Skip to main content
Erschienen in: Molecular Cancer 1/2021

Open Access 01.12.2021 | Letter to the Editor

PARP inhibitor Olaparib overcomes Sorafenib resistance through reshaping the pluripotent transcriptome in hepatocellular carcinoma

verfasst von: Xiao-Dong Yang, Fan-En Kong, Ling Qi, Jia-Xin Lin, Qian Yan, Jane Ho Chun Loong, Shao-Yan Xi, Yue Zhao, Yan Zhang, Yun-Fei Yuan, Ning-Fang Ma, Stephanie Ma, Xin-Yuan Guan, Ming Liu

Erschienen in: Molecular Cancer | Ausgabe 1/2021

Abstract

Hepatocellular carcinoma (HCC) is one of the most common human malignancies worldwide with very poor prognosis. Resistance to targeted therapeutic drugs such as sorafenib remains one of the major challenges in clinical treatment. In the present study, PARP1 was found to be highly expressed in human embryonic stem cells, but progressively decreased upon specified hepatic differentiation. Reactivation of PARP1 expression was also detected in HCC residual tumors after sorafenib treatment in xenograft mouse model, indicating the potential important roles of PARP1 in stem cell pluripotency and HCC sorafenib treatment resistance. Overexpression of PARP1 was frequently observed in HCC patients, and closely associated with poor clinical outcome. Treatment of Sorafenib induced activation of DNA damage repair signaling, which is highly active and essential for maintenance of stem cell pluripotency in HCC residual tumors. PARP inhibitor Olaparib extensively suppressed the DNA damage repair signaling, and significantly inhibited the global pluripotent transcriptional network. The repression of key pluripotent transcriptional factors and DNA damage repair signaling by Olaparib was mainly through CHD1L-mediated condensation of the chromatin structure at their promotor regions. The global reshaping of the pluripotent transcriptome by Olaparib might reinforce Sorafenib in eliminating HCC residual tumors and enhance therapeutic efficiency.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12943-021-01315-9.
Xiao-Dong Yang, Fan-En Kong, Ling Qi and Jia-Xin Lin contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
hESCs
Human embryonic stem cells
PARP1
Poly (ADP-ribose) polymerase 1
CHD1L
Chromodomain helicase/ATPase DNA binding protein1-like
HCC
Hepatocellular carcinoma
ES
Embryonic stem cell
EN
Endoderm
LP
Liver progenitor cell
PH
Premature hepatocytes
HR
Homologous recombination
TSS
Transcriptional star site
qPCR
Quantitative real time PCR

Main text

Hepatocellular carcinoma is one of the most common human malignancies worldwide with poor prognosis [1]. Currently, the multi-kinase inhibitors Sorafenib was approved by FDA as first line treatment for unresectable advanced HCC. However, the benefit of the patients from the therapy is very limited, with a prolonged median overall survival rate less than 3 months [2, 3]. Thus, further investigation of the molecular mechanisms in drug resistance and development of novel therapeutic strategy is urgently needed.
Increasing evidences suggested that the hierarchy of cancer stem cells and their differentiated progenies contributed substantially to the heterogeneous tumor and therapeutic failure [4, 5]. To better understand the dynamic transcriptomic change during liver development, we have recently established a hepatocyte differentiation model, which specifically induced human embryonic stem cells (hESCs) to differentiate into mature hepatocytes along hepatic lineages [6]. Meanwhile, liver tumors were inoculated into immune deficient mice and treated with Sorafenib to establish a drug resistant model. Combining the transcriptomic data from the two model, PARP1 was identified to be the critical gene which actively expressed in embryonic stem cells and residual tumors after Sorafenib treatment, but progressively decreased along hepatic differentiation. PARP inhibitors have promising effects in inducing synthetic lethality in homozygous recombination deficient tumors in the clinic [7]. Our current study suggested that PARP1 was required for HCC tumor lineage plasticity and residual tumor survival potentially through CHD1L, a chromatin remodeling protein frequently amplified in HCC [8, 9]. Our study revealed a novel mechanism of PARP inhibitors in cancer treatment and further supported their extension to non-HR deficient tumors including HCC.

