Skip to main content
Erschienen in: Journal of Mammary Gland Biology and Neoplasia 1/2013

01.03.2013

New Biological Insights on the Link Between Radiation Exposure and Breast Cancer Risk

verfasst von: Mary Helen Barcellos-Hoff

Erschienen in: Journal of Mammary Gland Biology and Neoplasia | Ausgabe 1/2013

Einloggen, um Zugang zu erhalten

Abstract

Radiation exposure is a well-documented risk factor for breast cancer in women. Compelling epidemiological evidence in different exposed populations around the world demonstrate that excess breast cancer increases with radiation doses above 10 cGy. Both frequency and type of breast cancer are affected by prior radiation exposure. Many epidemiological studies suggest that radiation risk is inversely related to age at exposure; exposure during puberty poses the greatest risk while exposures past the menopause appear to carry very low risk. These observations are supported by experimental studies in mice and rats, which together provide the basis for the pubertal ‘window of susceptibility’ hypothesis for carcinogenic exposure. One line of experimental investigation suggests that the pubertal epithelium is more sensitive because DNA damage responses are less efficient, an other suggests that radiation affects stem cells self-renewal. A recent line of investigation suggests that the irradiated microenvironment mediates cancer risk. Studying the biological basis for radiation effects provides potential routes for protection in vulnerable populations, which include survivors of childhood cancers, as well as insights into the biology for certain types of sporadic cancer.
Literatur
1.
Zurück zum Zitat Ronckers CM, Erdmann CA, Land CE. Radiation and breast cancer: a review of current evidence. Breast Cancer Res. 2005;7:21–32.PubMed Ronckers CM, Erdmann CA, Land CE. Radiation and breast cancer: a review of current evidence. Breast Cancer Res. 2005;7:21–32.PubMed
2.
Zurück zum Zitat Fry RJM, Powers-Risius P, Alpen EL, et al. High-LET radiation carcinogenesis. Adv Space Res. 1983;3:241–8.PubMed Fry RJM, Powers-Risius P, Alpen EL, et al. High-LET radiation carcinogenesis. Adv Space Res. 1983;3:241–8.PubMed
3.
Zurück zum Zitat Mettler FA. Medical effects and risks of exposure to ionising radiation. J Radiol Prot. 2012;32(1):N9–N13.PubMed Mettler FA. Medical effects and risks of exposure to ionising radiation. J Radiol Prot. 2012;32(1):N9–N13.PubMed
4.
Zurück zum Zitat UNSCEAR. Sources and effects of ionizing radiation. New York: United Nations; 2006. UNSCEAR. Sources and effects of ionizing radiation. New York: United Nations; 2006.
5.
Zurück zum Zitat Mettler FA, Bhargavan M, Faulkner K, et al. Radiologic and Nuclear Medicine Studies in the United States and Worldwide: frequency, radiation dose, and comparison with other radiation sources—1950–20071. Radiology. 2009;253(2):520–31.PubMed Mettler FA, Bhargavan M, Faulkner K, et al. Radiologic and Nuclear Medicine Studies in the United States and Worldwide: frequency, radiation dose, and comparison with other radiation sources—1950–20071. Radiology. 2009;253(2):520–31.PubMed
6.
Zurück zum Zitat Tokunaga M, Land CE, Aoki Y, et al. Proliferative and nonproliferative breast disease in atomic bomb survivors. Results of a histopathologic review of autopsy breast tissue. Cancer. 1993;72(5):1657–65.PubMed Tokunaga M, Land CE, Aoki Y, et al. Proliferative and nonproliferative breast disease in atomic bomb survivors. Results of a histopathologic review of autopsy breast tissue. Cancer. 1993;72(5):1657–65.PubMed
7.
Zurück zum Zitat Boice Jr JD, Preston D, Davis FG, et al. Frequent chest x-ray fluoroscopy and breast cancer incidence among tuberculosis patients in Massachusetts. Radiat Res. 1991;125:214–22.PubMed Boice Jr JD, Preston D, Davis FG, et al. Frequent chest x-ray fluoroscopy and breast cancer incidence among tuberculosis patients in Massachusetts. Radiat Res. 1991;125:214–22.PubMed
8.
Zurück zum Zitat Hancock SL, Tucker MA, Hoppe RT. Breast cancer after treatment of Hodgkin’s disease. J Natl Cancer Inst. 1993;85(1):25–31.PubMed Hancock SL, Tucker MA, Hoppe RT. Breast cancer after treatment of Hodgkin’s disease. J Natl Cancer Inst. 1993;85(1):25–31.PubMed
9.
Zurück zum Zitat Howe GR, McLaughlin J. Breast cancer mortality between 1950 and 1987 after exposure to fractionated moderate-dose-rate ionizing radiation in the Canadian fluoroscopy cohort study and a comparison with breast cancer mortality in the atomic bomb survivor study. Radiat Res. 1996;145:694–707.PubMed Howe GR, McLaughlin J. Breast cancer mortality between 1950 and 1987 after exposure to fractionated moderate-dose-rate ionizing radiation in the Canadian fluoroscopy cohort study and a comparison with breast cancer mortality in the atomic bomb survivor study. Radiat Res. 1996;145:694–707.PubMed
10.
Zurück zum Zitat Boice Jr JD. Radiation and breast carcinogenesis. Med Pediatr Oncol. 2001;36:508–13.PubMed Boice Jr JD. Radiation and breast carcinogenesis. Med Pediatr Oncol. 2001;36:508–13.PubMed
11.
Zurück zum Zitat Preston DL, Mattsson A, Holmberg E, et al. Radiation effects on breast cancer risk: a pooled analysis of eight cohorts. Radiat Res. 2002;158(2):220–35.PubMed Preston DL, Mattsson A, Holmberg E, et al. Radiation effects on breast cancer risk: a pooled analysis of eight cohorts. Radiat Res. 2002;158(2):220–35.PubMed
