Skip to main content
Erschienen in: Pediatric Nephrology 8/2011

01.08.2011 | Original Article

Overexpression of p18INK4C in LLC-PK1 cells increases resistance to cisplatin-induced apoptosis

verfasst von: Yi Zhang, Li Yuan, Lili Fu, Chunyan Liu, Dongmei Liu, Changlin Mei

Erschienen in: Pediatric Nephrology | Ausgabe 8/2011

Einloggen, um Zugang zu erhalten

Abstract

Studies have demonstrated that cyclin-dependent kinase inhibitors (CDKI) that inhibit cell-cycle progression have a protective effect against acute kidney injury (AKI). Most studies have focused on the CIP/KIP family members of CDKI; only a few have explored the role of INK4 family members in AKI. Because INK4 family members block the G1-S transition, we postulated that they should have protective effects against AKI. The most conserved INK4 member is p18, so we selected it to explore its effects on cisplatin-induced renal cell injury. We overexpressed p18 in renal tubular epithelial cells (LLC-PK1) by transient transfection and investigated its effects on the cell cycle and proliferation. After transfection, cell injury was induced by cisplatin (100 μM) incubation for 24 h in a standard medium. The effect of p18 was assayed by assessing cell necrosis and apoptosis in transfected cells. The endoplasmic reticulum stress (ERS) pathway was evaluated to interpret the possible mechanism of p18 action in cisplatin-induced renal cell injury. Overexpression of p18 arrested cell cycle progression in the G1 phase and inhibited proliferation. Compared with vehicle transfection, p18 overexpression did not affect cisplatin-induced necrosis, but it reduced the percentage of apoptotic cells significantly. The severity of ERS induced by cisplatin was also decreased by p18 overexpression. P18 protects against cisplatin-induced renal cell injury. The mechanism of p18 protection may lie in its effect on the cell death pathway.
Literatur
1.
Zurück zum Zitat Waikar SS, Liu KD, Chertow GM (2008) Diagnosis, epidemiology and outcomes of acute kidney injury. Clin J Am Soc Nephrol 3:844–861PubMed Waikar SS, Liu KD, Chertow GM (2008) Diagnosis, epidemiology and outcomes of acute kidney injury. Clin J Am Soc Nephrol 3:844–861PubMed
2.
Zurück zum Zitat Okusa MD (2002) The inflammatory cascade in acute ischemic renal failure. Nephron 90:133–138PubMed Okusa MD (2002) The inflammatory cascade in acute ischemic renal failure. Nephron 90:133–138PubMed
3.
Zurück zum Zitat Ramesh G, Reeves WB (2002) TNF-α mediates cytokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J Clin Invest 110:835–842PubMedPubMedCentral Ramesh G, Reeves WB (2002) TNF-α mediates cytokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J Clin Invest 110:835–842PubMedPubMedCentral
4.
Zurück zum Zitat Oh DJ, Dursun B, He Z, Lu L, Hoke TS, Ljubanovic D, Faubel S, Edelstein CL (2008) Fractalkine receptor (CX3CR1) inhibition is protective against ischemic acute renal failure in mice. Am J Physiol Renal Physiol 294:F264–F271PubMed Oh DJ, Dursun B, He Z, Lu L, Hoke TS, Ljubanovic D, Faubel S, Edelstein CL (2008) Fractalkine receptor (CX3CR1) inhibition is protective against ischemic acute renal failure in mice. Am J Physiol Renal Physiol 294:F264–F271PubMed
5.
Zurück zum Zitat Del Rio M, Imam A, DeLeon M, Gomez G, Mishra J, Ma Q, Parikh S, Devarajan P (2004) The death domain of kidney ankyrin interacts with Fas and promotes Fas-mediated cell death in renal epithelia. J Am Soc Nephrol 15:41–51PubMed Del Rio M, Imam A, DeLeon M, Gomez G, Mishra J, Ma Q, Parikh S, Devarajan P (2004) The death domain of kidney ankyrin interacts with Fas and promotes Fas-mediated cell death in renal epithelia. J Am Soc Nephrol 15:41–51PubMed
