Skip to main content
Erschienen in: Cancer Cell International 1/2022

Open Access 01.12.2022 | Hypothesis

New strategy for antimetastatic treatment of lung cancer: a hypothesis based on circulating tumour cells

verfasst von: Zujun Que, Jianhui Tian

Erschienen in: Cancer Cell International | Ausgabe 1/2022

Abstract

Metastasis is the primary cause of death in lung cancer patients. However, until now, effective drugs and intervention strategies for treating lung cancer metastasis have been lacking. This hypothesis focuses on circulating tumour cells (CTCs) to develop a new antimetastatic therapeutic strategy for lung cancer. Here, we outline the role of CTCs in tumour metastasis and their functional effects during the treatment of lung cancer patients. Additionally, we hypothesized the possibility of CTCs as a novel biomarker and therapeutic target in preventing and treating metastasis in patients with early-stage lung cancer. We hope that the realization of this hypothesis will improve the overall survival of lung cancer.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
CTCs
Circulating tumor cells
CT
Computed tomography
PFS
Progression-free survival
ORR
Objective response rate
OS
Overall survival

Background

Metastasis is a major factor contributing to the high mortality of lung cancer, and effective antimetastatic drugs are lacking [1]. The primary reason is that the current therapeutic drugs and strategies are based on the molecular or pathological diagnosis results of the primary tumour tissue [2]. However, the benefit for patients with early-stage lung cancer is very limited [3]. Considerable heterogeneity exists between the primary tumour and different metastatic lesions [4]. One tissue biopsy cannot accurately capture the complete genome of the patient’s cancer, and the phenotype and gene of cancer cells will change after treatment, bringing challenges to individualized and precise medication [5]. Additionally, after surgery in patients with early-stage lung cancer, distinguishing between the occurrence and location of metastases is difficult. However, circulating tumour cells (CTCs), as the link between the primary tumour and metastasis, play a crucial role in the precise treatment of lung cancer metastasis [6].
The metastatic cascade of tumours begins before the first diagnosis [7]. Circulating tumour cells (CTCs), shed from primary tumours and circulation in peripheral blood, are considered a precursor of metastasis [8]. CTC counts can be used not only to diagnose lung cancer early but also to assess metastatic risk and prognosis [9, 10]. Multiple lines of evidence have indicated that the metastatic potential of CTCs is significantly enhanced when they form cell clusters with CTCs, neutrophils, and platelets [11], and lung cancer patients with detectable CTC clusters had shorter progression-free survival (PFS) and overall survival (OS) [12]. Additionally, analysing CTCs can reflect not only the primary tumour but also information on undiscovered micrometastasis [13]. Exome sequencing of lung cancer CTCs can identify mutations associated with metastatic cancer [14]. Therefore, analysing ALK, EGFR and other gene mutations and PD-L1 protein expression in CTCs can help clinicians guide medication [15, 16]. Additionally, CTCs can be cultured ex vivo to identify new mutations and perform individualized testing of drug susceptibility [17]. Notably, multiple lines of evidence have indicated that the increased number of CTCs in postoperative patients was consistent with the imaging results of computed tomography (CT) scans and was associated with shorter PFS and OS, suggesting that the existing treatment failed to improve patient survival [18]. Additionally, although no change was found in the number of CTCs, its phenotype changed, leading to treatment resistance and disease progression [19]. In this setting, the formulation of antimetastatic therapeutic strategies based on CTCs may break through the curative effect of lung cancer.

Hypothesis of anti-metastatic therapy for lung cancer

Anti-metastatic therapy of lung cancer based on CTCs molecular information.

