Skip to main content
Erschienen in: Clinical Pharmacokinetics 11/2016

22.04.2016 | Review Article

Pharmacokinetic Drug Interactions with Tobacco, Cannabinoids and Smoking Cessation Products

verfasst von: Gail D. Anderson, Lingtak-Neander Chan

Erschienen in: Clinical Pharmacokinetics | Ausgabe 11/2016

Einloggen, um Zugang zu erhalten

Abstract

Tobacco smoke contains a large number of compounds in the form of metals, volatile gases and insoluble particles, as well as nicotine, a highly addictive alkaloid. Marijuana is the most widely used illicit drug of abuse in the world, with a significant increase in the USA due to the increasing number of states that allow medical and recreational use. Of the over 70 phytocannabinoids in marijuana, Δ9-tetrahydrocannabinol (Δ9THC), cannabidiol (CBD) and cannibinol are the three main constituents. Both marijuana and tobacco smoking induce cytochrome P450 (CYP) 1A2 through activation of the aromatic hydrocarbon receptor, and the induction effect between the two products is additive. Smoking cessation is associated with rapid downregulation of CYP1A enzymes. On the basis of the estimated half-life of CYP1A2, dose reduction of CYP1A drugs may be necessary as early as the first few days after smoking cessation to prevent toxicity, especially for drugs with a narrow therapeutic index. Nicotine is a substrate of CYP2A6, which is induced by oestrogen, resulting in lower concentrations of nicotine in females than in males, especially in females taking oral contraceptives. The significant effects of CYP3A4 inducers and inhibitors on the pharmacokinetics of Δ9THC/CBD oromucosal spray suggest that CYP3A4 is the primary enzyme responsible for the metabolism of Δ9THC and CBD. Limited data also suggest that CBD may significantly inhibit CYP2C19. With the increasing use of marijuana and cannabis products, clinical studies are needed in order to determine the effects of other drugs on pharmacokinetics and pharmacodynamics.
Literatur
2.
Zurück zum Zitat Centers for Disease Control and Prevention. Current cigarette smoking among adults—United States, 2005–2013. Morb Mortal Wkly Rep. 2014;63(47):1108–12. Centers for Disease Control and Prevention. Current cigarette smoking among adults—United States, 2005–2013. Morb Mortal Wkly Rep. 2014;63(47):1108–12.
3.
Zurück zum Zitat Hasin DS, Saha TD, Kerridge BT, et al. Prevalence of marijuana use disorders in the United States between 2001–2002 and 2012–2013. JAMA Psychiatry. 2015;72(12):1235–42.PubMedCrossRef Hasin DS, Saha TD, Kerridge BT, et al. Prevalence of marijuana use disorders in the United States between 2001–2002 and 2012–2013. JAMA Psychiatry. 2015;72(12):1235–42.PubMedCrossRef
5.
Zurück zum Zitat Hermann PC, Sancho P, Canamero M, et al. Nicotine promotes initiation and progression of KRAS-induced pancreatic cancer via Gata6-dependent dedifferentiation of acinar cells in mice. Gastroenterology. 2014;147(5):1119–33 e4.PubMedCrossRef Hermann PC, Sancho P, Canamero M, et al. Nicotine promotes initiation and progression of KRAS-induced pancreatic cancer via Gata6-dependent dedifferentiation of acinar cells in mice. Gastroenterology. 2014;147(5):1119–33 e4.PubMedCrossRef
6.
Zurück zum Zitat Al-Wadei MH, Al-Wadei HA, Schuller HM. Pancreatic cancer cells and normal pancreatic duct epithelial cells express an autocrine catecholamine loop that is activated by nicotinic acetylcholine receptors alpha3, alpha5, and alpha7. Mol Cancer Res. 2012;10(2):239–49.PubMedCrossRef Al-Wadei MH, Al-Wadei HA, Schuller HM. Pancreatic cancer cells and normal pancreatic duct epithelial cells express an autocrine catecholamine loop that is activated by nicotinic acetylcholine receptors alpha3, alpha5, and alpha7. Mol Cancer Res. 2012;10(2):239–49.PubMedCrossRef
7.
Zurück zum Zitat Lien YC, Wang W, Kuo LJ, et al. Nicotine promotes cell migration through alpha7 nicotinic acetylcholine receptor in gastric cancer cells. Ann Surg Oncol. 2011;18(9):2671–9.PubMedCrossRef Lien YC, Wang W, Kuo LJ, et al. Nicotine promotes cell migration through alpha7 nicotinic acetylcholine receptor in gastric cancer cells. Ann Surg Oncol. 2011;18(9):2671–9.PubMedCrossRef
8.