PARP1 is activated in embryonic stem cells and the residual tumors after Sorafenib treatment

hESCs were differentiated into human hepatocytes along hepatic lineages. The whole differentiation process was defined with four stages, cells from the four different developmental stages were collected for transcriptomic profiling. (Additional file 1: Fig. S1A). Meanwhile, BALB/c nude mice were subcutaneous injected with PLC-8024 cells and treated with Sorafenib or vehicle control (Additional file 1: Fig. S1B, Additional file 2: file S1). Combining the two set of data together, PARP1 was identified to be significantly up-regulated both in embryonic stem cells and the residual tumors after Sorafenib treatment (Fig. 1a, Additional file 1: Fig. S1C). The expression of PARP1 remains low in distant normal liver tissues, but progressively increased from para-tumor liver tissues to the tumor tissues (Fig. 1b). High expression of PARP1 was detected in 53/196 (27%) HCC patients from a tissue microarray (Additional file 3: Tab S1, Additional file 1: Fig. S1D). Kaplan-Meier analysis indicated that the PARP1 staining score significantly stratified the overall survival (Fig. 1c) and disease-free survival (Fig. 1d) of HCC patients. Furthermore, univariate and multivariate cox regression analysis also proposed the high expression of PARP1 as an independent prognostic factor in HCC (Additional file 4: Tab S2).

PARP inhibitor Olaparib inhibits tumorigenesis in HCC and significantly potentiates Sorafenib both in vitro and in vivo

PARP inhibitor Olaparib has already been approved by FDA in treatment of BRCA-mutated ovarian cancer and showed promising clinical benefit [10]. Functional assays proved that Olaparib could inhibit HCC cell growth and colony formation ability (Additional file 5: Fig. S2A, S2B). Sphere formation assay indicated a significant decrease in sphere number after Olaparib exposure (Additional file 5: Fig. S2C). A significant reduction of tumor size was also observed after exposes of Olaparib at the dose of 50 mg/kg (Additional file 5: Fig. S2D). Treatment of Olaparib alone or in combination with Sorafenib significantly inhibited cell colony formation in HCC cells with high pluripotency (Hep3B and Huh7) both under normal culture conditions or in the spheres which mimic stem cell microenvironment (Additional file 5: Fig. S2E, S2F, S2G). Similar results were found in cells treated with another PARP inhibitor Niraparib (Additional file 5: Fig. S2H, S2I). Olaparib significantly potentiated Sorafenib drug efficacy (Additional file 6: Fig. S3A and S3B). Western blot analysis further indicated that Sorafenib and Olaparib could induce apoptotic signaling (Additional file 6: Fig. S3C). A significant decrease in tumor size was observed when the mice were treated with Olaparib or Sorafenib alone, and enhanced tumor regression was observed when the mice were treated with both drugs (Fig. 1e, Additional file 6: Fig. S3D, and S3E). In situ TUNEL assay of the xenograft tumors confirmed the elevated level of apoptosis (Fig. 1f). Similar results were also found in HepG2 cells (Additional file 6: Fig. S3F, S3G, S3H, S3I, and S3J). Treatment of Olaparib also significantly potentiated the tumor inhibitory effects of Sorafenib in patient-derived HCC organoids (Fig. 1g).

Olaparib extensively suppressed the DNA damage repair signaling potentially through CHD1L

