Skip to main content
Erschienen in: Journal of Assisted Reproduction and Genetics 10/2022

19.07.2022 | Commentary

Operation “mitochondrial wipeout” — clearing recipient mitochondria DNA during the cytoplasmic replacement therapy

verfasst von: Anastasia Kirillova, Ilya Mazunin

Erschienen in: Journal of Assisted Reproduction and Genetics | Ausgabe 10/2022

Einloggen, um Zugang zu erhalten

Excerpt

Human mitochondria contain a double-stranded circular DNA (mtDNA) that encodes information about the core structures of the oxidative phosphorylation complexes as well as the elements of machinery for translation of mtDNA genes. Pathogenic mtDNA mutations lead to various neuromuscular and neurodegenerative diseases with an estimated population prevalence of 1 in 200 [1]. Mutations are generally in the state of heteroplasmy: Several allelic variants of mtDNA are present within the same cell or tissue. Clinical presentations of disorders associated with those mutations include stroke-like episodes, acquired ptosis and/or ophthalmoplegia, sideroblastic anemia, and epilepsy partialis continua [2]. Treatments for mitochondrial diseases are currently focused on symptomatic management, although several experimental procedures are developing [3]. The most promising experiments were performed by using site-specific nucleases targeting one of the mtDNA haplotypes [4]. It is worth noting that the heteroplasmy shift was also used on oocytes as a part of assisted reproductive technologies (ART) in animals [5]. However, it should be taken into consideration that the heteroplasmy shift might lead to decrease of embryonic developmental potential due to the lack of mtDNA as it is strictly down-regulated from the fertilized oocyte through the preimplantation embryo [6]. …
Literatur
1.
Zurück zum Zitat Gorman GS, Chinnery PF, DiMauro S, Hirano M, Koga Y, McFarland R, et al. Mitochondrial diseases. Nat Rev Dis Primers. 2016;2:16080.CrossRef Gorman GS, Chinnery PF, DiMauro S, Hirano M, Koga Y, McFarland R, et al. Mitochondrial diseases. Nat Rev Dis Primers. 2016;2:16080.CrossRef
2.
Zurück zum Zitat Rahman S. Mitochondrial disease in children. J Intern Med. 2020;287:609–33.CrossRef Rahman S. Mitochondrial disease in children. J Intern Med. 2020;287:609–33.CrossRef
3.
Zurück zum Zitat Russell OM, Gorman GS, Lightowlers RN, Turnbull DM. Mitochondrial diseases: hope for the future. Cell. 2020;181:168–88.CrossRef Russell OM, Gorman GS, Lightowlers RN, Turnbull DM. Mitochondrial diseases: hope for the future. Cell. 2020;181:168–88.CrossRef
4.
Zurück zum Zitat Silva-Pinheiro P, Minczuk M. The potential of mitochondrial genome engineering. Nat Rev Genet. 2022;23:199–214.CrossRef Silva-Pinheiro P, Minczuk M. The potential of mitochondrial genome engineering. Nat Rev Genet. 2022;23:199–214.CrossRef
5.
Zurück zum Zitat Reddy P, Ocampo A, Suzuki K, Luo J, Bacman SR, Williams SL, et al. Selective elimination of mitochondrial mutations in the germline by genome editing. Cell. 2015;161:459–69.CrossRef Reddy P, Ocampo A, Suzuki K, Luo J, Bacman SR, Williams SL, et al. Selective elimination of mitochondrial mutations in the germline by genome editing. Cell. 2015;161:459–69.CrossRef
6.
Zurück zum Zitat St. John JC, Facucho-Oliveira J, Jiang Y, Kelly R, Salah R. Mitochondrial DNA transmission, replication and inheritance: a journey from the gamete through the embryo and into offspring and embryonic stem cells. Hum Reprod Update. 2010;16:488–509.CrossRef St. John JC, Facucho-Oliveira J, Jiang Y, Kelly R, Salah R. Mitochondrial DNA transmission, replication and inheritance: a journey from the gamete through the embryo and into offspring and embryonic stem cells. Hum Reprod Update. 2010;16:488–509.CrossRef
8.
Zurück zum Zitat Lee H, Lee S, Baek G, Kim A, Kang B-C, Seo H, et al. Mitochondrial DNA editing in mice with DddA-TALE fusion deaminases. Nat Commun. 2021;12:1190.CrossRef Lee H, Lee S, Baek G, Kim A, Kang B-C, Seo H, et al. Mitochondrial DNA editing in mice with DddA-TALE fusion deaminases. Nat Commun. 2021;12:1190.CrossRef