Zurück zum Zitat Sesardic D, Boobis AR, Edwards RJ, et al. A form of cytochrome P450 in man, orthologous to form D in the rat, catalyses the O-deethylation of phenacetin and is inducible by cigarette smoking. Br J Clin Pharmacol. 1988;26(4):363–72.PubMedPubMedCentralCrossRef Sesardic D, Boobis AR, Edwards RJ, et al. A form of cytochrome P450 in man, orthologous to form D in the rat, catalyses the O-deethylation of phenacetin and is inducible by cigarette smoking. Br J Clin Pharmacol. 1988;26(4):363–72.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Buchthal J, Grund KE, Buchmann A, et al. Induction of cytochrome P4501A by smoking or omeprazole in comparison with UDP-glucuronosyltransferase in biopsies of human duodenal mucosa. Eur J Clin Pharmacol. 1995;47(5):431–5.PubMedCrossRef Buchthal J, Grund KE, Buchmann A, et al. Induction of cytochrome P4501A by smoking or omeprazole in comparison with UDP-glucuronosyltransferase in biopsies of human duodenal mucosa. Eur J Clin Pharmacol. 1995;47(5):431–5.PubMedCrossRef
10.
Zurück zum Zitat Smith GB, Harper PA, Wong JM, et al. Human lung microsomal cytochrome P4501A1 (CYP1A1) activities: impact of smoking status and CYP1A1, aryl hydrocarbon receptor, and glutathione S-transferase M1 genetic polymorphisms. Cancer Epidemiol Biomark Prev. 2001;10(8):839–53. Smith GB, Harper PA, Wong JM, et al. Human lung microsomal cytochrome P4501A1 (CYP1A1) activities: impact of smoking status and CYP1A1, aryl hydrocarbon receptor, and glutathione S-transferase M1 genetic polymorphisms. Cancer Epidemiol Biomark Prev. 2001;10(8):839–53.
11.
Zurück zum Zitat Benowitz NL, Peng M, Jacob P 3rd. Effects of cigarette smoking and carbon monoxide on chlorzoxazone and caffeine metabolism. Clin Pharmacol Ther. 2003;74(5):468–74.PubMedCrossRef Benowitz NL, Peng M, Jacob P 3rd. Effects of cigarette smoking and carbon monoxide on chlorzoxazone and caffeine metabolism. Clin Pharmacol Ther. 2003;74(5):468–74.PubMedCrossRef
12.
Zurück zum Zitat Jimenez-Garza O, Baccarelli AA, Byun HM, et al. CYP2E1 epigenetic regulation in chronic, low-level toluene exposure: relationship with oxidative stress and smoking habit. Toxicol Appl Pharmacol. 2015;286(3):207–15.PubMedCrossRef Jimenez-Garza O, Baccarelli AA, Byun HM, et al. CYP2E1 epigenetic regulation in chronic, low-level toluene exposure: relationship with oxidative stress and smoking habit. Toxicol Appl Pharmacol. 2015;286(3):207–15.PubMedCrossRef
13.
Zurück zum Zitat Czekaj P, Wiaderkiewicz A, Florek E, et al. Tobacco smoke-dependent changes in cytochrome P450 1A1, 1A2, and 2E1 protein expressions in fetuses, newborns, pregnant rats, and human placenta. Arch Toxicol. 2005;79(1):13–24.PubMedCrossRef Czekaj P, Wiaderkiewicz A, Florek E, et al. Tobacco smoke-dependent changes in cytochrome P450 1A1, 1A2, and 2E1 protein expressions in fetuses, newborns, pregnant rats, and human placenta. Arch Toxicol. 2005;79(1):13–24.PubMedCrossRef
14.
Zurück zum Zitat Denton TT, Zhang X, Cashman JR. Nicotine-related alkaloids and metabolites as inhibitors of human cytochrome P-450 2A6. Biochem Pharmacol. 2004;67(4):751–6.PubMedCrossRef Denton TT, Zhang X, Cashman JR. Nicotine-related alkaloids and metabolites as inhibitors of human cytochrome P-450 2A6. Biochem Pharmacol. 2004;67(4):751–6.PubMedCrossRef
15.
16.
Zurück zum Zitat Elsherbiny ME, Brocks DR. The ability of polycyclic aromatic hydrocarbons to alter physiological factors underlying drug disposition. Drug Metab Rev. 2011;43(4):457–75.PubMedCrossRef Elsherbiny ME, Brocks DR. The ability of polycyclic aromatic hydrocarbons to alter physiological factors underlying drug disposition. Drug Metab Rev. 2011;43(4):457–75.PubMedCrossRef
17.