Transcriptome RNA sequencing was performed in residual tumors after treatment with Olaparib, Sorafenib, and vehicle control. Hierarchical clustering analysis revealed that the tumors treated with Olaparib showed the lowest global gene expression level and was segregated with other subgroups (Fig. 2a). Gene ontology analysis revealed that genes associated with DNA damage repair was up-regulated in HCC tumors treated with Sorafenib. Interestingly, absolute reverse effect was found in HCC tumors treated with Olaparib. This indicated that Olaparib might suppress the DNA damage repair signaling and counteract with the effects of Sorafenib on HCC tumors (Fig. 2b).
The DNA damage repair signaling molecules were significantly up-regulated after Sorafenib treatment but significantly suppressed by Olaparib (Fig. 2c). Similar results were found in Hep3B and Huh7 cells, as well as in PLC-8024 cells treated with another PARP inhibitor Niraparib (Additional file 7: Fig. S4A, S4B, S4C). CHD1L was dynamically expressed during hepatocyte differentiation (Additional file 7: Fig. S4D). Doxorubicin (Dox)-induced CHD1L knockout PLC-8024 cells were established using CRISPR/Cas9 gene editing methods (Additional file 7: Fig. S4E). The DNA damage repair genes were examined in wildtype PLC-8024 cells and cells with CHD1L knock out (sgCHD1L) treated with or without Olaparib. We found the suppression of DNA damage repair genes by Olaparib was totally abolished when CHD1L was deleted (Fig. 2d). Furthermore, both PARP1 and CHD1L was found to occupy the promoter regions of the DNA damage repair genes and associated with open chromatin histone methylation marker H3K4me3. Deletion of CHD1L abolished the binding of PARP1 to the promoters of DNA damage repair genes (Fig. 2e). These findings suggested that PARP1 might form a complex with CHD1L and maintain an “open chromatin” status at the promoter regions of critical DNA damage repair genes.

The DNA damage repair signaling suppressed by Olaparib might be critical in stem cell pluripotency and Sorafenib resistance

The residual tumors after Sorafenib might be eliminated with treatment of Olaparib (Additional file 7: Fig. S4F). Genes up-regulated after Sorafenib treatment, but suppressed by Olaparib showed high expression in hESCs but significantly decreased in the differentiated hepatocytes, which was in accordance with the expression pattern of DNA damage repair genes and key pluripotent transcriptional factors (Additional file 7: Fig. S4G, Fig. S4H, and S4I). This indicated that embryonic stem cells might rely on active DNA damage repair to maintain pluripotency, and they might contribute substantially to Sorafenib resistance in HCC treatment. Deletion of CHD1L also decreased the binding of PARP1 and active histone marker H3K4me3 at promoters of pluripotent transcriptional factors (Additional file 7: Fig. S4J). A dose-dependent decrease of pluripotent transcriptional factors was observed after Olaparib treatment (Fig. 2f). The inhibitory effects were further confirmed at protein level in a dose- and time- dependent manner (Fig. 2g, h and Additional file 8: Fig. S5A). Immunohistochemical staining (IHC) also confirmed the inhibition of pluripotency transcriptional factors in xenograft tumors after Olaparib treatment (Additional file 8: Fig. S5B).

Olaparib might repress the key pluripotent transcriptional factors and DNA damage repair genes through condensation of chromatin structure

The open chromatin architecture could present more nucleosome-free promoter region, which was in turn readily digested by micrococcal nuclease (MNase). Inhibition of PARP1 by Olaparib could reverse such process, and thus exhibited a “protection” effect, leading to reduced digestion and consequently more uncut DNA retained for qPCR detection. After MNase treatment, the number of uncut DNA fragments near the promoter region of target genes were determined by qPCR in cells with or without Olaparib exposure (Fig. 2i). The tumor cells were also treated with different concentrations of MNase to monitor the dynamic chromatin structure change and sensitivity to MNase digestion. The results indicated that PARP1 could sustain the open chromatin structure for SOX2, OCT4, c-MYC. Pharmaceutical interruption of PARP1 by Olaparib could reverse the process and might account for its role in suppressing the DNA damage repair genes, as well as the whole HCC pluripotent transcriptome (Fig. 2j, k, Additional file 8: Fig. S5C).
In conclusion, we found Sorafenib treatment could retain resistant tumor cells characterized with elevated cancer stemness and activation of DNA damage repair signaling. PARP1, which is highly activated in embryonic stem cells and Sorafenib resistant cancer cells, might be responsible for the active transcription of the pluripotent transcriptional factors and DNA damage repair signaling through maintaining an “open chromatin” structure. PARP inhibitor Olaparib extensively suppressed the pluripotent transcriptome through condensation of the chromatin structure and might greatly reinforce Sorafenib in eliminating HCC further in the clinic (Fig. 2l).