12.
Zurück zum Zitat Hoffman DA, Lonstein JE, Morin MM, et al. Breast cancer in women with scoliosis exposed to multiple diagnostic rays. J Natl Cancer Inst. 1989;81(17):1307–12.PubMed Hoffman DA, Lonstein JE, Morin MM, et al. Breast cancer in women with scoliosis exposed to multiple diagnostic rays. J Natl Cancer Inst. 1989;81(17):1307–12.PubMed
13.
Zurück zum Zitat Ostroumova E, Preston DL, Ron E, et al. Breast cancer incidence following low-dose rate environmental exposure: Techa River Cohort, 1956–2004. Br J Cancer. 2008;99(11):1940–5.PubMed Ostroumova E, Preston DL, Ron E, et al. Breast cancer incidence following low-dose rate environmental exposure: Techa River Cohort, 1956–2004. Br J Cancer. 2008;99(11):1940–5.PubMed
14.
Zurück zum Zitat Shore RE, Hildreth N, Dvoretsky P, et al. Thyroid cancer among persons given X-ray treatment in infancy for an enlarged thymus gland. Am J Epidemiol. 1993;137(10):1068–80.PubMed Shore RE, Hildreth N, Dvoretsky P, et al. Thyroid cancer among persons given X-ray treatment in infancy for an enlarged thymus gland. Am J Epidemiol. 1993;137(10):1068–80.PubMed
15.
Zurück zum Zitat Hajo Z, Gaël PH, Maria B. Epidemiological investigations of aircrew: an occupational group with low-level cosmic radiation exposure. J Radiol Prot. 2012;32(1):N15. Hajo Z, Gaël PH, Maria B. Epidemiological investigations of aircrew: an occupational group with low-level cosmic radiation exposure. J Radiol Prot. 2012;32(1):N15.
16.
Zurück zum Zitat Preston DL, Ron E, Tokuoka S, et al. Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res. 2007;168(1):1–64.PubMed Preston DL, Ron E, Tokuoka S, et al. Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res. 2007;168(1):1–64.PubMed
17.
Zurück zum Zitat Pawel D, Preston D, Pierce D, et al. Improved estimates of cancer site-specific risks for a-bomb survivors. Radiat Res. 2008;169:87–98.PubMed Pawel D, Preston D, Pierce D, et al. Improved estimates of cancer site-specific risks for a-bomb survivors. Radiat Res. 2008;169:87–98.PubMed
18.
Zurück zum Zitat Preston DL, Pierce DA, Shimizu Y, et al. Dose response and temporal patterns of radiation-associated solid cancer risks. Health Phys. 2003;85(1):43–6.PubMed Preston DL, Pierce DA, Shimizu Y, et al. Dose response and temporal patterns of radiation-associated solid cancer risks. Health Phys. 2003;85(1):43–6.PubMed
19.
Zurück zum Zitat Pierce DA, Shimizu Y, Preston DL, et al. Studies of the mortality of atomic bomb survivors. Report 12, Part I. Cancer: 1950–1990. Radiat Res. 1996;146(1):1–27.PubMed Pierce DA, Shimizu Y, Preston DL, et al. Studies of the mortality of atomic bomb survivors. Report 12, Part I. Cancer: 1950–1990. Radiat Res. 1996;146(1):1–27.PubMed
20.
Zurück zum Zitat Boice Jr JD, Harvey EB, Blettner M, et al. Cancer in the contralateral breast after radiotherapy for breast cancer. N Engl J Med. 1992;326(12):781–5.PubMed Boice Jr JD, Harvey EB, Blettner M, et al. Cancer in the contralateral breast after radiotherapy for breast cancer. N Engl J Med. 1992;326(12):781–5.PubMed
21.
Zurück zum Zitat Morin Doody M, Lonstein JE, Stovall M, et al. Breast cancer mortality after diagnostic radiography: findings from the U.S. Scoliosis Cohort Study. Spine. 2000;25(16):2052–63. Morin Doody M, Lonstein JE, Stovall M, et al. Breast cancer mortality after diagnostic radiography: findings from the U.S. Scoliosis Cohort Study. Spine. 2000;25(16):2052–63.
22.
Zurück zum Zitat Mattsson A, Ruden B-I, Wilking N, et al. Radiation-induced breast cancer: long-term follow-up of radiation therapy for benign breast disease. J Natl Cancer Inst. 1993;85:1679–85.PubMed Mattsson A, Ruden B-I, Wilking N, et al. Radiation-induced breast cancer: long-term follow-up of radiation therapy for benign breast disease. J Natl Cancer Inst. 1993;85:1679–85.PubMed
23.
Zurück zum Zitat Shore RE, Hildreth N, Woodard E, et al. Breast cancer among women given X-ray therapy for acute postpartum mastitis. J Natl Cancer Inst. 1986;77(3):689–96.PubMed Shore RE, Hildreth N, Woodard E, et al. Breast cancer among women given X-ray therapy for acute postpartum mastitis. J Natl Cancer Inst. 1986;77(3):689–96.PubMed
24.
Zurück zum Zitat Lundell M, Mattsson A, Karlsson P, et al. Breast cancer risk after radiotherapy in infancy: a pooled analysis of two Swedish cohorts of 17,202 infants. Radiat Res. 1999;151(5):626–32.PubMed Lundell M, Mattsson A, Karlsson P, et al. Breast cancer risk after radiotherapy in infancy: a pooled analysis of two Swedish cohorts of 17,202 infants. Radiat Res. 1999;151(5):626–32.PubMed
25.
Zurück zum Zitat Hill DA, Preston-Martin S, Ross RK, et al. Medical radiation, family history of cancer, and benign breast disease in relation to breast cancer risk in young women, USA. Cancer Causes Control. 2002;13(8):711–8.PubMed Hill DA, Preston-Martin S, Ross RK, et al. Medical radiation, family history of cancer, and benign breast disease in relation to breast cancer risk in young women, USA. Cancer Causes Control. 2002;13(8):711–8.PubMed
26.
Zurück zum Zitat Durante M, Cucinotta FA. Heavy ion carcinogenesis and human space exploration. Nat Rev Cancer. 2008;8(6):465–72.PubMed Durante M, Cucinotta FA. Heavy ion carcinogenesis and human space exploration. Nat Rev Cancer. 2008;8(6):465–72.PubMed
27.