Zurück zum Zitat Ding X, Kaminsky LS. Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu Rev Pharmacol Toxicol. 2003;43:149–73.PubMedCrossRef Ding X, Kaminsky LS. Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu Rev Pharmacol Toxicol. 2003;43:149–73.PubMedCrossRef
18.
Zurück zum Zitat Monostory K, Pascussi JM, Kobori L, et al. Hormonal regulation of CYP1A expression. Drug Metab Rev. 2009;41(4):547–72.PubMedCrossRef Monostory K, Pascussi JM, Kobori L, et al. Hormonal regulation of CYP1A expression. Drug Metab Rev. 2009;41(4):547–72.PubMedCrossRef
19.
Zurück zum Zitat Zhou SF, Chan E, Zhou ZW, et al. Insights into the structure, function, and regulation of human cytochrome P450 1A2. Curr Drug Metab. 2009;10(7):713–29.PubMedCrossRef Zhou SF, Chan E, Zhou ZW, et al. Insights into the structure, function, and regulation of human cytochrome P450 1A2. Curr Drug Metab. 2009;10(7):713–29.PubMedCrossRef
20.
Zurück zum Zitat Dolwick KM, Schmidt JV, Carver LA, et al. Cloning and expression of a human Ah receptor cDNA. Mol Pharmacol. 1993;44(5):911–7.PubMed Dolwick KM, Schmidt JV, Carver LA, et al. Cloning and expression of a human Ah receptor cDNA. Mol Pharmacol. 1993;44(5):911–7.PubMed
21.
Zurück zum Zitat Zhou SF, Wang B, Yang LP, et al. Structure, function, regulation and polymorphism and the clinical significance of human cytochrome P450 1A2. Drug Metab Rev. 2010;42(2):268–354.PubMedCrossRef Zhou SF, Wang B, Yang LP, et al. Structure, function, regulation and polymorphism and the clinical significance of human cytochrome P450 1A2. Drug Metab Rev. 2010;42(2):268–354.PubMedCrossRef
22.
Zurück zum Zitat Schmeltz I, Hoffmann D. Nitrogen containing compounds in tobacco and tobacco smoke. Chem Rev. 1977;77(3):295–311.CrossRef Schmeltz I, Hoffmann D. Nitrogen containing compounds in tobacco and tobacco smoke. Chem Rev. 1977;77(3):295–311.CrossRef
23.
Zurück zum Zitat Saitoh F, Noma M, Kawashima N. The alkaloid contents of sixty Nicotiana species. Phytochemistry. 1985;24(3):477–80.CrossRef Saitoh F, Noma M, Kawashima N. The alkaloid contents of sixty Nicotiana species. Phytochemistry. 1985;24(3):477–80.CrossRef
24.
Zurück zum Zitat Pankow JF, Tavakoli AD, Luo W, et al. Percent free base nicotine in the tobacco smoke particulate matter of selected commercial and reference cigarettes. Chem Res Toxicol. 2003;16(8):1014–8.PubMedCrossRef Pankow JF, Tavakoli AD, Luo W, et al. Percent free base nicotine in the tobacco smoke particulate matter of selected commercial and reference cigarettes. Chem Res Toxicol. 2003;16(8):1014–8.PubMedCrossRef
25.
Zurück zum Zitat Hukkanen J, Jacob P 3rd, Benowitz NL. Metabolism and disposition kinetics of nicotine. Pharmacol Rev. 2005;57(1):79–115.PubMedCrossRef Hukkanen J, Jacob P 3rd, Benowitz NL. Metabolism and disposition kinetics of nicotine. Pharmacol Rev. 2005;57(1):79–115.PubMedCrossRef
26.
Zurück zum Zitat Benowitz NL. Clinical pharmacology of nicotine: implications for understanding, preventing, and treating tobacco addiction. Clin Pharmacol Ther. 2008;83(4):531–41.PubMedCrossRef Benowitz NL. Clinical pharmacology of nicotine: implications for understanding, preventing, and treating tobacco addiction. Clin Pharmacol Ther. 2008;83(4):531–41.PubMedCrossRef
27.
Zurück zum Zitat Kuehl GE, Murphy SE. N-Glucuronidation of nicotine and cotinine by human liver microsomes and heterologously expressed UDP-glucuronosyltransferases. Drug Metab Dispos. 2003;31(11):1361–8.PubMedCrossRef Kuehl GE, Murphy SE. N-Glucuronidation of nicotine and cotinine by human liver microsomes and heterologously expressed UDP-glucuronosyltransferases. Drug Metab Dispos. 2003;31(11):1361–8.PubMedCrossRef
28.