Grant support

This work was supported by National Natural Science Foundation of China (81702400), National Basic Research Program of China (2012CB967001), Hong Kong Research Grant Council (RGC) General Research Fund (767313), Collaborative Research Funds (C7026-18G and C6002-17G), Theme-based Research Scheme Fund (T12–403/11), NSFC-RGC Joint Research Scheme (N_HKUST606/17). Shenzhen Peacock Team Project (KQTD2015033117210153). Guangzhou Key medical discipline construction project fund. Guangzhou Key medical discipline construction project fund. Guangdong Province Pear River Young Talents Scheme (20170026). Guangdong Province Universities and Colleges Pear River Scholar Funded Scheme (2018). Guangdong Natural Science Foundation (2019A1515011787). Guangdong Educational Commission Major Project for Basic Research (2017KZDXM069). The Sixth Affiliated Hospital of Guangzhou Medical University Open Project Fund (202011–109). Professor XY Guan is Sophie YM Chan Professor in Cancer Research.
All the animal experiments were approved by the review board of the University of Hong Kong. Studies using human tissues were reviewed and approved by the Committees for Ethical Review of Research involving Human Subjects of Sun Yat-Sen University and University of Hong Kong. The studies were conducted in accordance with International Ethical Guidelines for Biomedical Research Involving Human Subjects (CIOMS). All patients gave written informed consent for the use of their clinical specimens for medical research.
Written informed consent for publication was obtained from the patients. All authors have agreed to publish this manuscript.

Competing interests

The authors declare no competing financial interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat El-Serag HB. Hepatocellular carcinoma. N Engl J Med. 2011;365:1118–27.CrossRef El-Serag HB. Hepatocellular carcinoma. N Engl J Med. 2011;365:1118–27.CrossRef
2.
Zurück zum Zitat Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.CrossRef Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.CrossRef
3.
Zurück zum Zitat Bruix J, Qin S, Merle P, Granito A, Huang YH, Bodoky G, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on Sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;389:56–66.CrossRef Bruix J, Qin S, Merle P, Granito A, Huang YH, Bodoky G, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on Sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;389:56–66.CrossRef
4.
Zurück zum Zitat Tirosh I, Venteicher AS, Hebert C, Escalante LE, Patel AP, Yizhak K, et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature. 2016;10(539):309–13.CrossRef Tirosh I, Venteicher AS, Hebert C, Escalante LE, Patel AP, Yizhak K, et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature. 2016;10(539):309–13.CrossRef
5.
Zurück zum Zitat Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet. 2008;40:499–507.CrossRef Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet. 2008;40:499–507.CrossRef
6.
Zurück zum Zitat Liu M, Yan Q, Sun Y, Nam Y, Hu L, Loong JH, et al. A hepatocyte differentiation model reveals two subtypes of liver cancer with different oncofetal properties and therapeutic targets. Proc Natl Acad Sci U S A. 2020;117:6103–13.CrossRef Liu M, Yan Q, Sun Y, Nam Y, Hu L, Loong JH, et al. A hepatocyte differentiation model reveals two subtypes of liver cancer with different oncofetal properties and therapeutic targets. Proc Natl Acad Sci U S A. 2020;117:6103–13.CrossRef
7.
Zurück zum Zitat Curtin NJ, Szabo C. Poly(ADP-ribose) polymerase inhibition: past, present and future. Nat Rev Drug Discov. 2020;19:711–36.CrossRef Curtin NJ, Szabo C. Poly(ADP-ribose) polymerase inhibition: past, present and future. Nat Rev Drug Discov. 2020;19:711–36.CrossRef
8.
Zurück zum Zitat Jiang BH, Chen WY, Li HY, Chien Y, Chang WC, Hsieh PC, et al. CHD1L regulated PARP1-driven Pluripotency and chromatin remodeling during the early-stage chromatin remodeling during the early-stage cell reprogramming. Stem Cells. 2015;33:2961–72.CrossRef Jiang BH, Chen WY, Li HY, Chien Y, Chang WC, Hsieh PC, et al. CHD1L regulated PARP1-driven Pluripotency and chromatin remodeling during the early-stage chromatin remodeling during the early-stage cell reprogramming. Stem Cells. 2015;33:2961–72.CrossRef
9.
Zurück zum Zitat Ma NF, Hu L, Fung JM, Xie D, Zheng BJ, Chen L, et al. Isolation and characterization of a novel oncogene, amplified in liver cancer 1, within a commonly amplified region at 1q21 in hepatocellular carcinoma. Hepatology. 2008;47:503–10.CrossRef Ma NF, Hu L, Fung JM, Xie D, Zheng BJ, Chen L, et al. Isolation and characterization of a novel oncogene, amplified in liver cancer 1, within a commonly amplified region at 1q21 in hepatocellular carcinoma. Hepatology. 2008;47:503–10.CrossRef
10.
Zurück zum Zitat Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, et al. Inhibition of poly (ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361:123–34.CrossRef Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, et al. Inhibition of poly (ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361:123–34.CrossRef
Metadaten
Titel
PARP inhibitor Olaparib overcomes Sorafenib resistance through reshaping the pluripotent transcriptome in hepatocellular carcinoma
verfasst von
Xiao-Dong Yang
Fan-En Kong
Ling Qi
Jia-Xin Lin
Qian Yan
Jane Ho Chun Loong
Shao-Yan Xi
Yue Zhao
Yan Zhang
Yun-Fei Yuan
Ning-Fang Ma
Stephanie Ma
Xin-Yuan Guan
Ming Liu
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
Molecular Cancer / Ausgabe 1/2021
Elektronische ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-021-01315-9