Zurück zum Zitat Imaoka T, Nishimura M, Daino K, et al. Influence of Age on the Relative Biological Effectiveness of Carbon Ion Radiation for Induction of Rat Mammary Carcinoma. Int J Radiat Oncol Biol Phys 2012. Imaoka T, Nishimura M, Daino K, et al. Influence of Age on the Relative Biological Effectiveness of Carbon Ion Radiation for Induction of Rat Mammary Carcinoma. Int J Radiat Oncol Biol Phys 2012.
28.
Zurück zum Zitat Stovall M, Smith SA, Langholz BM, et al. Dose to the contralateral breast from radiotherapy and risk of second primary breast cancer in the WECARE study. Int J Radiat Oncol Biol Phys. 2008;72(4):1021–30.PubMed Stovall M, Smith SA, Langholz BM, et al. Dose to the contralateral breast from radiotherapy and risk of second primary breast cancer in the WECARE study. Int J Radiat Oncol Biol Phys. 2008;72(4):1021–30.PubMed
29.
Zurück zum Zitat Cohn BA, Wolff MS, Cirillo MP, et al. DDT and breast cancer in young women: new data on the significance of age at exposure. Environ Health Perspect. 2007;115(10):1406–14.PubMed Cohn BA, Wolff MS, Cirillo MP, et al. DDT and breast cancer in young women: new data on the significance of age at exposure. Environ Health Perspect. 2007;115(10):1406–14.PubMed
30.
Zurück zum Zitat Henderson TO, Amsterdam A, Bhatia S, et al. Systematic review: surveillance for breast cancer in women treated with chest radiation for childhood, adolescent, or young adult cancer. Ann Intern Med. 2010;152(7):444–55.PubMed Henderson TO, Amsterdam A, Bhatia S, et al. Systematic review: surveillance for breast cancer in women treated with chest radiation for childhood, adolescent, or young adult cancer. Ann Intern Med. 2010;152(7):444–55.PubMed
31.
Zurück zum Zitat Van Leeuwen FE, Klokman WJ, Stovall M, et al. Roles of radiation dose, chemotherapy, and hormonal factors in breast cancer following Hodgkin’s disease. J Natl Cancer Inst. 2003;95(13):971–80.PubMed Van Leeuwen FE, Klokman WJ, Stovall M, et al. Roles of radiation dose, chemotherapy, and hormonal factors in breast cancer following Hodgkin’s disease. J Natl Cancer Inst. 2003;95(13):971–80.PubMed
32.
Zurück zum Zitat Castiglioni F, Terenziani M, Carcangiu ML, et al. Radiation effects on development of HER2-positive breast carcinomas. Clin Cancer Res. 2007;13(1):46–51.PubMed Castiglioni F, Terenziani M, Carcangiu ML, et al. Radiation effects on development of HER2-positive breast carcinomas. Clin Cancer Res. 2007;13(1):46–51.PubMed
33.
Zurück zum Zitat Broeks A, Braaf LM, Wessels LF, et al. Radiation-associated breast tumors display a distinct gene expression profile. Int J Radiat Oncol Phys. 2010;76(2):540–7. Broeks A, Braaf LM, Wessels LF, et al. Radiation-associated breast tumors display a distinct gene expression profile. Int J Radiat Oncol Phys. 2010;76(2):540–7.
34.
Zurück zum Zitat Inskip PD, Robison LL, Stovall M, et al. Radiation dose and breast cancer risk in the childhood cancer survivor study. J Clin Oncol. 2009;27(24):3901–7.PubMed Inskip PD, Robison LL, Stovall M, et al. Radiation dose and breast cancer risk in the childhood cancer survivor study. J Clin Oncol. 2009;27(24):3901–7.PubMed
35.
Zurück zum Zitat Mertens AC, Liu Q, Neglia JP, et al. Cause-specific late mortality among 5-year survivors of childhood cancer: the childhood cancer survivor study. J Natl Cancer Inst. 2008;100(19):1368–79.PubMed Mertens AC, Liu Q, Neglia JP, et al. Cause-specific late mortality among 5-year survivors of childhood cancer: the childhood cancer survivor study. J Natl Cancer Inst. 2008;100(19):1368–79.PubMed
36.
Zurück zum Zitat Schedin P. Pregnancy-associated breast cancer and metastasis. Nat Cancer Rev. 2006;6(4):281–91. Schedin P. Pregnancy-associated breast cancer and metastasis. Nat Cancer Rev. 2006;6(4):281–91.
37.
Zurück zum Zitat Lyons TR, O’Brien J, Borges VF, et al. Postpartum mammary gland involution drives progression of ductal carcinoma in situ through collagen and COX-2. Nat Med. 2011;17(9):1109–15.PubMed Lyons TR, O’Brien J, Borges VF, et al. Postpartum mammary gland involution drives progression of ductal carcinoma in situ through collagen and COX-2. Nat Med. 2011;17(9):1109–15.PubMed
38.
Zurück zum Zitat Clifton KH, Sridharan BN, Douple EB. Mammary carcinogenesis-enhancing effect of adrenalectomy in irradiated rats with pituitary tumor MtT-F4. J Natl Cancer Inst. 1975;55(2):485–7.PubMed Clifton KH, Sridharan BN, Douple EB. Mammary carcinogenesis-enhancing effect of adrenalectomy in irradiated rats with pituitary tumor MtT-F4. J Natl Cancer Inst. 1975;55(2):485–7.PubMed
39.
Zurück zum Zitat Sivaraman L, Conneely OM, Medina D, et al. p53 is a potential mediator of pregnancy and hormone-induced resistance to mammary carcinogenesis. Proc Natl Acad Sci U S A. 2001;98(22):12379–84.PubMed Sivaraman L, Conneely OM, Medina D, et al. p53 is a potential mediator of pregnancy and hormone-induced resistance to mammary carcinogenesis. Proc Natl Acad Sci U S A. 2001;98(22):12379–84.PubMed
40.
Zurück zum Zitat Clifton KH, Tanner MA, Gould MN. Assessment of radiogenic cancer initiation frequency per clonogenic rat mammary cell in vivo. Cancer Res. 1986;46:2390–5.PubMed Clifton KH, Tanner MA, Gould MN. Assessment of radiogenic cancer initiation frequency per clonogenic rat mammary cell in vivo. Cancer Res. 1986;46:2390–5.PubMed
41.
Zurück zum Zitat Potten CS, Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development. 1990;110(4):1001–20.PubMed Potten CS, Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development. 1990;110(4):1001–20.PubMed