Zurück zum Zitat Xu X, Iba MM, Weisel CP. Simultaneous and sensitive measurement of anabasine, nicotine, and nicotine metabolites in human urine by liquid chromatography–tandem mass spectrometry. Clin Chem. 2004;50(12):2323–30.PubMedCrossRef Xu X, Iba MM, Weisel CP. Simultaneous and sensitive measurement of anabasine, nicotine, and nicotine metabolites in human urine by liquid chromatography–tandem mass spectrometry. Clin Chem. 2004;50(12):2323–30.PubMedCrossRef
29.
Zurück zum Zitat Chen G, Giambrone NE, Lazarus P. Glucuronidation of trans-3′-hydroxycotinine by UGT2B17 and UGT2B10. Pharmacogenet Genomics. 2012;22(3):183–90.PubMedPubMedCentralCrossRef Chen G, Giambrone NE, Lazarus P. Glucuronidation of trans-3′-hydroxycotinine by UGT2B17 and UGT2B10. Pharmacogenet Genomics. 2012;22(3):183–90.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Zhu AZ, Zhou Q, Cox LS, et al. Variation in trans-3′-hydroxycotinine glucuronidation does not alter the nicotine metabolite ratio or nicotine intake. PLoS One. 2013;8(8):e70938.PubMedPubMedCentralCrossRef Zhu AZ, Zhou Q, Cox LS, et al. Variation in trans-3′-hydroxycotinine glucuronidation does not alter the nicotine metabolite ratio or nicotine intake. PLoS One. 2013;8(8):e70938.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Di YM, Chow VD, Yang LP, et al. Structure, function, regulation and polymorphism of human cytochrome P450 2A6. Curr Drug Metab. 2009;10(7):754–80.PubMedCrossRef Di YM, Chow VD, Yang LP, et al. Structure, function, regulation and polymorphism of human cytochrome P450 2A6. Curr Drug Metab. 2009;10(7):754–80.PubMedCrossRef
33.
Zurück zum Zitat Kwara A, Lartey M, Sagoe KW, et al. CYP2B6, CYP2A6 and UGT2B7 genetic polymorphisms are predictors of efavirenz mid-dose concentration in HIV-infected patients. AIDS. 2009;23(16):2101–6.PubMedPubMedCentralCrossRef Kwara A, Lartey M, Sagoe KW, et al. CYP2B6, CYP2A6 and UGT2B7 genetic polymorphisms are predictors of efavirenz mid-dose concentration in HIV-infected patients. AIDS. 2009;23(16):2101–6.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Siu EC, Tyndale RF. Selegiline is a mechanism-based inactivator of CYP2A6 inhibiting nicotine metabolism in humans and mice. J Pharmacol Exp Ther. 2008;324(3):992–9.PubMedCrossRef Siu EC, Tyndale RF. Selegiline is a mechanism-based inactivator of CYP2A6 inhibiting nicotine metabolism in humans and mice. J Pharmacol Exp Ther. 2008;324(3):992–9.PubMedCrossRef
35.
Zurück zum Zitat Weinberger AH, Reutenauer EL, Jatlow PI, et al. A double-blind, placebo-controlled, randomized clinical trial of oral selegiline hydrochloride for smoking cessation in nicotine-dependent cigarette smokers. Drug Alcohol Depend. 2010;107(2–3):188–95.PubMedCrossRef Weinberger AH, Reutenauer EL, Jatlow PI, et al. A double-blind, placebo-controlled, randomized clinical trial of oral selegiline hydrochloride for smoking cessation in nicotine-dependent cigarette smokers. Drug Alcohol Depend. 2010;107(2–3):188–95.PubMedCrossRef
36.
Zurück zum Zitat Kahn R, Gorgon L, Jones K, et al. Selegiline transdermal system (STS) as an aid for smoking cessation. Nicotine Tob Res. 2012;14(3):377–82.PubMedCrossRef Kahn R, Gorgon L, Jones K, et al. Selegiline transdermal system (STS) as an aid for smoking cessation. Nicotine Tob Res. 2012;14(3):377–82.PubMedCrossRef
37.
Zurück zum Zitat Zevin S, Benowitz NL. Drug interactions with tobacco smoking: an update. Clin Pharmacokinet. 1999;36(6):425–38.PubMedCrossRef Zevin S, Benowitz NL. Drug interactions with tobacco smoking: an update. Clin Pharmacokinet. 1999;36(6):425–38.PubMedCrossRef
38.