6.
Zurück zum Zitat Devarajan P (2006) Update on mechanisms of ischemic acute kidney injury. J Am Soc Nephrol 17:1503–1520PubMed Devarajan P (2006) Update on mechanisms of ischemic acute kidney injury. J Am Soc Nephrol 17:1503–1520PubMed
7.
Zurück zum Zitat Burne MJ, Daniels F, El Ghandour A, Mauiyyedi S, Colvin RB, O'Donnell MP, Rabb H (2001) Identification of the CD4+ T cell as a major pathogenic factor in ischemic acute renal failure. J Clin Invest 108:1283–1290PubMedPubMedCentral Burne MJ, Daniels F, El Ghandour A, Mauiyyedi S, Colvin RB, O'Donnell MP, Rabb H (2001) Identification of the CD4+ T cell as a major pathogenic factor in ischemic acute renal failure. J Clin Invest 108:1283–1290PubMedPubMedCentral
8.
Zurück zum Zitat Jiang M, Pabla N, Murphy RF, Yang T, Yin XM, Degenhardt K, White E, Dong Z (2007) Nutlin-3 protects kidney cells during cisplatin therapy by suppressing Bax/Bak activation. J Biol Chem 282:2636–2645PubMed Jiang M, Pabla N, Murphy RF, Yang T, Yin XM, Degenhardt K, White E, Dong Z (2007) Nutlin-3 protects kidney cells during cisplatin therapy by suppressing Bax/Bak activation. J Biol Chem 282:2636–2645PubMed
9.
Zurück zum Zitat Wei Q, Dong G, Yang T, Megyesi J, Price PM, Dong Z (2007) Activation and involvement of p53 in cisplatin-induced nephrotoxicity. Am J Physiol Renal Physiol 293:F1282–F1291PubMedPubMedCentral Wei Q, Dong G, Yang T, Megyesi J, Price PM, Dong Z (2007) Activation and involvement of p53 in cisplatin-induced nephrotoxicity. Am J Physiol Renal Physiol 293:F1282–F1291PubMedPubMedCentral
10.
Zurück zum Zitat Cummings BS, Schnellmann RG (2002) Cisplatin-induced renal cell apoptosis: caspase 3-dependent and -independent pathways. J Pharmacol Exp Ther 302:8–17PubMed Cummings BS, Schnellmann RG (2002) Cisplatin-induced renal cell apoptosis: caspase 3-dependent and -independent pathways. J Pharmacol Exp Ther 302:8–17PubMed
11.
Zurück zum Zitat Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nuñez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G (2009) Classification of cell death: recommendations of the nomenclature committee on cell death 2009. Cell Death Differ 16:3–11PubMed Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nuñez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G (2009) Classification of cell death: recommendations of the nomenclature committee on cell death 2009. Cell Death Differ 16:3–11PubMed
12.
Zurück zum Zitat Periyasamy-Thandavan S, Jiang M, Wei Q, Smith R, Yin XM, Dong Z (2008) Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. Kidney Int 74:631–640PubMed Periyasamy-Thandavan S, Jiang M, Wei Q, Smith R, Yin XM, Dong Z (2008) Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. Kidney Int 74:631–640PubMed
13.
Zurück zum Zitat Shankland SJ, Wolf G (2000) Cell cycle regulatory proteins in renal disease: role in hypertrophy, proliferation, and apoptosis. Am J Physiol Renal Physiol 278:F515–F529PubMed Shankland SJ, Wolf G (2000) Cell cycle regulatory proteins in renal disease: role in hypertrophy, proliferation, and apoptosis. Am J Physiol Renal Physiol 278:F515–F529PubMed
14.
Zurück zum Zitat Morgan DO (1995) Principles of CDK regulation. Nature 374:131–134PubMed Morgan DO (1995) Principles of CDK regulation. Nature 374:131–134PubMed
15.