42.
Zurück zum Zitat Welm BE, Tepera SB, Venezia T, et al. Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol. 2002;245(1):42–56.PubMed Welm BE, Tepera SB, Venezia T, et al. Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol. 2002;245(1):42–56.PubMed
43.
Zurück zum Zitat Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.PubMed Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.PubMed
44.
Zurück zum Zitat Visvader JE, Lindeman GJ. Mammary stem cells and mammopoiesis. Cancer Res. 2006;66(20):9798–801.PubMed Visvader JE, Lindeman GJ. Mammary stem cells and mammopoiesis. Cancer Res. 2006;66(20):9798–801.PubMed
45.
Zurück zum Zitat Smith G, Medina D. Re-evaluation of mammary stem cell biology based on in vivo transplantation. Breast Cancer Res. 2008;10(1):203.PubMed Smith G, Medina D. Re-evaluation of mammary stem cell biology based on in vivo transplantation. Breast Cancer Res. 2008;10(1):203.PubMed
46.
Zurück zum Zitat Smith GH, Chepko G. Mammary epithelial stem cells. Microsc Res Tech. 2001;52(2):190–203.PubMed Smith GH, Chepko G. Mammary epithelial stem cells. Microsc Res Tech. 2001;52(2):190–203.PubMed
47.
Zurück zum Zitat Kordon EC, Smith GH. An entire functional mammary gland may comprise the progeny from a single cell. Development. 1998;125(10):1921–30.PubMed Kordon EC, Smith GH. An entire functional mammary gland may comprise the progeny from a single cell. Development. 1998;125(10):1921–30.PubMed
48.
Zurück zum Zitat Russo J, Tait L, Russo IH. Susceptibility of the mammary gland to carcinogenesis. III. The cell of origin of rat mammary carcinoma. Am J Pathol. 1983;113(1):50–66.PubMed Russo J, Tait L, Russo IH. Susceptibility of the mammary gland to carcinogenesis. III. The cell of origin of rat mammary carcinoma. Am J Pathol. 1983;113(1):50–66.PubMed
49.
Zurück zum Zitat Russo J, Russo IH. Experimentally induced mammary tumors in rats. Breast Cancer Res Treat. 1996;39(1):7–20.PubMed Russo J, Russo IH. Experimentally induced mammary tumors in rats. Breast Cancer Res Treat. 1996;39(1):7–20.PubMed
50.
Zurück zum Zitat Russo J, Tay LK, Russo IH. Differentiation of the mammary gland and susceptibility to carcinogenesis. Breast Cancer Res Treat. 1982;2(1):5–73.PubMed Russo J, Tay LK, Russo IH. Differentiation of the mammary gland and susceptibility to carcinogenesis. Breast Cancer Res Treat. 1982;2(1):5–73.PubMed
51.
Zurück zum Zitat Russo J, Russo IH. Biological and molecular bases of mammary carcinogenesis. Lab Invest. 1987;57(2):112–37.PubMed Russo J, Russo IH. Biological and molecular bases of mammary carcinogenesis. Lab Invest. 1987;57(2):112–37.PubMed
52.
Zurück zum Zitat Thordarson G, Jin E, Guzman RC, et al. Refractoriness to mammary tumorigenesis in parous rats: is it caused by persistent changes in the hormonal environment or permanent biochemical alterations in the mammary epithelia? Carcinogenesis. 1995;16:2847–53.PubMed Thordarson G, Jin E, Guzman RC, et al. Refractoriness to mammary tumorigenesis in parous rats: is it caused by persistent changes in the hormonal environment or permanent biochemical alterations in the mammary epithelia? Carcinogenesis. 1995;16:2847–53.PubMed
53.
Zurück zum Zitat Ginestier C, Hur MH, Charafe-Jauffret E, et al. ALDH1 Is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555–67.PubMed Ginestier C, Hur MH, Charafe-Jauffret E, et al. ALDH1 Is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555–67.PubMed
54.
Zurück zum Zitat Cairns J. Somatic stem cells and the kinetics of mutagenesis and carcinogenesis. Proc Natl Acad Sci U S A. 2002;99(16):10567–70.PubMed Cairns J. Somatic stem cells and the kinetics of mutagenesis and carcinogenesis. Proc Natl Acad Sci U S A. 2002;99(16):10567–70.PubMed
55.
Zurück zum Zitat Booth D, Haley JD, Bruskin AM, et al. Transforming growth factor-B3 protects murine small intestinal crypt stem cells and animal survival after irradiation, possibly by reducing stem-cell cycling. Int J Cancer. 2000;86(1):53–9.PubMed Booth D, Haley JD, Bruskin AM, et al. Transforming growth factor-B3 protects murine small intestinal crypt stem cells and animal survival after irradiation, possibly by reducing stem-cell cycling. Int J Cancer. 2000;86(1):53–9.PubMed
56.
Zurück zum Zitat Shackleton M, Vaillant F, Simpson KJ, et al. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439(7072):84–8.PubMed Shackleton M, Vaillant F, Simpson KJ, et al. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439(7072):84–8.PubMed
57.
Zurück zum Zitat Woodward WA, Chen MS, Behbod F, et al. WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. PNAS. 2007;104(2):618–23.PubMed Woodward WA, Chen MS, Behbod F, et al. WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. PNAS. 2007;104(2):618–23.PubMed
58.
Zurück zum Zitat Kamiya K, Gould MN, Clifton KH. Differential control of alveolar and ductal development in grafts of monodispersed rat mammary epithelium. 1990. Kamiya K, Gould MN, Clifton KH. Differential control of alveolar and ductal development in grafts of monodispersed rat mammary epithelium. 1990.
59.
Zurück zum Zitat Kamiya K, Gould MN, Clifton KH. Quantitative studies of ductal versus alveolar differentiation from rat mammary clonogens. Proc Soc Exp Biol Med. 1998;219(3):217–25.PubMed Kamiya K, Gould MN, Clifton KH. Quantitative studies of ductal versus alveolar differentiation from rat mammary clonogens. Proc Soc Exp Biol Med. 1998;219(3):217–25.PubMed