Zurück zum Zitat Facciola G, Hidestrand M, von Bahr C, et al. Cytochrome P450 isoforms involved in melatonin metabolism in human liver microsomes. Eur J Clin Pharmacol. 2001;56(12):881–8.PubMedCrossRef Facciola G, Hidestrand M, von Bahr C, et al. Cytochrome P450 isoforms involved in melatonin metabolism in human liver microsomes. Eur J Clin Pharmacol. 2001;56(12):881–8.PubMedCrossRef
39.
Zurück zum Zitat Hartter S, Nordmark A, Rose DM, et al. Effects of caffeine intake on the pharmacokinetics of melatonin, a probe drug for CYP1A2 activity. Br J Clin Pharmacol. 2003;56(6):679–82.PubMedPubMedCentralCrossRef Hartter S, Nordmark A, Rose DM, et al. Effects of caffeine intake on the pharmacokinetics of melatonin, a probe drug for CYP1A2 activity. Br J Clin Pharmacol. 2003;56(6):679–82.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Ursing C, von Bahr C, Brismar K, et al. Influence of cigarette smoking on melatonin levels in man. Eur J Clin Pharmacol. 2005;61(3):197–201.PubMedCrossRef Ursing C, von Bahr C, Brismar K, et al. Influence of cigarette smoking on melatonin levels in man. Eur J Clin Pharmacol. 2005;61(3):197–201.PubMedCrossRef
41.
Zurück zum Zitat Stormer E, von Moltke LL, Shader RI, et al. Metabolism of the antidepressant mirtazapine in vitro: contribution of cytochromes P-450 1A2, 2D6, and 3A4. Drug Metab Dispos. 2000;28(10):1168–75.PubMed Stormer E, von Moltke LL, Shader RI, et al. Metabolism of the antidepressant mirtazapine in vitro: contribution of cytochromes P-450 1A2, 2D6, and 3A4. Drug Metab Dispos. 2000;28(10):1168–75.PubMed
42.
Zurück zum Zitat Lind AB, Reis M, Bengtsson F, et al. Steady-state concentrations of mirtazapine, N-desmethylmirtazapine, 8-hydroxymirtazapine and their enantiomers in relation to cytochrome P450 2D6 genotype, age and smoking behaviour. Clin Pharmacokinet. 2009;48(1):63–70.PubMedCrossRef Lind AB, Reis M, Bengtsson F, et al. Steady-state concentrations of mirtazapine, N-desmethylmirtazapine, 8-hydroxymirtazapine and their enantiomers in relation to cytochrome P450 2D6 genotype, age and smoking behaviour. Clin Pharmacokinet. 2009;48(1):63–70.PubMedCrossRef
43.
Zurück zum Zitat Jaquenoud Sirot E, Harenberg S, Vandel P, et al. Multicenter study on the clinical effectiveness, pharmacokinetics, and pharmacogenetics of mirtazapine in depression. J Clin Psychopharmacol. 2012;32(5):622–9.PubMedCrossRef Jaquenoud Sirot E, Harenberg S, Vandel P, et al. Multicenter study on the clinical effectiveness, pharmacokinetics, and pharmacogenetics of mirtazapine in depression. J Clin Psychopharmacol. 2012;32(5):622–9.PubMedCrossRef
44.
Zurück zum Zitat Hayashi Y, Watanabe T, Aoki A, et al. Factors affecting steady-state plasma concentrations of enantiomeric mirtazapine and its desmethylated metabolites in Japanese psychiatric patients. Pharmacopsychiatry. 2015;48(7):279–85.PubMedCrossRef Hayashi Y, Watanabe T, Aoki A, et al. Factors affecting steady-state plasma concentrations of enantiomeric mirtazapine and its desmethylated metabolites in Japanese psychiatric patients. Pharmacopsychiatry. 2015;48(7):279–85.PubMedCrossRef
45.
Zurück zum Zitat Backman JT, Schroder MT, Neuvonen PJ. Effects of gender and moderate smoking on the pharmacokinetics and effects of the CYP1A2 substrate tizanidine. Eur J Clin Pharmacol. 2008;64(1):17–24.PubMedCrossRef Backman JT, Schroder MT, Neuvonen PJ. Effects of gender and moderate smoking on the pharmacokinetics and effects of the CYP1A2 substrate tizanidine. Eur J Clin Pharmacol. 2008;64(1):17–24.PubMedCrossRef
46.