Zurück zum Zitat Peter M, Herskowitz I (1994) Joining the complex: cyclin-dependent kinase inhibitory proteins and the cell cycle. Cell 79:181–184PubMed Peter M, Herskowitz I (1994) Joining the complex: cyclin-dependent kinase inhibitory proteins and the cell cycle. Cell 79:181–184PubMed
16.
Zurück zum Zitat Weinert T (1998) DNA damage and checkpoint pathways: molecular anatomy and interactions with repair. Cell 94:555–558PubMed Weinert T (1998) DNA damage and checkpoint pathways: molecular anatomy and interactions with repair. Cell 94:555–558PubMed
17.
18.
Zurück zum Zitat Megyesi J, Safirstein RL, Price PM (1998) Induction of p21WAF1/CIP1/SDI1 in kidney tubule cells affects the course of cisplatin-induced acute renal failure. J Clin Invest 101:777–782PubMedPubMedCentral Megyesi J, Safirstein RL, Price PM (1998) Induction of p21WAF1/CIP1/SDI1 in kidney tubule cells affects the course of cisplatin-induced acute renal failure. J Clin Invest 101:777–782PubMedPubMedCentral
19.
Zurück zum Zitat Nowak G, Price PM, Schnellmann RG (2003) Lack of a functional p21WAF1/CIP1 gene accelerates caspase-independent apoptosis induced by cisplatin in renal cells. Am J Physiol Renal Physiol 285:F440–F450PubMed Nowak G, Price PM, Schnellmann RG (2003) Lack of a functional p21WAF1/CIP1 gene accelerates caspase-independent apoptosis induced by cisplatin in renal cells. Am J Physiol Renal Physiol 285:F440–F450PubMed
20.
Zurück zum Zitat Yu F, Megyesi J, Safirstein RL, Price PM (2005) Identification of the functional domain of p21(WAF1/CIP1) that protects cells from cisplatin cytotoxicity. Am J Physiol Renal Physiol 289:F514–F520PubMed Yu F, Megyesi J, Safirstein RL, Price PM (2005) Identification of the functional domain of p21(WAF1/CIP1) that protects cells from cisplatin cytotoxicity. Am J Physiol Renal Physiol 289:F514–F520PubMed
21.
Zurück zum Zitat Megyesi J, Andrade L, Vieira JM Jr, Safirstein RL, Price PM (2002) Coordination of the cell cycle is an important determinant of the syndrome of acute renal failure. Am J Physiol Renal Physiol 283:F810–F816PubMed Megyesi J, Andrade L, Vieira JM Jr, Safirstein RL, Price PM (2002) Coordination of the cell cycle is an important determinant of the syndrome of acute renal failure. Am J Physiol Renal Physiol 283:F810–F816PubMed
22.
Zurück zum Zitat Price PM, Yu F, Kaldis P, Aleem E, Nowak G, Safirstein RL, Megyesi J (2006) Dependence of cisplatin-induced cell death in vitro and in vivo on cyclin-dependent kinase 2. J Am Soc Nephrol 17:2434–2442PubMedPubMedCentral Price PM, Yu F, Kaldis P, Aleem E, Nowak G, Safirstein RL, Megyesi J (2006) Dependence of cisplatin-induced cell death in vitro and in vivo on cyclin-dependent kinase 2. J Am Soc Nephrol 17:2434–2442PubMedPubMedCentral
23.
Zurück zum Zitat Yu F, Megyesi J, Price PM (2008) Cytoplasmic initiation of cisplatin cytotoxicity. Am J Physiol Renal Physiol 295:F44–F452PubMedPubMedCentral Yu F, Megyesi J, Price PM (2008) Cytoplasmic initiation of cisplatin cytotoxicity. Am J Physiol Renal Physiol 295:F44–F452PubMedPubMedCentral
24.
Zurück zum Zitat Price PM, Safirstein RL, Megyesi J (2004) Protection of renal cells from cisplatin toxicity by cell cycle inhibitors. Am J Physiol Renal Physiol 286:F378–F384PubMed Price PM, Safirstein RL, Megyesi J (2004) Protection of renal cells from cisplatin toxicity by cell cycle inhibitors. Am J Physiol Renal Physiol 286:F378–F384PubMed
25.
Zurück zum Zitat Hengst L, Reed SI (1998) Inhibitors of the Cip/Kip family. Curr Top Microbiol Immunol 227:25–41PubMed Hengst L, Reed SI (1998) Inhibitors of the Cip/Kip family. Curr Top Microbiol Immunol 227:25–41PubMed
26.