60.
Zurück zum Zitat Kamiya K, Kim ND, Gould MN, et al. Repair of potentially lethal damage in rat mammary clonogens following irradiation in organoid culture. Int J Radiat Biol. 1991;59(5):1207–16.PubMed Kamiya K, Kim ND, Gould MN, et al. Repair of potentially lethal damage in rat mammary clonogens following irradiation in organoid culture. Int J Radiat Biol. 1991;59(5):1207–16.PubMed
61.
Zurück zum Zitat Shimada Y, Yasukawa-Barnes J, Kim RY, et al. Age and radiation sensitivity of rat mammary clonogenic cells. Radiat Res. 1994;137:118–23.PubMed Shimada Y, Yasukawa-Barnes J, Kim RY, et al. Age and radiation sensitivity of rat mammary clonogenic cells. Radiat Res. 1994;137:118–23.PubMed
62.
Zurück zum Zitat Ariazi JL, Haag JD, Lindstrom MJ, et al. Mammary glands of sexually immature rats are more susceptible than those of mature rats to the carcinogenic, lethal, and mutagenic effects of <I>N</I>-nitroso-<I>N</I>-methylurea. Mol Carcinog. 2005;43(3):155–64.PubMed Ariazi JL, Haag JD, Lindstrom MJ, et al. Mammary glands of sexually immature rats are more susceptible than those of mature rats to the carcinogenic, lethal, and mutagenic effects of <I>N</I>-nitroso-<I>N</I>-methylurea. Mol Carcinog. 2005;43(3):155–64.PubMed
63.
Zurück zum Zitat Kamiya K, Yasukawa-Barnes J, Mitchen JM, et al. Evidence that carcinogenesis involves an imbalance between epigenetic high-frequency initiation and suppression of promotion. Proc Natl Acad Sci USA. 1995;92:1332–6.PubMed Kamiya K, Yasukawa-Barnes J, Mitchen JM, et al. Evidence that carcinogenesis involves an imbalance between epigenetic high-frequency initiation and suppression of promotion. Proc Natl Acad Sci USA. 1995;92:1332–6.PubMed
64.
Zurück zum Zitat Kennedy AR, Little JB. Protease inhibitors suppress radiation-induced malignant transformation in vitro. Nature. 1978;276(5690):825–6.PubMed Kennedy AR, Little JB. Protease inhibitors suppress radiation-induced malignant transformation in vitro. Nature. 1978;276(5690):825–6.PubMed
65.
Zurück zum Zitat Kennedy AR, Fox M, Murphy G, et al. Relationship between x-ray exposure and malignant transformation in C3H 10T1/2 cells. Proc Natl Acad Sci U S A. 1980;77(12):7262–6.PubMed Kennedy AR, Fox M, Murphy G, et al. Relationship between x-ray exposure and malignant transformation in C3H 10T1/2 cells. Proc Natl Acad Sci U S A. 1980;77(12):7262–6.PubMed
66.
Zurück zum Zitat Britt K, Ashworth A, Smalley M. Pregnancy and the risk of breast cancer. Endocr Relat Cancer. 2007;14(4):907–33.PubMed Britt K, Ashworth A, Smalley M. Pregnancy and the risk of breast cancer. Endocr Relat Cancer. 2007;14(4):907–33.PubMed
67.
Zurück zum Zitat Siwko SK, Dong J, Lewis MT, et al. Evidence that an early pregnancy causes a persistent decrease in the number of functional mammary epithelial stem cells - implications for pregnancy-induced protection against breast cancer. Stem Cells. 2008;26(12):3205–9.PubMed Siwko SK, Dong J, Lewis MT, et al. Evidence that an early pregnancy causes a persistent decrease in the number of functional mammary epithelial stem cells - implications for pregnancy-induced protection against breast cancer. Stem Cells. 2008;26(12):3205–9.PubMed
68.
Zurück zum Zitat Britt K, Kendrick H, Regan J, et al. Pregnancy in the mature adult mouse does not alter the proportion of mammary epithelial stem/progenitor cells. Breast Cancer Res. 2009;11(2):R20.PubMed Britt K, Kendrick H, Regan J, et al. Pregnancy in the mature adult mouse does not alter the proportion of mammary epithelial stem/progenitor cells. Breast Cancer Res. 2009;11(2):R20.PubMed
69.
Zurück zum Zitat Liu B, McDermott S, Khwaja S, et al. The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc Natl Acad Sci USA. 2004;101:4158–63.PubMed Liu B, McDermott S, Khwaja S, et al. The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc Natl Acad Sci USA. 2004;101:4158–63.PubMed
70.
Zurück zum Zitat Chen MS, Woodward WA, Behbod F, et al. Wnt/beta-catenin mediates radiation resistance of Sca1+ progenitors in an immortalized mammary gland cell line. J Cell Sci. 2007;120(3):468–77. doi:10.1242/jcs.03348.PubMed Chen MS, Woodward WA, Behbod F, et al. Wnt/beta-catenin mediates radiation resistance of Sca1+ progenitors in an immortalized mammary gland cell line. J Cell Sci. 2007;120(3):468–77. doi:10.​1242/​jcs.​03348.PubMed
71.
Zurück zum Zitat Nguyen NH, Oketch HA, Geyer FC, et al. Radiation acts on the microenvironment to affect breast carcinogenesis by distinct mechanisms that decrease breast cancer latency and affect tumor type. Cancer Cell. 2011;19:640–51.PubMed Nguyen NH, Oketch HA, Geyer FC, et al. Radiation acts on the microenvironment to affect breast carcinogenesis by distinct mechanisms that decrease breast cancer latency and affect tumor type. Cancer Cell. 2011;19:640–51.PubMed
72.
Zurück zum Zitat Medina D, Oborn CJ, Kittrell FS, et al. Properties of mouse mammary epithelial cell lines characterized by in vivo transplantation and in vitro immunocytochemical methods. J Natl Cancer Inst. 1986;76(6):1143–56.PubMed Medina D, Oborn CJ, Kittrell FS, et al. Properties of mouse mammary epithelial cell lines characterized by in vivo transplantation and in vitro immunocytochemical methods. J Natl Cancer Inst. 1986;76(6):1143–56.PubMed