9.
Zurück zum Zitat Lander ES, Baylis F, Zhang F, Charpentier E, Berg P, Bourgain C, et al. Adopt a moratorium on heritable genome editing. Nat. 2019;567:165–8.CrossRef Lander ES, Baylis F, Zhang F, Charpentier E, Berg P, Bourgain C, et al. Adopt a moratorium on heritable genome editing. Nat. 2019;567:165–8.CrossRef
10.
Zurück zum Zitat Cohen J, Scott R, Schimmel T, Levron J, Willadsen S. Birth of infant after transfer of anucleate donor oocyte cytoplasm into recipient eggs. The Lancet. 1997;350:186–7.CrossRef Cohen J, Scott R, Schimmel T, Levron J, Willadsen S. Birth of infant after transfer of anucleate donor oocyte cytoplasm into recipient eggs. The Lancet. 1997;350:186–7.CrossRef
11.
Zurück zum Zitat Kang E, Wu J, Gutierrez NM, Koski A, Tippner-Hedges R, Agaronyan K, et al. Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nat. 2016;540:270–5.CrossRef Kang E, Wu J, Gutierrez NM, Koski A, Tippner-Hedges R, Agaronyan K, et al. Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nat. 2016;540:270–5.CrossRef
12.
Zurück zum Zitat Wolf DP, Hayama T, Mitalipov S. Mitochondrial genome inheritance and replacement in the human germline. EMBO J. 2017;36:2177–81.CrossRef Wolf DP, Hayama T, Mitalipov S. Mitochondrial genome inheritance and replacement in the human germline. EMBO J. 2017;36:2177–81.CrossRef
13.
Zurück zum Zitat Embryology Authority. Human fertilisation and third scientific review of the safety and efficacy of methods to avoid mitochondrial disease through assisted conception: 2014 update. Report provided to the Human Fertilisation and Embryology Authority (HFEA) [Internet]. 2014. Available from: https://www.hfea.gov.uk/media/2614/third_ mitochondrial_replacement_scientific_review.pdf Embryology Authority. Human fertilisation and third scientific review of the safety and efficacy of methods to avoid mitochondrial disease through assisted conception: 2014 update. Report provided to the Human Fertilisation and Embryology Authority (HFEA) [Internet]. 2014. Available from: https://​www.​hfea.​gov.​uk/​media/​2614/​third_​ mitochondrial_replacement_scientific_review.pdf
15.
Zurück zum Zitat Pennings G. Enucleated oocyte donation: first for infertility treatment, then for mitochondrial diseases. J Assist Reprod Genet. 2022;39:605–8.CrossRef Pennings G. Enucleated oocyte donation: first for infertility treatment, then for mitochondrial diseases. J Assist Reprod Genet. 2022;39:605–8.CrossRef
16.
Zurück zum Zitat Costa-Borges N, Nikitos E, Spath K, Rink K, Kostaras K, Zervomanolakis I, et al. First registered pilot trial to validate the safety and effectiveness of maternal spindle transfer to overcome infertility associated with poor oocyte quality. Fertil Steril. 2020;114:e71–2.CrossRef Costa-Borges N, Nikitos E, Spath K, Rink K, Kostaras K, Zervomanolakis I, et al. First registered pilot trial to validate the safety and effectiveness of maternal spindle transfer to overcome infertility associated with poor oocyte quality. Fertil Steril. 2020;114:e71–2.CrossRef
17.
Zurück zum Zitat McConnell JM, Petrie L. Mitochondrial DNA turnover occurs during preimplantation development and can be modulated by environmental factors. Reprod Biomed Online. 2004;9:418–24.CrossRef McConnell JM, Petrie L. Mitochondrial DNA turnover occurs during preimplantation development and can be modulated by environmental factors. Reprod Biomed Online. 2004;9:418–24.CrossRef
18.
Zurück zum Zitat Fan X-Y, Guo L, Chen L-N, Yin S, Wen J, Li S, et al. Reduction of mtDNA heteroplasmy in mitochondrial replacement therapy by inducing forced mitophagy. Nat Biomed Eng. 2022;6:339–50.CrossRef Fan X-Y, Guo L, Chen L-N, Yin S, Wen J, Li S, et al. Reduction of mtDNA heteroplasmy in mitochondrial replacement therapy by inducing forced mitophagy. Nat Biomed Eng. 2022;6:339–50.CrossRef
19.