Zurück zum Zitat Sherr CJ, Roberts JM (1995) Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 9:1149–1163PubMed Sherr CJ, Roberts JM (1995) Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 9:1149–1163PubMed
27.
Zurück zum Zitat Cordon-Cardo C (1995) Mutation of cell cycle regulators. Biological and clinical implications for human neoplasia. Am J Pathol 147:545–560PubMedPubMedCentral Cordon-Cardo C (1995) Mutation of cell cycle regulators. Biological and clinical implications for human neoplasia. Am J Pathol 147:545–560PubMedPubMedCentral
28.
Zurück zum Zitat Cánepa ET, Scassa ME, Ceruti JM, Marazita MC, Carcagno AL, Sirkin PF, Ogara MF (2007) INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions. IUBMB Life 59:419–426PubMed Cánepa ET, Scassa ME, Ceruti JM, Marazita MC, Carcagno AL, Sirkin PF, Ogara MF (2007) INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions. IUBMB Life 59:419–426PubMed
29.
Zurück zum Zitat Guan KL, Jenkins CW, Li Y, Nichols MA, Wu X, O’Keefe CL, Matera AG, Xiong Y (1994) Growth suppression by p18, a p16INK4/MTS1- and p14INK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. Genes Dev 8:2939–2952PubMed Guan KL, Jenkins CW, Li Y, Nichols MA, Wu X, O’Keefe CL, Matera AG, Xiong Y (1994) Growth suppression by p18, a p16INK4/MTS1- and p14INK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. Genes Dev 8:2939–2952PubMed
30.
Zurück zum Zitat Hirai H, Roussel MF, Kato JY, Ashmun RA, Sherr CJ (1995) Novel INK4 proteins, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6. Mol Cell Biol 15:2672–2681PubMedPubMedCentral Hirai H, Roussel MF, Kato JY, Ashmun RA, Sherr CJ (1995) Novel INK4 proteins, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6. Mol Cell Biol 15:2672–2681PubMedPubMedCentral
31.
Zurück zum Zitat Choi KS, Eom YW, Kang Y, Ha MJ, Rhee H, Yoon JW, Kim SJ (1999) Cdc2 and Cdk2 kinase activated by transforming growth factor-beta1 trigger apoptosis through the phosphorylation of retinoblastoma protein in FaO hepatoma cells. J Biol Chem 274:31775–31783PubMed Choi KS, Eom YW, Kang Y, Ha MJ, Rhee H, Yoon JW, Kim SJ (1999) Cdc2 and Cdk2 kinase activated by transforming growth factor-beta1 trigger apoptosis through the phosphorylation of retinoblastoma protein in FaO hepatoma cells. J Biol Chem 274:31775–31783PubMed
32.
Zurück zum Zitat Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4:307–320PubMed Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4:307–320PubMed
33.
Zurück zum Zitat Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22:7265–7279PubMed Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22:7265–7279PubMed
34.
Zurück zum Zitat Pabla N, Dong Z (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73:994–1007PubMed Pabla N, Dong Z (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73:994–1007PubMed
35.
Zurück zum Zitat Lieberthal W, Triaca V, Levine J (1996) Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: apoptosis vs. necrosis. Am J Physiol 270:F700–F708PubMed Lieberthal W, Triaca V, Levine J (1996) Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: apoptosis vs. necrosis. Am J Physiol 270:F700–F708PubMed
36.
Zurück zum Zitat Razzaque MS, Koji T, Kumatori A, Taguchi T (1999) Cisplatin-induced apoptosis in human proximal tubular epithelial cells is associated with the activation of the Fas/Fas ligand system. Histochem Cell Biol 111:359–365PubMed Razzaque MS, Koji T, Kumatori A, Taguchi T (1999) Cisplatin-induced apoptosis in human proximal tubular epithelial cells is associated with the activation of the Fas/Fas ligand system. Histochem Cell Biol 111:359–365PubMed