73.
Zurück zum Zitat Terzaghi M, Little JB. X-radiation-induced transformation in C3H mouse embryo-derived cell line. Cancer Res. 1976;36:1367–74.PubMed Terzaghi M, Little JB. X-radiation-induced transformation in C3H mouse embryo-derived cell line. Cancer Res. 1976;36:1367–74.PubMed
74.
Zurück zum Zitat DeOme KB, Miyamoto MJ, Osborn RC, et al. Detection of inapparent nodule transformed cells in the mammary gland tissues of virgin female BALB/cfC3H mice. Cancer Res. 1978;38:2103–11.PubMed DeOme KB, Miyamoto MJ, Osborn RC, et al. Detection of inapparent nodule transformed cells in the mammary gland tissues of virgin female BALB/cfC3H mice. Cancer Res. 1978;38:2103–11.PubMed
75.
Zurück zum Zitat Ethier SP, Ullrich RL. Detection of ductal dysplasia in mammary outgrowths derived from carcinogen-treated virgin female BALB/c mice. Cancer Res. 1982;42:1753–60.PubMed Ethier SP, Ullrich RL. Detection of ductal dysplasia in mammary outgrowths derived from carcinogen-treated virgin female BALB/c mice. Cancer Res. 1982;42:1753–60.PubMed
76.
Zurück zum Zitat Terzaghi-Howe M. Inhibition of carcinogen-altered rat tracheal epithelial cell proliferation by normal epithelial cells in vivo. Carcinogenesis. 1986;8:145–50. Terzaghi-Howe M. Inhibition of carcinogen-altered rat tracheal epithelial cell proliferation by normal epithelial cells in vivo. Carcinogenesis. 1986;8:145–50.
77.
Zurück zum Zitat Farber I. Possible etiologic mechanisms in chemical carcinogenesis. Environ Health Perspect. 1987;75:65–70.PubMed Farber I. Possible etiologic mechanisms in chemical carcinogenesis. Environ Health Perspect. 1987;75:65–70.PubMed
78.
Zurück zum Zitat Banerjee MR, Chakraborty S, Kinder D, et al. Cell biology of mouse mammary carcinogenesis in organ culture. In: Medina D, Kidwell W, Heppner G, et al., editors. Cellular and molecular biology of mammary cancer. New York: Plenum Press; 1987. p. 353–80. Banerjee MR, Chakraborty S, Kinder D, et al. Cell biology of mouse mammary carcinogenesis in organ culture. In: Medina D, Kidwell W, Heppner G, et al., editors. Cellular and molecular biology of mammary cancer. New York: Plenum Press; 1987. p. 353–80.
79.
Zurück zum Zitat Ethier SP, Adams LM, Ullrich RL. Morphological and histological characteristics of mammary dysplasias occurring in cell dissociation-derived murine mammary outgrowths. Cancer Res. 1984;44:4517–22.PubMed Ethier SP, Adams LM, Ullrich RL. Morphological and histological characteristics of mammary dysplasias occurring in cell dissociation-derived murine mammary outgrowths. Cancer Res. 1984;44:4517–22.PubMed
80.
Zurück zum Zitat Ethier SP, Ullrich RL. Induction of mammary tumors in virgin female BALB/c mice by single low doses of 7,12-dimethylbenz[a]anthracene. J Natl Cancer Inst. 1982;69(5):1199–203.PubMed Ethier SP, Ullrich RL. Induction of mammary tumors in virgin female BALB/c mice by single low doses of 7,12-dimethylbenz[a]anthracene. J Natl Cancer Inst. 1982;69(5):1199–203.PubMed
81.
Zurück zum Zitat Ethier SP, Ullrich RL. Factors influencing expression of mammary ductal dysplasia in cell dissociation-derived murine mammary outgrowths. Cancer Res. 1984;44:4523–7.PubMed Ethier SP, Ullrich RL. Factors influencing expression of mammary ductal dysplasia in cell dissociation-derived murine mammary outgrowths. Cancer Res. 1984;44:4523–7.PubMed
82.
Zurück zum Zitat Adams LM, Ethier SP, Ullrich RL. Enhanced in vitro proliferation and in vivo tumorigenic potential of mammary epithelium from BALB/c mice exposed in vivo to gamma-radiation and/or 7,12-dimethylbenz[a]anthracene. Cancer Res. 1987;47(16):4425–31.PubMed Adams LM, Ethier SP, Ullrich RL. Enhanced in vitro proliferation and in vivo tumorigenic potential of mammary epithelium from BALB/c mice exposed in vivo to gamma-radiation and/or 7,12-dimethylbenz[a]anthracene. Cancer Res. 1987;47(16):4425–31.PubMed
83.
Zurück zum Zitat Ullrich RL. The rate of progression of radiation-transformed mammary epithelial cells is enhanced after low-dose-rate neutron irradiation. Radiat Res. 1986;105:68–75.PubMed Ullrich RL. The rate of progression of radiation-transformed mammary epithelial cells is enhanced after low-dose-rate neutron irradiation. Radiat Res. 1986;105:68–75.PubMed
84.
Zurück zum Zitat Kamiya K, Higgins PD, Tanner MA, et al. Kinetics of mammary clonogenic cells and rat mammary cancer induction by X-rays or fission neutrons. J Radiat Res (Tokyo). 1999;40(Suppl):128–37. Kamiya K, Higgins PD, Tanner MA, et al. Kinetics of mammary clonogenic cells and rat mammary cancer induction by X-rays or fission neutrons. J Radiat Res (Tokyo). 1999;40(Suppl):128–37.
85.
Zurück zum Zitat Bissell MJ, Barcellos-Hoff MH. The influence of extracellular matrix on gene expression: is structure the message? J Cell Sci. 1987;8:327–43. Bissell MJ, Barcellos-Hoff MH. The influence of extracellular matrix on gene expression: is structure the message? J Cell Sci. 1987;8:327–43.
86.
Zurück zum Zitat Decosse JJ, Gossens CL, Kuzma JF, et al. Breast cancer: induction of differentiation by embryonic tissue. Science. 1973;181:1057–8.PubMed Decosse JJ, Gossens CL, Kuzma JF, et al. Breast cancer: induction of differentiation by embryonic tissue. Science. 1973;181:1057–8.PubMed
87.