Hypothesis-testing

Patients with early-stage lung cancer may already have undetectable micrometastases. Firstly, the risk of metastasis can be stratified by counting CTCs. If CTCs are not detectable in the patient’s peripheral blood or are within a safe threshold range, the risk of metastasis is low, and surgery can be used to prevent metastasis. When a higher number of CTCs are detected in lung cancer patients, it indicates that the patient has a higher risk of metastases or that undetectable micrometastases have occurred. At this time, patients usually undergo surgery and chemotherapy or molecular targeted therapy based on the pathological diagnosis of the primary tumour tissue. Since the clinical efficacy indicators, such as the objective response rate (ORR), are not applicable, the process of evaluating the dynamic changes in CTCs number may be a good alternative index. The analysis of CTCs has the advantages of being real-time, dynamic and repeatable, which can compensate for the lack of tissue biopsy [16]. Secondly, dynamic analysis of CTCs phenotypes or gene mutations, as well as drug susceptibility testing in vitro, can guide the selection of effective therapeutic drugs [20]. The increase in the number of CTCs in patients during treatment indicates that the tumour has progressed and drug resistance has occurred [21]. At this time, CTCs can be analyzed to find new mutant genes and proteins, as well as sensitive therapeutic drugs. These drugs based on the message of CTCs may also have an inhibitory effect on invisible micrometastases (Fig. 1).
Finally, the primary tumour can also be used to indicate the response of invisible micrometastases to antimetastatic therapy. Primary tumours and invisible micrometastases share most of the same mutant genes and protein expression profiles. Drugs that are effective against primary tumours must also be effective against invisible micrometastases. When the primary tumour is resistant to existing therapeutic drugs, then surgery will be performed, and the changes in newly generated mutated genes and protein expression profiles in primary tumours will be analysed to guide clinical drug use. At this time, the therapeutic effect of the drug can still be reflected by analysing the change in the number and phenotype of CTCs. An increase in the number of CTCs indicates new drug resistance. The expression of mutant genes and proteins in CTCs must then be reanalysed to guide clinical medication until metastatic lesions are finally detected by imaging (Fig. 1). Overall, the routine detection and analysis of CTCs can provide clinically relevant information for the timely selection of personalized therapies, possibly leading to improved efficacy of anti-lung cancer metastasis therapy.

Conclusions

In summary, the primary tumour represents the visible battlefield, and the prevention and treatment of tumour metastasis represent the invisible battlefield. CTCs are associated with distant metastasis and are alternative markers of invisible micrometastases, which, like a beacon in navigation, can dynamically reflect the state of metastases in real time and point out the direction for metastasis prevention and treatment. In the case of tumours in patients with CTCs after surgery, treatment should be adjusted, and multimodal treatment based on the molecular pathological information of CTCs should be considered. CTCs counts are now gradually entering the clinical staging system. Because the analysis and detection standards of CTCs are not unified and the existing clinical treatment guidelines do not allow the primary tumour to guide anti-lung cancer metastasis treatment, clinical trials have not yet been performed. However, lung cancer metastasis may be prevented and the survival of patients may be prolonged. Overall, this hypothesis provides a new strategy for treating lung cancer metastasis and may be of great significance in improving the survival of lung cancer patients.

Declarations

Not applicable.
Not applicable.