37.
Zurück zum Zitat Seth R, Yang C, Kaushal V, Shah SV, Kaushal GP (2005) p53-dependent caspase-2 activiation in mitochondrial release of apoptosis-inducing factor and its role in renal tubular epithelial cell injury. J Biol Chem 280:31230–31239PubMed Seth R, Yang C, Kaushal V, Shah SV, Kaushal GP (2005) p53-dependent caspase-2 activiation in mitochondrial release of apoptosis-inducing factor and its role in renal tubular epithelial cell injury. J Biol Chem 280:31230–31239PubMed
38.
Zurück zum Zitat Park MS, De Leon M, Devarajan P (2002) Cisplatin induces apoptosis in LLC-PK1 cells via activation of mitochondrial pathways. J Am Soc Nephrol 13:858–865PubMed Park MS, De Leon M, Devarajan P (2002) Cisplatin induces apoptosis in LLC-PK1 cells via activation of mitochondrial pathways. J Am Soc Nephrol 13:858–865PubMed
39.
Zurück zum Zitat Huang Q, Dunn RT 2nd, Jayadev S, DiSorbo O, Pack FD, Farr SB, Stoll RE, Blanchard KT (2001) Assessment of cisplatin-induced nephrotoxicity by microarray technology. Toxicol Sci 63:196–207PubMed Huang Q, Dunn RT 2nd, Jayadev S, DiSorbo O, Pack FD, Farr SB, Stoll RE, Blanchard KT (2001) Assessment of cisplatin-induced nephrotoxicity by microarray technology. Toxicol Sci 63:196–207PubMed
40.
Zurück zum Zitat Muruganandan S, Cribb AE (2006) Calpain-induced endoplasmic reticulum stress and cell death following cytotoxic damage to renal cells. Toxicol Sci 94:118–128PubMed Muruganandan S, Cribb AE (2006) Calpain-induced endoplasmic reticulum stress and cell death following cytotoxic damage to renal cells. Toxicol Sci 94:118–128PubMed
41.
Zurück zum Zitat Cribb AE, Peyrou M, Muruganandan S, Schneider L (2005) The endoplasmic reticulum in xenobiotic toxicity. Drug Metab Rev 37:405–442PubMed Cribb AE, Peyrou M, Muruganandan S, Schneider L (2005) The endoplasmic reticulum in xenobiotic toxicity. Drug Metab Rev 37:405–442PubMed
42.
Zurück zum Zitat Peyrou M, Hanna PE, Cribb AE (2007) Cisplatin, gentamicin, and p-aminophenol induce markers of endoplasmic reticulum stress in the rat kidneys. Toxicol Sci 99:346–353PubMed Peyrou M, Hanna PE, Cribb AE (2007) Cisplatin, gentamicin, and p-aminophenol induce markers of endoplasmic reticulum stress in the rat kidneys. Toxicol Sci 99:346–353PubMed
43.
Zurück zum Zitat Liu H, Baliga R (2005) Endoplasmic reticulum stress-associated caspase 12 mediates cisplatin-induced LLC-PK1 cell apoptosis. J Am Soc Nephrol 16:1985–1992PubMed Liu H, Baliga R (2005) Endoplasmic reticulum stress-associated caspase 12 mediates cisplatin-induced LLC-PK1 cell apoptosis. J Am Soc Nephrol 16:1985–1992PubMed
44.
Zurück zum Zitat Bernales S, Papa FR, Walter P (2006) Intracellular signaling by the unfolded protein response. Annu Rev Cell Dev Biol 22:487–508PubMed Bernales S, Papa FR, Walter P (2006) Intracellular signaling by the unfolded protein response. Annu Rev Cell Dev Biol 22:487–508PubMed
45.
Zurück zum Zitat Lin JH, Walter P, Yen TS (2008) Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol 3:399–425PubMedPubMedCentral Lin JH, Walter P, Yen TS (2008) Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol 3:399–425PubMedPubMedCentral
46.
Zurück zum Zitat Malhotra JD, Kaufman RJ (2007) The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol 18:716–731PubMedPubMedCentral Malhotra JD, Kaufman RJ (2007) The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol 18:716–731PubMedPubMedCentral
47.