Zurück zum Zitat Cooper M, Pinkus H. Intrauterine transplantation of rat basal cell carcinoma as a model for reconversion of malignant to benign growth. Cancer Res. 1977;37:2544–52.PubMed Cooper M, Pinkus H. Intrauterine transplantation of rat basal cell carcinoma as a model for reconversion of malignant to benign growth. Cancer Res. 1977;37:2544–52.PubMed
88.
Zurück zum Zitat Fujii H, Cunha GR, Norman JT. The induction of adenocarinomatous differentiation in neoplastic bladder epithelium by an embryonic prostatic inducer. J Urol. 1982;128:858–61.PubMed Fujii H, Cunha GR, Norman JT. The induction of adenocarinomatous differentiation in neoplastic bladder epithelium by an embryonic prostatic inducer. J Urol. 1982;128:858–61.PubMed
89.
Zurück zum Zitat Finak G, Bertos N, Pepin F, et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med. 2008;14:518–27.PubMed Finak G, Bertos N, Pepin F, et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med. 2008;14:518–27.PubMed
90.
Zurück zum Zitat Farber E. Pre-cancerous steps in carcinogenesis. Their physiological adaptive nature. Biochem Biophys Acta. 1984;738:171–80.PubMed Farber E. Pre-cancerous steps in carcinogenesis. Their physiological adaptive nature. Biochem Biophys Acta. 1984;738:171–80.PubMed
91.
Zurück zum Zitat Barcellos-Hoff MH. The potential influence of radiation-induced microenvironments in neoplastic progression. J Mammary Gland Biol Neoplasia. 1998;3:165–75.PubMed Barcellos-Hoff MH. The potential influence of radiation-induced microenvironments in neoplastic progression. J Mammary Gland Biol Neoplasia. 1998;3:165–75.PubMed
92.
Zurück zum Zitat Bissell MJ, Radisky D. Putting tumours in context. Nat Rev Cancer. 2001;1(1):1–11. Bissell MJ, Radisky D. Putting tumours in context. Nat Rev Cancer. 2001;1(1):1–11.
93.
Zurück zum Zitat Tlsty TD. Cell-adhesion-dependent influences on genomic instability and carcinogenesis. Curr Opin Cell Biol. 1998;10(5):647–53.PubMed Tlsty TD. Cell-adhesion-dependent influences on genomic instability and carcinogenesis. Curr Opin Cell Biol. 1998;10(5):647–53.PubMed
94.
Zurück zum Zitat Tubiana M, Aurengo A, Averbeck D, et al. Dose-effect relationships and estimation of the carcinogenic effect of low doses of ionizing radiation. Paris: Académie des Sciences - Académie Nationale de Médecine; 2005. p. 1–94. Tubiana M, Aurengo A, Averbeck D, et al. Dose-effect relationships and estimation of the carcinogenic effect of low doses of ionizing radiation. Paris: Académie des Sciences - Académie Nationale de Médecine; 2005. p. 1–94.
95.
Zurück zum Zitat Barcellos-Hoff MH, Park C, Wright EG. Radiation and the microenvironment - tumorigenesis and therapy. Nat Rev Cancer. 2005;5(11):867–75.PubMed Barcellos-Hoff MH, Park C, Wright EG. Radiation and the microenvironment - tumorigenesis and therapy. Nat Rev Cancer. 2005;5(11):867–75.PubMed
96.
Zurück zum Zitat Little MP, Filipe JAN, Prise KM, et al. A model for radiation-induced bystander effects, with allowance for spatial position and the effects of cell turnover. J Theor Biol. 2005;232(3):329–38.PubMed Little MP, Filipe JAN, Prise KM, et al. A model for radiation-induced bystander effects, with allowance for spatial position and the effects of cell turnover. J Theor Biol. 2005;232(3):329–38.PubMed
97.
Zurück zum Zitat Nguyen DH, Oketch-Rabah HA, Illa-Bochaca I, et al. Radiation acts on the microenvironment to affect breast carcinogenesis by distinct mechanisms that decrease cancer latency and affect tumor type. Cancer Cell. 2011;19(5):640–51.PubMed Nguyen DH, Oketch-Rabah HA, Illa-Bochaca I, et al. Radiation acts on the microenvironment to affect breast carcinogenesis by distinct mechanisms that decrease cancer latency and affect tumor type. Cancer Cell. 2011;19(5):640–51.PubMed
98.
Zurück zum Zitat Barcellos-Hoff MH, Ravani SA. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 2000;60:1254–60.PubMed Barcellos-Hoff MH, Ravani SA. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 2000;60:1254–60.PubMed
99.
Zurück zum Zitat Kaplan HS, Carnes WH, Brown MB, et al. Indirect Induction of Lymphomas in Irradiated Mice: I. Tumor Incidence and Morphology in Mice Bearing Nonirradiated Thymic Grafts. Cancer Res. 1956;16(5):422–5.PubMed Kaplan HS, Carnes WH, Brown MB, et al. Indirect Induction of Lymphomas in Irradiated Mice: I. Tumor Incidence and Morphology in Mice Bearing Nonirradiated Thymic Grafts. Cancer Res. 1956;16(5):422–5.PubMed
100.
Zurück zum Zitat Morgan JE, Gross JG, Pagel CN, et al. Myogenic cell proliferation and generation of a reversible tumorigenic phenotype are triggered by preirradiation of the recipient site. J Cell Biol. 2002;157(4):693–702.PubMed Morgan JE, Gross JG, Pagel CN, et al. Myogenic cell proliferation and generation of a reversible tumorigenic phenotype are triggered by preirradiation of the recipient site. J Cell Biol. 2002;157(4):693–702.PubMed
101.
Zurück zum Zitat Mancuso M, Pasquali E, Leonardi S, et al. Oncogenic bystander radiation effects in Patched heterozygous mouse cerebellum. Proc Natl Acad Sci (USA). 2008;105(34):12445–50. Mancuso M, Pasquali E, Leonardi S, et al. Oncogenic bystander radiation effects in Patched heterozygous mouse cerebellum. Proc Natl Acad Sci (USA). 2008;105(34):12445–50.
102.
Zurück zum Zitat Medina D, Kittrell FS, Shepard A, et al. Biological and genetic properties of the p53 null preneoplastic mammary epithelium. FASEB J. 2002;16(8):881–3.PubMed Medina D, Kittrell FS, Shepard A, et al. Biological and genetic properties of the p53 null preneoplastic mammary epithelium. FASEB J. 2002;16(8):881–3.PubMed
