acute and repeated administrations of sigma receptor agonists on behavioral despair in mice exposed to tail suspension. Pharmacol Biochem Behav 1998 Nov; 61(3): 247–52PubMedCrossRef Ukai M, Maeda H, Nanya Y, et al. Beneficial effects of acute and repeated administrations of sigma receptor agonists on behavioral despair in mice exposed to tail suspension. Pharmacol Biochem Behav 1998 Nov; 61(3): 247–52PubMedCrossRef
192.
Zurück zum Zitat Akunne HC, Zoski KT, Whetzel SZ, et al. Neuropharmacological profile of a selective sigma ligand, igmesine: a potential antidepressant. Neuropharmacology 2001 Jul; 41(1): 138–49PubMedCrossRef Akunne HC, Zoski KT, Whetzel SZ, et al. Neuropharmacological profile of a selective sigma ligand, igmesine: a potential antidepressant. Neuropharmacology 2001 Jul; 41(1): 138–49PubMedCrossRef
193.
Zurück zum Zitat Rogoz Z, Skuza G. Mechanism of synergistic action following co-treatment with pramipexole and fluoxetine or sertraline in the forced swimming test in rats. Pharmacol Rep 2006 Jul–Aug; 58(4): 493–500PubMed Rogoz Z, Skuza G. Mechanism of synergistic action following co-treatment with pramipexole and fluoxetine or sertraline in the forced swimming test in rats. Pharmacol Rep 2006 Jul–Aug; 58(4): 493–500PubMed
194.
Zurück zum Zitat Skuza G, Rogoz Z. Effect of combined treatment with selective sigma ligands and amantadine in the forced swimming test in rats. Pol J Pharmacol 2002 Nov–Dec; 54(6): 699–702PubMed Skuza G, Rogoz Z. Effect of combined treatment with selective sigma ligands and amantadine in the forced swimming test in rats. Pol J Pharmacol 2002 Nov–Dec; 54(6): 699–702PubMed
195.
Zurück zum Zitat Matsuno K, Nakazawa M, Okamoto K, et al. Binding properties of SA4503, a novel and selective sigma 1 receptor agonist. Eur J Pharmacol 1996 Jun 13; 306(1–3): 271–9PubMedCrossRef Matsuno K, Nakazawa M, Okamoto K, et al. Binding properties of SA4503, a novel and selective sigma 1 receptor agonist. Eur J Pharmacol 1996 Jun 13; 306(1–3): 271–9PubMedCrossRef
196.
Zurück zum Zitat Volz HP, Stoll KD. Clinical trials with sigma ligands. Pharmacopsychiatry 2004 Nov; 37Suppl. 3: S214–20PubMedCrossRef Volz HP, Stoll KD. Clinical trials with sigma ligands. Pharmacopsychiatry 2004 Nov; 37Suppl. 3: S214–20PubMedCrossRef
197.
Zurück zum Zitat Tottori K, Miwa T, Uwahodo Y, et al. Antidepressant-like responses to the combined sigma and 5-HT1A receptor agonist OPC-14523. Neuropharmacology 2001 Dec; 41(8): 976–88PubMedCrossRef Tottori K, Miwa T, Uwahodo Y, et al. Antidepressant-like responses to the combined sigma and 5-HT1A receptor agonist OPC-14523. Neuropharmacology 2001 Dec; 41(8): 976–88PubMedCrossRef
198.
Zurück zum Zitat Oshiro Y, Sakurai Y, Sato S, et al. 3,4-dihydro-2 (1H)-quinolinone as a novel antidepressant drug: synthesis and pharmacology of 1-[3-[4-(3-chlorophenyl)-1-piperazinyl] propyl]-3,4-dihydro-5-methoxy-2-(1H)-quinolinone and its derivatives. J Med Chem 2000 Jan 27; 43(2): 177–89PubMedCrossRef Oshiro Y, Sakurai Y, Sato S, et al. 3,4-dihydro-2 (1H)-quinolinone as a novel antidepressant drug: synthesis and pharmacology of 1-[3-[4-(3-chlorophenyl)-1-piperazinyl] propyl]-3,4-dihydro-5-methoxy-2-(1H)-quinolinone and its derivatives. J Med Chem 2000 Jan 27; 43(2): 177–89PubMedCrossRef
199.