Zurück zum Zitat Mori K (2000) Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101:451–454PubMed Mori K (2000) Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101:451–454PubMed
48.
Zurück zum Zitat Kleizen B, Braakman I (2004) Protein folding and quality control in the endoplasmic reticulum. Curr Opin Cell Biol 16:343–349PubMed Kleizen B, Braakman I (2004) Protein folding and quality control in the endoplasmic reticulum. Curr Opin Cell Biol 16:343–349PubMed
49.
Zurück zum Zitat Zhang K, Kaufman RJ (2006) The unfolded protein response: a stress signaling pathway critical for health and disease. Neurology 66:S102–S109PubMed Zhang K, Kaufman RJ (2006) The unfolded protein response: a stress signaling pathway critical for health and disease. Neurology 66:S102–S109PubMed
50.
Zurück zum Zitat Marciniak SJ, Ron D (2006) Endoplasmic reticulum stress signaling in disease. Physiol Rev 86:1133–1149PubMed Marciniak SJ, Ron D (2006) Endoplasmic reticulum stress signaling in disease. Physiol Rev 86:1133–1149PubMed
51.
Zurück zum Zitat Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7:880–885PubMedPubMedCentral Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7:880–885PubMedPubMedCentral
52.
Zurück zum Zitat Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase 12 mediates ER-specific apoptosis and cytotoxicity by amyloid-β. Nature 403:98–103PubMed Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase 12 mediates ER-specific apoptosis and cytotoxicity by amyloid-β. Nature 403:98–103PubMed
53.
Zurück zum Zitat Kalai M, Lamkanfi M, Denecker G, Boogmans M, Lippens S, Meeus A, Declercq W, Vandenabeele P (2003) Regulation of the expression and processing of caspase 12. J Cell Biol 162:457–467PubMedPubMedCentral Kalai M, Lamkanfi M, Denecker G, Boogmans M, Lippens S, Meeus A, Declercq W, Vandenabeele P (2003) Regulation of the expression and processing of caspase 12. J Cell Biol 162:457–467PubMedPubMedCentral
54.
Zurück zum Zitat Oyadomari S, Mori M (2004) Role of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381–389PubMed Oyadomari S, Mori M (2004) Role of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381–389PubMed
55.
Zurück zum Zitat Kondo S, Barna BP, Kondo Y, Tanaka Y, Casey G, Liu J, Morimura T, Kaakaji R, Peterson JW, Werbel B, Barnett GH (1996) WAF1/CIP1 increases the susceptibility of p53 non-functional malignant glioma cells to cisplatin-induced apoptosis. Oncogene 13:1279–1285PubMed Kondo S, Barna BP, Kondo Y, Tanaka Y, Casey G, Liu J, Morimura T, Kaakaji R, Peterson JW, Werbel B, Barnett GH (1996) WAF1/CIP1 increases the susceptibility of p53 non-functional malignant glioma cells to cisplatin-induced apoptosis. Oncogene 13:1279–1285PubMed
56.
Zurück zum Zitat Lincet H, Poulain L, Remy JS, Deslandes E, Duigou F, Gauduchon P, Staedel C (2000) The p21(cip1/waf1) cyclin-dependent kinase inhibitor enhances the cytotoxic effect of cisplatin in human ovarian carcinoma cells. Cancer Lett 161:17–26PubMed Lincet H, Poulain L, Remy JS, Deslandes E, Duigou F, Gauduchon P, Staedel C (2000) The p21(cip1/waf1) cyclin-dependent kinase inhibitor enhances the cytotoxic effect of cisplatin in human ovarian carcinoma cells. Cancer Lett 161:17–26PubMed
57.
Zurück zum Zitat Franklin DS, Godfrey VL, Lee H, Kovalev GI, Schoonhoven R, Chen-Kiang S, Su L, Xiong Y (1998) CDK inhibitors p18INK4c and p27Kip1 mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Genes Dev 12:2899–2911PubMedPubMedCentral Franklin DS, Godfrey VL, Lee H, Kovalev GI, Schoonhoven R, Chen-Kiang S, Su L, Xiong Y (1998) CDK inhibitors p18INK4c and p27Kip1 mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Genes Dev 12:2899–2911PubMedPubMedCentral