Competing interests

The authors declare no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.CrossRefPubMed Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.CrossRefPubMed
2.
Zurück zum Zitat Yap TA, Sandhu SK, Workman P, de Bono JS. Envisioning the future of early anticancer drug development. Nat Rev Cancer. 2010;10(7):514–23.CrossRefPubMed Yap TA, Sandhu SK, Workman P, de Bono JS. Envisioning the future of early anticancer drug development. Nat Rev Cancer. 2010;10(7):514–23.CrossRefPubMed
3.
Zurück zum Zitat Dreno B, Thompson JF, Smithers BM, Santinami M, Jouary T, Gutzmer R, Levchenko E, Rutkowski P, Grob JJ, Korovin S, et al. MAGE-A3 immunotherapeutic as adjuvant therapy for patients with resected, MAGE-A3-positive, stage III melanoma (DERMA): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2018;19(7):916–29.CrossRefPubMed Dreno B, Thompson JF, Smithers BM, Santinami M, Jouary T, Gutzmer R, Levchenko E, Rutkowski P, Grob JJ, Korovin S, et al. MAGE-A3 immunotherapeutic as adjuvant therapy for patients with resected, MAGE-A3-positive, stage III melanoma (DERMA): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2018;19(7):916–29.CrossRefPubMed
4.
Zurück zum Zitat Paik PK, Shen R, Won H, Rekhtman N, Wang L, Sima CS, Arora A, Seshan V, Ladanyi M, Berger MF, et al. Next-generation sequencing of stage IV squamous cell lung cancers reveals an association of PI3K aberrations and evidence of clonal heterogeneity in patients with brain metastases. Cancer Discov. 2015;5(6):610–21.CrossRefPubMedPubMedCentral Paik PK, Shen R, Won H, Rekhtman N, Wang L, Sima CS, Arora A, Seshan V, Ladanyi M, Berger MF, et al. Next-generation sequencing of stage IV squamous cell lung cancers reveals an association of PI3K aberrations and evidence of clonal heterogeneity in patients with brain metastases. Cancer Discov. 2015;5(6):610–21.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Marjanovic ND, Hofree M, Chan JE, Canner D, Wu K, Trakala M, Hartmann GG, Smith OC, Kim JY, Evans KV, et al. Emergence of a high-plasticity cell state during lung cancer evolution. Cancer Cell. 2020;38(2):229–46.CrossRefPubMedPubMedCentral Marjanovic ND, Hofree M, Chan JE, Canner D, Wu K, Trakala M, Hartmann GG, Smith OC, Kim JY, Evans KV, et al. Emergence of a high-plasticity cell state during lung cancer evolution. Cancer Cell. 2020;38(2):229–46.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Kilgour E, Rothwell DG, Brady G, Dive C. Liquid biopsy-based biomarkers of treatment response and resistance. Cancer Cell. 2020;37(4):485–95.CrossRefPubMed Kilgour E, Rothwell DG, Brady G, Dive C. Liquid biopsy-based biomarkers of treatment response and resistance. Cancer Cell. 2020;37(4):485–95.CrossRefPubMed
7.
Zurück zum Zitat Hu Z, Ding J, Ma Z, Sun R, Seoane JA, Scott Shaffer J, Suarez CJ, Berghoff AS, Cremolini C, Falcone A, et al. Quantitative evidence for early metastatic seeding in colorectal cancer. Nat Genet. 2019;51(7):1113–22.CrossRefPubMedPubMedCentral Hu Z, Ding J, Ma Z, Sun R, Seoane JA, Scott Shaffer J, Suarez CJ, Berghoff AS, Cremolini C, Falcone A, et al. Quantitative evidence for early metastatic seeding in colorectal cancer. Nat Genet. 2019;51(7):1113–22.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA, Yu M, Pely A, Engstrom A, Zhu H, et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell. 2014;158(5):1110–22.CrossRefPubMedPubMedCentral Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA, Yu M, Pely A, Engstrom A, Zhu H, et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell. 2014;158(5):1110–22.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Frick MA, Feigenberg SJ, Jean-Baptiste SR, Aguarin LA, Mendes A, Chinniah C, Swisher-McClure S, Berman A, Levin W, Cengel KA, et al. Circulating tumor cells are associated with recurrent disease in patients with early-stage non-small cell lung cancer treated with stereotactic body radiotherapy. Clin Cancer Res. 2020;26(10):2372–80.CrossRefPubMed Frick MA, Feigenberg SJ, Jean-Baptiste SR, Aguarin LA, Mendes A, Chinniah C, Swisher-McClure S, Berman A, Levin W, Cengel KA, et al. Circulating tumor cells are associated with recurrent disease in patients with early-stage non-small cell lung cancer treated with stereotactic body radiotherapy. Clin Cancer Res. 2020;26(10):2372–80.CrossRefPubMed
10.
Zurück zum Zitat Ilie M, Hofman V, Long-Mira E, Selva E, Vignaud JM, Padovani B, Mouroux J, Marquette CH, Hofman P. “Sentinel” circulating tumor cells allow early diagnosis of lung cancer in patients with chronic obstructive pulmonary disease. PLoS ONE. 2014;9(10):e111597.CrossRefPubMedPubMedCentral Ilie M, Hofman V, Long-Mira E, Selva E, Vignaud JM, Padovani B, Mouroux J, Marquette CH, Hofman P. “Sentinel” circulating tumor cells allow early diagnosis of lung cancer in patients with chronic obstructive pulmonary disease. PLoS ONE. 2014;9(10):e111597.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Cheung KJ, Padmanaban V, Silvestri V, Schipper K, Cohen JD, Fairchild AN, Gorin MA, Verdone JE, Pienta KJ, Bader JS, et al. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc Natl Acad Sci USA. 2016;113(7):E854-863.CrossRefPubMedPubMedCentral Cheung KJ, Padmanaban V, Silvestri V, Schipper K, Cohen JD, Fairchild AN, Gorin MA, Verdone JE, Pienta KJ, Bader JS, et al. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc Natl Acad Sci USA. 2016;113(7):E854-863.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Zeinali M, Lee M, Nadhan A, Mathur A, Hedman C, Lin E, Harouaka R, Wicha MS, Zhao L, Palanisamy N, et al. High-throughput label-free isolation of heterogeneous circulating tumor cells and CTC clusters from non-small-cell lung cancer patients. Cancers. 2020;12:1.CrossRef Zeinali M, Lee M, Nadhan A, Mathur A, Hedman C, Lin E, Harouaka R, Wicha MS, Zhao L, Palanisamy N, et al. High-throughput label-free isolation of heterogeneous circulating tumor cells and CTC clusters from non-small-cell lung cancer patients. Cancers. 2020;12:1.CrossRef