103.
Zurück zum Zitat Cicalese A, Bonizzi G, Pasi CE, et al. The Tumor Suppressor p53 Regulates Polarity of Self-Renewing Divisions in Mammary Stem Cells. Cell. 2009;138(6):1083–95.PubMed Cicalese A, Bonizzi G, Pasi CE, et al. The Tumor Suppressor p53 Regulates Polarity of Self-Renewing Divisions in Mammary Stem Cells. Cell. 2009;138(6):1083–95.PubMed
104.
Zurück zum Zitat Tao L, Roberts AL, Dunphy KA, et al. Repression of Mammary Stem/Progenitor Cells by P53 is Mediated by Notch and Separable from Apoptotic Activity. STEM CELLS 2010:N/A-N/A. Tao L, Roberts AL, Dunphy KA, et al. Repression of Mammary Stem/Progenitor Cells by P53 is Mediated by Notch and Separable from Apoptotic Activity. STEM CELLS 2010:N/A-N/A.
105.
Zurück zum Zitat Herschkowitz JI, Zhao W, Zhang M, et al. Comparative oncogenomics identifies breast tumors enriched in functional tumor-initiating cells. Proc Natl Acad Sci 2011. Herschkowitz JI, Zhao W, Zhang M, et al. Comparative oncogenomics identifies breast tumors enriched in functional tumor-initiating cells. Proc Natl Acad Sci 2011.
106.
Zurück zum Zitat Jensen EV, Jordan VC. The estrogen receptor: a model for molecular medicine. Clin Cancer Res. 2003;9(6):1980–9.PubMed Jensen EV, Jordan VC. The estrogen receptor: a model for molecular medicine. Clin Cancer Res. 2003;9(6):1980–9.PubMed
107.
Zurück zum Zitat Allred DC, Wu Y, Mao S, et al. Ductal carcinoma in situ and the emergence of diversity during breast cancer evolution. Clin Cancer Res. 2008;14(2):370–8.PubMed Allred DC, Wu Y, Mao S, et al. Ductal carcinoma in situ and the emergence of diversity during breast cancer evolution. Clin Cancer Res. 2008;14(2):370–8.PubMed
108.
Zurück zum Zitat Parise CA, Bauer KR, Brown MM, et al. Breast Cancer Subtypes as Defined by the Estrogen Receptor (ER), Progesterone Receptor (PR), and the Human Epidermal Growth Factor Receptor 2 (HER2) among Women with Invasive Breast Cancer in California, 1998–2004. Breast J. 2009;15(6):593–602.PubMed Parise CA, Bauer KR, Brown MM, et al. Breast Cancer Subtypes as Defined by the Estrogen Receptor (ER), Progesterone Receptor (PR), and the Human Epidermal Growth Factor Receptor 2 (HER2) among Women with Invasive Breast Cancer in California, 1998–2004. Breast J. 2009;15(6):593–602.PubMed
109.
Zurück zum Zitat Sell S, Pierce GB. Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab Invest. 1994;70(1):6–22.PubMed Sell S, Pierce GB. Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab Invest. 1994;70(1):6–22.PubMed
110.
Zurück zum Zitat Lim E, Wu D, Pal B, et al. Transcriptome analyses of mouse and human mammary cell subpopulations reveal multiple conserved genes and pathways. Breast Cancer Res. 2010;12(2):R21.PubMed Lim E, Wu D, Pal B, et al. Transcriptome analyses of mouse and human mammary cell subpopulations reveal multiple conserved genes and pathways. Breast Cancer Res. 2010;12(2):R21.PubMed
111.
Zurück zum Zitat Prat A, Parker JS, Karginova O, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010;12(5):R68.PubMed Prat A, Parker JS, Karginova O, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010;12(5):R68.PubMed
112.
Zurück zum Zitat Bouras T, Pal B, Vaillant F, et al. Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell. 2008;3(4):429–41.PubMed Bouras T, Pal B, Vaillant F, et al. Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell. 2008;3(4):429–41.PubMed
113.
Zurück zum Zitat Purton LE, Scadden DT. Limiting factors in murine hematopoietic stem cell assays. Cell Stem Cell. 2007;1(3):263–70.PubMed Purton LE, Scadden DT. Limiting factors in murine hematopoietic stem cell assays. Cell Stem Cell. 2007;1(3):263–70.PubMed
114.
Zurück zum Zitat Mao JH, Li J, Jiang T, et al. Genomic instability in radiation-induced mouse lymphoma from p53 heterozygous mice. Oncogene. 2005;24(53):7924–34.PubMed Mao JH, Li J, Jiang T, et al. Genomic instability in radiation-induced mouse lymphoma from p53 heterozygous mice. Oncogene. 2005;24(53):7924–34.PubMed
Metadaten
Titel
New Biological Insights on the Link Between Radiation Exposure and Breast Cancer Risk
verfasst von
Mary Helen Barcellos-Hoff
Publikationsdatum
01.03.2013
Verlag
Springer US
Erschienen in
Journal of Mammary Gland Biology and Neoplasia / Ausgabe 1/2013
Print ISSN: 1083-3021
Elektronische ISSN: 1573-7039
DOI
https://doi.org/10.1007/s10911-013-9272-x

Weitere Artikel der Ausgabe 1/2013

Journal of Mammary Gland Biology and Neoplasia 1/2013 Zur Ausgabe

Preface

Preface

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Perioperative Checkpointhemmer-Therapie verbessert NSCLC-Prognose

28.05.2024 NSCLC Nachrichten

Eine perioperative Therapie mit Nivolumab reduziert das Risiko für Rezidive und Todesfälle bei operablem NSCLC im Vergleich zu einer alleinigen neoadjuvanten Chemotherapie um über 40%. Darauf deuten die Resultate der Phase-3-Studie CheckMate 77T.

Positiver FIT: Die Ursache liegt nicht immer im Dickdarm

27.05.2024 Blut im Stuhl Nachrichten

Immunchemischer Stuhltest positiv, Koloskopie negativ – in solchen Fällen kann die Blutungsquelle auch weiter proximal sitzen. Ein Forschungsteam hat nachgesehen, wie häufig und in welchen Lokalisationen das der Fall ist.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.