58.
Zurück zum Zitat Al-Mohanna MA, Manogaran PS, Al-Mukhalafi Z, A Al-Hussein K, Aboussekhra A (2004) The tumor suppressor p16(INK4a) gene is a regulator of apoptosis induced by ultraviolet light and cisplatin. Oncogene 23:201–212PubMed Al-Mohanna MA, Manogaran PS, Al-Mukhalafi Z, A Al-Hussein K, Aboussekhra A (2004) The tumor suppressor p16(INK4a) gene is a regulator of apoptosis induced by ultraviolet light and cisplatin. Oncogene 23:201–212PubMed
59.
Zurück zum Zitat Le HV, Minn AJ, Massagué J (2005) Cyclin-dependent kinase inhibitors uncouple cell cycle progression from mitochondrial apoptotic functions in DNA-damaged cancer cells. J Biol Chem 280:32018–32025PubMed Le HV, Minn AJ, Massagué J (2005) Cyclin-dependent kinase inhibitors uncouple cell cycle progression from mitochondrial apoptotic functions in DNA-damaged cancer cells. J Biol Chem 280:32018–32025PubMed
60.
Zurück zum Zitat Scassa ME, Marazita MC, Ceruti JM, Carcagno AL, Sirkin PF, González-Cid M, Pignataro OP, Cánepa ET (2007) Cell cycle inhibitor, p19INK4d, promotes cell survival and decreases chromosomal aberrations after genotoxic insult due to enhanced DNA repair. DNA Repair 6:626–638PubMed Scassa ME, Marazita MC, Ceruti JM, Carcagno AL, Sirkin PF, González-Cid M, Pignataro OP, Cánepa ET (2007) Cell cycle inhibitor, p19INK4d, promotes cell survival and decreases chromosomal aberrations after genotoxic insult due to enhanced DNA repair. DNA Repair 6:626–638PubMed
61.
Zurück zum Zitat Tavera-Mendoza LE, Wang TT, White JH (2006) p19INK4D and cell death. Cell Cycle 5:596–598PubMed Tavera-Mendoza LE, Wang TT, White JH (2006) p19INK4D and cell death. Cell Cycle 5:596–598PubMed
62.
Zurück zum Zitat Massagué J (2004) G1 cell-cycle control and cancer. Nature 432:298–306PubMed Massagué J (2004) G1 cell-cycle control and cancer. Nature 432:298–306PubMed
63.
Zurück zum Zitat Trimarchi JM, Lees JA (2002) Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 3:11–20PubMed Trimarchi JM, Lees JA (2002) Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 3:11–20PubMed
Metadaten
Titel
Overexpression of p18INK4C in LLC-PK1 cells increases resistance to cisplatin-induced apoptosis
verfasst von
Yi Zhang
Li Yuan
Lili Fu
Chunyan Liu
Dongmei Liu
Changlin Mei
Publikationsdatum
01.08.2011
Verlag
Springer Berlin Heidelberg
Erschienen in
Pediatric Nephrology / Ausgabe 8/2011
Print ISSN: 0931-041X
Elektronische ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-011-1877-y

Weitere Artikel der Ausgabe 8/2011

Pediatric Nephrology 8/2011 Zur Ausgabe

Neuer Typ-1-Diabetes bei Kindern am Wochenende eher übersehen

23.04.2024 Typ-1-Diabetes Nachrichten

Wenn Kinder an Werktagen zum Arzt gehen, werden neu auftretender Typ-1-Diabetes und diabetische Ketoazidosen häufiger erkannt als bei Arztbesuchen an Wochenenden oder Feiertagen.

Neue Studienergebnisse zur Myopiekontrolle mit Atropin

22.04.2024 Fehlsichtigkeit Nachrichten

Augentropfen mit niedrig dosiertem Atropin können helfen, das Fortschreiten einer Kurzsichtigkeit bei Kindern zumindest zu verlangsamen, wie die Ergebnisse einer aktuellen Studie mit verschiedenen Dosierungen zeigen.

Spinale Muskelatrophie: Neugeborenen-Screening lohnt sich

18.04.2024 Spinale Muskelatrophien Nachrichten

Seit 2021 ist die Untersuchung auf spinale Muskelatrophie Teil des Neugeborenen-Screenings in Deutschland. Eine Studie liefert weitere Evidenz für den Nutzen der Maßnahme.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.