13.
Zurück zum Zitat Lohr JG, Adalsteinsson VA, Cibulskis K, Choudhury AD, Rosenberg M, Cruz-Gordillo P, Francis JM, Zhang CZ, Shalek AK, Satija R, et al. Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat Biotechnol. 2014;32(5):479–84.CrossRefPubMedPubMedCentral Lohr JG, Adalsteinsson VA, Cibulskis K, Choudhury AD, Rosenberg M, Cruz-Gordillo P, Francis JM, Zhang CZ, Shalek AK, Satija R, et al. Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat Biotechnol. 2014;32(5):479–84.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Su Z, Wang Z, Ni X, Duan J, Gao Y, Zhuo M, Li R, Zhao J, Ma Q, Bai H, et al. Inferring the evolution and progression of small-cell lung cancer by single-cell sequencing of circulating tumor cells. Clin Cancer Res. 2019;25(16):5049–60.CrossRefPubMed Su Z, Wang Z, Ni X, Duan J, Gao Y, Zhuo M, Li R, Zhao J, Ma Q, Bai H, et al. Inferring the evolution and progression of small-cell lung cancer by single-cell sequencing of circulating tumor cells. Clin Cancer Res. 2019;25(16):5049–60.CrossRefPubMed
15.
Zurück zum Zitat Ikeda M, Koh Y, Teraoka S, Sato K, Oyanagi J, Hayata A, Tokudome N, Akamatsu H, Ozawa Y, Endo K, et al. Longitudinal evaluation of PD-L1 expression on circulating tumor cells in non-small cell lung cancer patients treated with nivolumab. Cancers. 2021;13:10.CrossRef Ikeda M, Koh Y, Teraoka S, Sato K, Oyanagi J, Hayata A, Tokudome N, Akamatsu H, Ozawa Y, Endo K, et al. Longitudinal evaluation of PD-L1 expression on circulating tumor cells in non-small cell lung cancer patients treated with nivolumab. Cancers. 2021;13:10.CrossRef
16.
Zurück zum Zitat Lim M, Park J, Lowe AC, Jeong HO, Lee S, Park HC, Lee K, Kim GH, Kim MH, Cho YK. A lab-on-a-disc platform enables serial monitoring of individual CTCs associated with tumor progression during EGFR-targeted therapy for patients with NSCLC. Theranostics. 2020;10(12):5181–94.CrossRefPubMedPubMedCentral Lim M, Park J, Lowe AC, Jeong HO, Lee S, Park HC, Lee K, Kim GH, Kim MH, Cho YK. A lab-on-a-disc platform enables serial monitoring of individual CTCs associated with tumor progression during EGFR-targeted therapy for patients with NSCLC. Theranostics. 2020;10(12):5181–94.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Lee HL, Chiou JF, Wang PY, Lu LS, Shen CN, Hsu HL, Burnouf T, Ting LL, Chou PC, Chung CL, et al. Ex vivo expansion and drug sensitivity profiling of circulating tumor cells from patients with small cell lung cancer. Cancers. 2020;12:11.CrossRef Lee HL, Chiou JF, Wang PY, Lu LS, Shen CN, Hsu HL, Burnouf T, Ting LL, Chou PC, Chung CL, et al. Ex vivo expansion and drug sensitivity profiling of circulating tumor cells from patients with small cell lung cancer. Cancers. 2020;12:11.CrossRef
18.
Zurück zum Zitat Tamminga M, de Wit S, Hiltermann TJN, Timens W, Schuuring E, Terstappen L, Groen HJM. Circulating tumor cells in advanced non-small cell lung cancer patients are associated with worse tumor response to checkpoint inhibitors. J Immunother Cancer. 2019;7(1):173.CrossRefPubMedPubMedCentral Tamminga M, de Wit S, Hiltermann TJN, Timens W, Schuuring E, Terstappen L, Groen HJM. Circulating tumor cells in advanced non-small cell lung cancer patients are associated with worse tumor response to checkpoint inhibitors. J Immunother Cancer. 2019;7(1):173.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Tsao SC, Wang J, Wang Y, Behren A, Cebon J, Trau M. Characterising the phenotypic evolution of circulating tumour cells during treatment. Nat Commun. 2018;9(1):1482.CrossRefPubMedPubMedCentral Tsao SC, Wang J, Wang Y, Behren A, Cebon J, Trau M. Characterising the phenotypic evolution of circulating tumour cells during treatment. Nat Commun. 2018;9(1):1482.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Hodgkinson CL, Morrow CJ, Li Y, Metcalf RL, Rothwell DG, Trapani F, Polanski R, Burt DJ, Simpson KL, Morris K, et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat Med. 2014;20(8):897–903.CrossRefPubMed Hodgkinson CL, Morrow CJ, Li Y, Metcalf RL, Rothwell DG, Trapani F, Polanski R, Burt DJ, Simpson KL, Morris K, et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat Med. 2014;20(8):897–903.CrossRefPubMed
21.
Zurück zum Zitat Pantel K, Alix-Panabieres C. Liquid biopsy and minimal residual disease—latest advances and implications for cure. Nat Rev Clin Oncol. 2019;16(7):409–24.CrossRefPubMed Pantel K, Alix-Panabieres C. Liquid biopsy and minimal residual disease—latest advances and implications for cure. Nat Rev Clin Oncol. 2019;16(7):409–24.CrossRefPubMed
Metadaten
Titel
New strategy for antimetastatic treatment of lung cancer: a hypothesis based on circulating tumour cells
verfasst von
Zujun Que
Jianhui Tian
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
Cancer Cell International / Ausgabe 1/2022
Elektronische ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-022-02782-w