Zurück zum Zitat Granfors MT, Backman JT, Laitila J, et al. Tizanidine is mainly metabolized by cytochrome p450 1A2 in vitro. Br J Clin Pharmacol. 2004;57(3):349–53.PubMedPubMedCentralCrossRef Granfors MT, Backman JT, Laitila J, et al. Tizanidine is mainly metabolized by cytochrome p450 1A2 in vitro. Br J Clin Pharmacol. 2004;57(3):349–53.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Obach RS, Ryder TF. Metabolism of ramelteon in human liver microsomes and correlation with the effect of fluvoxamine on ramelteon pharmacokinetics. Drug Metab Dispos. 2010;38(8):1381–91.PubMedCrossRef Obach RS, Ryder TF. Metabolism of ramelteon in human liver microsomes and correlation with the effect of fluvoxamine on ramelteon pharmacokinetics. Drug Metab Dispos. 2010;38(8):1381–91.PubMedCrossRef
48.
Zurück zum Zitat Lecht S, Haroutiunian S, Hoffman A, et al. Rasagiline—a novel MAO B inhibitor in Parkinson’s disease therapy. Ther Clin Risk Manag. 2007;3(3):467–74.PubMedPubMedCentral Lecht S, Haroutiunian S, Hoffman A, et al. Rasagiline—a novel MAO B inhibitor in Parkinson’s disease therapy. Ther Clin Risk Manag. 2007;3(3):467–74.PubMedPubMedCentral
49.
Zurück zum Zitat Kazui M, Nishiya Y, Ishizuka T, et al. Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metab Dispos. 2010;38(1):92–9.PubMedCrossRef Kazui M, Nishiya Y, Ishizuka T, et al. Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metab Dispos. 2010;38(1):92–9.PubMedCrossRef
50.
Zurück zum Zitat Gurbel PA, Nolin TD, Tantry US. Clopidogrel efficacy and cigarette smoking status. JAMA. 2012;307(23):2495–6.PubMedCrossRef Gurbel PA, Nolin TD, Tantry US. Clopidogrel efficacy and cigarette smoking status. JAMA. 2012;307(23):2495–6.PubMedCrossRef
51.
Zurück zum Zitat Yousef AM, Arafat T, Bulatova NR, et al. Smoking behaviour modulates pharmacokinetics of orally administered clopidogrel. J Clin Pharm Ther. 2008;33(4):439–49.PubMedCrossRef Yousef AM, Arafat T, Bulatova NR, et al. Smoking behaviour modulates pharmacokinetics of orally administered clopidogrel. J Clin Pharm Ther. 2008;33(4):439–49.PubMedCrossRef
52.
Zurück zum Zitat Gurbel PA, Bliden KP, Logan DK, et al. The influence of smoking status on the pharmacokinetics and pharmacodynamics of clopidogrel and prasugrel: the PARADOX study. J Am Coll Cardiol. 2013;62(6):505–12.PubMedCrossRef Gurbel PA, Bliden KP, Logan DK, et al. The influence of smoking status on the pharmacokinetics and pharmacodynamics of clopidogrel and prasugrel: the PARADOX study. J Am Coll Cardiol. 2013;62(6):505–12.PubMedCrossRef
53.
54.
Zurück zum Zitat Kyaw WT, Nagai M, Kaneta M, et al. Effect of nicotine on the pharmacokinetics of levodopa. Clin Neuropharmacol. 2013;36(2):46–51.PubMedCrossRef Kyaw WT, Nagai M, Kaneta M, et al. Effect of nicotine on the pharmacokinetics of levodopa. Clin Neuropharmacol. 2013;36(2):46–51.PubMedCrossRef
55.
Zurück zum Zitat Faber MS, Fuhr U. Time response of cytochrome P450 1A2 activity on cessation of heavy smoking. Clin Pharmacol Ther. 2004;76(2):178–84.PubMedCrossRef Faber MS, Fuhr U. Time response of cytochrome P450 1A2 activity on cessation of heavy smoking. Clin Pharmacol Ther. 2004;76(2):178–84.PubMedCrossRef
56.
Zurück zum Zitat Bondolfi G, Morel F, Crettol S, et al. Increased clozapine plasma concentrations and side effects induced by smoking cessation in 2 CYP1A2 genotyped patients. Ther Drug Monit. 2005;27(4):539–43.PubMedCrossRef Bondolfi G, Morel F, Crettol S, et al. Increased clozapine plasma concentrations and side effects induced by smoking cessation in 2 CYP1A2 genotyped patients. Ther Drug Monit. 2005;27(4):539–43.PubMedCrossRef
57.
Zurück zum Zitat Zullino DF, Delessert D, Eap CB, et al. Tobacco and cannabis smoking cessation can lead to intoxication with clozapine or olanzapine. Int Clin Psychopharmacol. 2002;17(3):141–3.PubMedCrossRef Zullino DF, Delessert D, Eap CB, et al. Tobacco and cannabis smoking cessation can lead to intoxication with clozapine or olanzapine. Int Clin Psychopharmacol. 2002;17(3):141–3.PubMedCrossRef
58.