Zurück zum Zitat Ma H, Hayama T, Van Dyken C, Darby H, Koski A, Lee Y, et al. Deleterious mtDNA mutations are common in mature oocytes. Biol Reprod. 2020;102:607–19.CrossRef Ma H, Hayama T, Van Dyken C, Darby H, Koski A, Lee Y, et al. Deleterious mtDNA mutations are common in mature oocytes. Biol Reprod. 2020;102:607–19.CrossRef
20.
Zurück zum Zitat Ma H, Van Dyken C, Darby H, Mikhalchenko A, Marti-Gutierrez N, Koski A, et al. Germline transmission of donor, maternal and paternal mtDNA in primates. Hum Reprod. 2021;36:493–505.CrossRef Ma H, Van Dyken C, Darby H, Mikhalchenko A, Marti-Gutierrez N, Koski A, et al. Germline transmission of donor, maternal and paternal mtDNA in primates. Hum Reprod. 2021;36:493–505.CrossRef
21.
Zurück zum Zitat Salas A, Schönherr S, Bandelt H-J, Gómez-Carballa A, Weissensteiner H. Extraordinary claims require extraordinary evidence in asserted mtDNA biparental inheritance. Forensic Sci Int Genet. 2020;47:102274.CrossRef Salas A, Schönherr S, Bandelt H-J, Gómez-Carballa A, Weissensteiner H. Extraordinary claims require extraordinary evidence in asserted mtDNA biparental inheritance. Forensic Sci Int Genet. 2020;47:102274.CrossRef
22.
Zurück zum Zitat Luo S, Valencia CA, Zhang J, Lee N-C, Slone J, Gui B, et al. Biparental inheritance of mitochondrial DNA in humans. Proc Natl Acad Sci USA. 2018;115:13039–44.CrossRef Luo S, Valencia CA, Zhang J, Lee N-C, Slone J, Gui B, et al. Biparental inheritance of mitochondrial DNA in humans. Proc Natl Acad Sci USA. 2018;115:13039–44.CrossRef
23.
Zurück zum Zitat Sharpley MS, Marciniak C, Eckel-Mahan K, McManus M, Crimi M, Waymire K, et al. Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition. Cell. 2012;151:333–43.CrossRef Sharpley MS, Marciniak C, Eckel-Mahan K, McManus M, Crimi M, Waymire K, et al. Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition. Cell. 2012;151:333–43.CrossRef
24.
Zurück zum Zitat Lane N. The problem with mixing mitochondria. Cell. 2012;151:246–8.CrossRef Lane N. The problem with mixing mitochondria. Cell. 2012;151:246–8.CrossRef
25.
Zurück zum Zitat Eyre-Walker A. Mitochondrial replacement therapy: are mito-nuclear interactions likely to be a problem? Genet. 2017;205:1365–72.CrossRef Eyre-Walker A. Mitochondrial replacement therapy: are mito-nuclear interactions likely to be a problem? Genet. 2017;205:1365–72.CrossRef
26.
Zurück zum Zitat Zaidi AA, Makova KD. Investigating mitonuclear interactions in human admixed populations. Nat Ecol Evol. 2019;3:213–22.CrossRef Zaidi AA, Makova KD. Investigating mitonuclear interactions in human admixed populations. Nat Ecol Evol. 2019;3:213–22.CrossRef
27.
Zurück zum Zitat Pickett SJ, Blain A, Ng YS, Wilson IJ, Taylor RW, McFarland R, et al. Mitochondrial donation — which women could benefit? N Engl J Med. 2019;380:1971–2.CrossRef Pickett SJ, Blain A, Ng YS, Wilson IJ, Taylor RW, McFarland R, et al. Mitochondrial donation — which women could benefit? N Engl J Med. 2019;380:1971–2.CrossRef
28.
Zurück zum Zitat Zhang H, Burr SP, Chinnery PF. The mitochondrial DNA genetic bottleneck: inheritance and beyond. Garone C, Minczuk M, editors. Essays Biochem. 2018;62:225–34. Zhang H, Burr SP, Chinnery PF. The mitochondrial DNA genetic bottleneck: inheritance and beyond. Garone C, Minczuk M, editors. Essays Biochem. 2018;62:225–34.
29.
Zurück zum Zitat Wang T, Sha H, Ji D, Zhang HL, Chen D, Cao Y, et al. Polar body genome transfer for preventing the transmission of inherited mitochondrial diseases. Cell. 2014;157:1591–604.CrossRef Wang T, Sha H, Ji D, Zhang HL, Chen D, Cao Y, et al. Polar body genome transfer for preventing the transmission of inherited mitochondrial diseases. Cell. 2014;157:1591–604.CrossRef
Metadaten
Titel
Operation “mitochondrial wipeout” — clearing recipient mitochondria DNA during the cytoplasmic replacement therapy
verfasst von
Anastasia Kirillova
Ilya Mazunin
Publikationsdatum
19.07.2022
Verlag
Springer US
Erschienen in
Journal of Assisted Reproduction and Genetics / Ausgabe 10/2022
Print ISSN: 1058-0468
Elektronische ISSN: 1573-7330
DOI
https://doi.org/10.1007/s10815-022-02561-6