Weitere Artikel der Ausgabe 1/2022

Cancer Cell International 1/2022 Zur Ausgabe

Alphablocker schützt vor Miktionsproblemen nach der Biopsie

16.05.2024 alpha-1-Rezeptorantagonisten Nachrichten

Nach einer Prostatabiopsie treten häufig Probleme beim Wasserlassen auf. Ob sich das durch den periinterventionellen Einsatz von Alphablockern verhindern lässt, haben australische Mediziner im Zuge einer Metaanalyse untersucht.

Mammakarzinom: Senken Statine das krebsbedingte Sterberisiko?

15.05.2024 Mammakarzinom Nachrichten

Frauen mit lokalem oder metastasiertem Brustkrebs, die Statine einnehmen, haben eine niedrigere krebsspezifische Mortalität als Patientinnen, die dies nicht tun, legen neue Daten aus den USA nahe.

Labor, CT-Anthropometrie zeigen Risiko für Pankreaskrebs

13.05.2024 Pankreaskarzinom Nachrichten

Gerade bei aggressiven Malignomen wie dem duktalen Adenokarzinom des Pankreas könnte Früherkennung die Therapiechancen verbessern. Noch jedoch klafft hier eine Lücke. Ein Studienteam hat einen Weg gesucht, sie zu schließen.

Viel pflanzliche Nahrung, seltener Prostata-Ca.-Progression

12.05.2024 Prostatakarzinom Nachrichten

Ein hoher Anteil pflanzlicher Nahrung trägt möglicherweise dazu bei, das Progressionsrisiko von Männern mit Prostatakarzinomen zu senken. In einer US-Studie war das Risiko bei ausgeprägter pflanzlicher Ernährung in etwa halbiert.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.