Zurück zum Zitat Juergens TM. Adverse effects of ropinirole-treated restless leg syndrome (RLS) during smoking cessation. J Clin Sleep Med. 2008;4(4):371–2.PubMedPubMedCentral Juergens TM. Adverse effects of ropinirole-treated restless leg syndrome (RLS) during smoking cessation. J Clin Sleep Med. 2008;4(4):371–2.PubMedPubMedCentral
59.
Zurück zum Zitat Elkader AK, Brands B, Selby P, et al. Methadone-nicotine interactions in methadone maintenance treatment patients. J Clin Psychopharmacol. 2009;29(3):231–8.PubMedCrossRef Elkader AK, Brands B, Selby P, et al. Methadone-nicotine interactions in methadone maintenance treatment patients. J Clin Psychopharmacol. 2009;29(3):231–8.PubMedCrossRef
60.
Zurück zum Zitat Asimus S, Hai TN, Van Huong N, et al. Artemisinin and CYP2A6 activity in healthy subjects. Eur J Clin Pharmacol. 2008;64(3):283–92.PubMedCrossRef Asimus S, Hai TN, Van Huong N, et al. Artemisinin and CYP2A6 activity in healthy subjects. Eur J Clin Pharmacol. 2008;64(3):283–92.PubMedCrossRef
61.
Zurück zum Zitat Higashi E, Fukami T, Itoh M, et al. Human CYP2A6 is induced by estrogen via estrogen receptor. Drug Metab Dispos. 2007;35(10):1935–41.PubMedCrossRef Higashi E, Fukami T, Itoh M, et al. Human CYP2A6 is induced by estrogen via estrogen receptor. Drug Metab Dispos. 2007;35(10):1935–41.PubMedCrossRef
62.
Zurück zum Zitat Benowitz NL, Lessov-Schlaggar CN, Swan GE, et al. Female sex and oral contraceptive use accelerate nicotine metabolism. Clin Pharmacol Ther. 2006;79(5):480–8.PubMedCrossRef Benowitz NL, Lessov-Schlaggar CN, Swan GE, et al. Female sex and oral contraceptive use accelerate nicotine metabolism. Clin Pharmacol Ther. 2006;79(5):480–8.PubMedCrossRef
63.
Zurück zum Zitat Berlin I, Gasior MJ, Moolchan ET. Sex-based and hormonal contraception effects on the metabolism of nicotine among adolescent tobacco-dependent smokers. Nicotine Tob Res. 2007;9(4):493–8.PubMedCrossRef Berlin I, Gasior MJ, Moolchan ET. Sex-based and hormonal contraception effects on the metabolism of nicotine among adolescent tobacco-dependent smokers. Nicotine Tob Res. 2007;9(4):493–8.PubMedCrossRef
64.
Zurück zum Zitat Sinues B, Fanlo A, Mayayo E, et al. CYP2A6 activity in a healthy Spanish population: effect of age, sex, smoking, and oral contraceptives. Hum Exp Toxicol. 2008;27(5):367–72.PubMedCrossRef Sinues B, Fanlo A, Mayayo E, et al. CYP2A6 activity in a healthy Spanish population: effect of age, sex, smoking, and oral contraceptives. Hum Exp Toxicol. 2008;27(5):367–72.PubMedCrossRef
65.
Zurück zum Zitat Elsohly MA, Slade D. Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sci. 2005;78(5):539–48.PubMedCrossRef Elsohly MA, Slade D. Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sci. 2005;78(5):539–48.PubMedCrossRef
66.
Zurück zum Zitat Grotenhermen F. Pharmacokinetics and pharmacodynamics of cannabinoids. Clin Pharmacokinet. 2003;42(4):327–60.PubMedCrossRef Grotenhermen F. Pharmacokinetics and pharmacodynamics of cannabinoids. Clin Pharmacokinet. 2003;42(4):327–60.PubMedCrossRef
67.
Zurück zum Zitat Laprairie RB, Bagher AM, Kelly ME, et al. Cannabidiol is a negative allosteric modulator of the type 1 cannabinoid receptor. Br J Pharmacol. 2015;172(20):4790–805.PubMedPubMedCentralCrossRef Laprairie RB, Bagher AM, Kelly ME, et al. Cannabidiol is a negative allosteric modulator of the type 1 cannabinoid receptor. Br J Pharmacol. 2015;172(20):4790–805.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Thomas A, Baillie GL, Phillips AM, et al. Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro. Br J Pharmacol. 2007;150(5):613–23.PubMedPubMedCentralCrossRef Thomas A, Baillie GL, Phillips AM, et al. Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro. Br J Pharmacol. 2007;150(5):613–23.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Burstein S. Cannabidiol (CBD) and its analogs: a review of their effects on inflammation. Bioorg Med Chem. 2015;23(7):1377–85.PubMedCrossRef Burstein S. Cannabidiol (CBD) and its analogs: a review of their effects on inflammation. Bioorg Med Chem. 2015;23(7):1377–85.PubMedCrossRef
70.