Weitere Artikel der Ausgabe 1/2021

Molecular Cancer 1/2021 Zur Ausgabe

NSCLC: Progressionsfreies Überleben unter Osimertinib fast versiebenfacht

06.06.2024 ASCO 2024 Kongressbericht

Erste Ergebnisse der Phase-III-Studie LAURA etablieren Osimertinib als neuen Therapiestandard für Menschen mit nicht-resezierbarem, EGFR-mutiertem, nicht-kleinzelligem Lungenkarzinom im Stadium III, die nach definitiver Radiochemotherapie progressionsfrei sind. Auf der ASCO-Tagung wurden diese beeindruckenden Ergebnisse besprochen.

Hodgkin Lymphom: BrECADD-Regime übertrifft die Erwartungen

05.06.2024 ASCO 2024 Kongressbericht

Das Kombinationsregime BrECADD mit Brentuximab vedotin ermöglichte in der Studie HD21 beim fortgeschrittenen klassischen Hodgkin-Lymphom eine unerwartet hohe progressionsfreie Überlebensrate von 94,3% nach vier Jahren. Gleichzeitig war das Regime besser tolerabel als der bisherige Standard eBEACOPP.

Antikörper-Drug-Konjugat verdoppelt PFS bei Multiplem Myelom

05.06.2024 ASCO 2024 Nachrichten

Zwei Phase-3-Studien deuten auf erhebliche Vorteile des Antikörper-Wirkstoff-Konjugats Belantamab-Mafodotin bei vorbehandelten Personen mit Multiplem Myelom: Im Vergleich mit einer Standard-Tripeltherapie wurde das progressionsfreie Überleben teilweise mehr als verdoppelt.

Neuer TKI gegen CML: Höhere Wirksamkeit, seltener Nebenwirkungen

05.06.2024 Chronische myeloische Leukämie Nachrichten

Der Tyrosinkinasehemmer (TKI) Asciminib ist älteren Vertretern dieser Gruppe bei CML offenbar überlegen: Personen mit frisch diagnostizierter CML entwickelten damit in einer Phase-3-Studie häufiger eine gute molekulare Response, aber seltener ernste Nebenwirkungen.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.