Weitere Artikel der Ausgabe 10/2022

Journal of Assisted Reproduction and Genetics 10/2022 Zur Ausgabe

Alter der Mutter beeinflusst Risiko für kongenitale Anomalie

28.05.2024 Kinder- und Jugendgynäkologie Nachrichten

Welchen Einfluss das Alter ihrer Mutter auf das Risiko hat, dass Kinder mit nicht chromosomal bedingter Malformation zur Welt kommen, hat eine ungarische Studie untersucht. Sie zeigt: Nicht nur fortgeschrittenes Alter ist riskant.

Fehlerkultur in der Medizin – Offenheit zählt!

28.05.2024 Fehlerkultur Podcast

Darüber reden und aus Fehlern lernen, sollte das Motto in der Medizin lauten. Und zwar nicht nur im Sinne der Patientensicherheit. Eine negative Fehlerkultur kann auch die Behandelnden ernsthaft krank machen, warnt Prof. Dr. Reinhard Strametz. Ein Plädoyer und ein Leitfaden für den offenen Umgang mit kritischen Ereignissen in Medizin und Pflege.

Mammakarzinom: Brustdichte beeinflusst rezidivfreies Überleben

26.05.2024 Mammakarzinom Nachrichten

Frauen, die zum Zeitpunkt der Brustkrebsdiagnose eine hohe mammografische Brustdichte aufweisen, haben ein erhöhtes Risiko für ein baldiges Rezidiv, legen neue Daten nahe.

Mehr Lebenszeit mit Abemaciclib bei fortgeschrittenem Brustkrebs?

24.05.2024 Mammakarzinom Nachrichten

In der MONARCHE-3-Studie lebten Frauen mit fortgeschrittenem Hormonrezeptor-positivem, HER2-negativem Brustkrebs länger, wenn sie zusätzlich zu einem nicht steroidalen Aromatasehemmer mit Abemaciclib behandelt wurden; allerdings verfehlte der numerische Zugewinn die statistische Signifikanz.

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.