Zurück zum Zitat Watanabe K, Ashby Jr CR, Katsumori H, et al. The effect of the acute administration of various selective 5-HT receptor antagonists on focal hippocampal seizures in freely-moving rats. Eur J Pharmacol 2000 Jun 16; 398(2): 239–46PubMedCrossRef Watanabe K, Ashby Jr CR, Katsumori H, et al. The effect of the acute administration of various selective 5-HT receptor antagonists on focal hippocampal seizures in freely-moving rats. Eur J Pharmacol 2000 Jun 16; 398(2): 239–46PubMedCrossRef
200.
Zurück zum Zitat Yamada K, Hasuo H, Murakami C, et al. 5-Hydroxytryptamine-induced outward currents mediated via 5-HT (1A) receptors in neurons of the rat dorsolateral septal nucleus. Neurosci Res 2000 Aug; 37(4): 307–14PubMedCrossRef Yamada K, Hasuo H, Murakami C, et al. 5-Hydroxytryptamine-induced outward currents mediated via 5-HT (1A) receptors in neurons of the rat dorsolateral septal nucleus. Neurosci Res 2000 Aug; 37(4): 307–14PubMedCrossRef
201.
Zurück zum Zitat Amsterdam JD, Brunswick DJ, Hundert M. A single-site, double-blind, placebo-controlled, dose-ranging study of YKP10A: a putative, new antidepressant. Prog Neuropsychopharmacol Biol Psychiatry 2002 Dec; 26(7–8): 1333–8PubMedCrossRef Amsterdam JD, Brunswick DJ, Hundert M. A single-site, double-blind, placebo-controlled, dose-ranging study of YKP10A: a putative, new antidepressant. Prog Neuropsychopharmacol Biol Psychiatry 2002 Dec; 26(7–8): 1333–8PubMedCrossRef
202.
Zurück zum Zitat Urani A, Roman FJ, Phan VL, et al. The antidepressant-like effect induced by sigma (1)-receptor agonists and neuroactive steroids in mice submitted to the forced swimming test. J Pharmacol Exp Ther 2001 Sep; 298(3): 1269–79PubMed Urani A, Roman FJ, Phan VL, et al. The antidepressant-like effect induced by sigma (1)-receptor agonists and neuroactive steroids in mice submitted to the forced swimming test. J Pharmacol Exp Ther 2001 Sep; 298(3): 1269–79PubMed
203.
Zurück zum Zitat Cheng ZX, Lan DM, Wu PY, et al. Neurosteroid dehydroepiandrosterone sulphate inhibits persistent sodium currents in rat medial prefrontal cortex via activation of sigma-1 receptors. Exp Neurol 2008 Mar; 210(1): 128–36PubMedCrossRef Cheng ZX, Lan DM, Wu PY, et al. Neurosteroid dehydroepiandrosterone sulphate inhibits persistent sodium currents in rat medial prefrontal cortex via activation of sigma-1 receptors. Exp Neurol 2008 Mar; 210(1): 128–36PubMedCrossRef
204.
Zurück zum Zitat Dhir A, Kulkarni S. Involvement of sigma (sigma1) receptors in modulating the anti-depressant effect of neurosteroids (dehydroepiandrosterone or pregnenolone) in mouse tail-suspension test. J Psychopharmacol 2008 Aug; 22(6): 691–6PubMedCrossRef Dhir A, Kulkarni S. Involvement of sigma (sigma1) receptors in modulating the anti-depressant effect of neurosteroids (dehydroepiandrosterone or pregnenolone) in mouse tail-suspension test. J Psychopharmacol 2008 Aug; 22(6): 691–6PubMedCrossRef
Metadaten
Titel
Neuropeptide and Sigma Receptors as Novel Therapeutic Targets for the Pharmacotherapy of Depression
verfasst von
Konstantinos A. Paschos
Stavroula Veletza
Dr Ekaterini Chatzaki
Publikationsdatum
01.09.2009
Verlag
Springer International Publishing
Erschienen in
CNS Drugs / Ausgabe 9/2009
Print ISSN: 1172-7047
Elektronische ISSN: 1179-1934
DOI
https://doi.org/10.2165/11310830-000000000-00000

Weitere Artikel der Ausgabe 9/2009

CNS Drugs 9/2009 Zur Ausgabe

Review Article

Aripiprazole

Adis Drug Profile

Armodafinil

Adis Drug Profile

Asenapine

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.