Zurück zum Zitat Carrier EJ, Auchampach JA, Hillard CJ. Inhibition of an equilibrative nucleoside transporter by cannabidiol: a mechanism of cannabinoid immunosuppression. Proc Natl Acad Sci. 2006;103(20):7895–900.PubMedPubMedCentralCrossRef Carrier EJ, Auchampach JA, Hillard CJ. Inhibition of an equilibrative nucleoside transporter by cannabidiol: a mechanism of cannabinoid immunosuppression. Proc Natl Acad Sci. 2006;103(20):7895–900.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Ohlsson A, Lindgren JE, Wahlen A, et al. Plasma delta-9 tetrahydrocannabinol concentrations and clinical effects after oral and intravenous administration and smoking. Clin Pharmacol Ther. 1980;28(3):409–16.PubMedCrossRef Ohlsson A, Lindgren JE, Wahlen A, et al. Plasma delta-9 tetrahydrocannabinol concentrations and clinical effects after oral and intravenous administration and smoking. Clin Pharmacol Ther. 1980;28(3):409–16.PubMedCrossRef
72.
Zurück zum Zitat Bland TM, Haining RL, Tracy TS, et al. CYP2C-catalyzed delta9-tetrahydrocannabinol metabolism: kinetics, pharmacogenetics and interaction with phenytoin. Biochem Pharmacol. 2005;70(7):1096–103.PubMedCrossRef Bland TM, Haining RL, Tracy TS, et al. CYP2C-catalyzed delta9-tetrahydrocannabinol metabolism: kinetics, pharmacogenetics and interaction with phenytoin. Biochem Pharmacol. 2005;70(7):1096–103.PubMedCrossRef
73.
Zurück zum Zitat Watanabe K, Yamaori S, Funahashi T, et al. Cytochrome P450 enzymes involved in the metabolism of tetrahydrocannabinols and cannabinol by human hepatic microsomes. Life Sci. 2007;80(15):1415–9.PubMedCrossRef Watanabe K, Yamaori S, Funahashi T, et al. Cytochrome P450 enzymes involved in the metabolism of tetrahydrocannabinols and cannabinol by human hepatic microsomes. Life Sci. 2007;80(15):1415–9.PubMedCrossRef
74.
Zurück zum Zitat Hollister LE, Gillespie HK. Action of delta-9-tetrahydrocannabinol: an approach to the active metabolite hypothesis. Clin Pharmacol Ther. 1975;18(06):714–9.PubMedCrossRef Hollister LE, Gillespie HK. Action of delta-9-tetrahydrocannabinol: an approach to the active metabolite hypothesis. Clin Pharmacol Ther. 1975;18(06):714–9.PubMedCrossRef
75.
Zurück zum Zitat Sachse-Seeboth C, Pfeil J, Sehrt D, et al. Interindividual variation in the pharmacokinetics of Delta9-tetrahydrocannabinol as related to genetic polymorphisms in CYP2C9. Clin Pharmacol Ther. 2009;85(3):273–6.PubMedCrossRef Sachse-Seeboth C, Pfeil J, Sehrt D, et al. Interindividual variation in the pharmacokinetics of Delta9-tetrahydrocannabinol as related to genetic polymorphisms in CYP2C9. Clin Pharmacol Ther. 2009;85(3):273–6.PubMedCrossRef
76.
Zurück zum Zitat de Vries M, van Rijckevorsel DGM, Wilder-Smith OHG, von Goor H. Dronabinol and chronic pain: importance of mechanistic considerations. Expert Opin Pharmacother. 2014;15(11):1525-34.PubMedCrossRef de Vries M, van Rijckevorsel DGM, Wilder-Smith OHG, von Goor H. Dronabinol and chronic pain: importance of mechanistic considerations. Expert Opin Pharmacother. 2014;15(11):1525-34.PubMedCrossRef
77.
Zurück zum Zitat Jiang R, Yamaori S, Takeda S, et al. Identification of cytochrome P450 enzymes responsible for metabolism of cannabidiol by human liver microsomes. Life Sci. 2011;89(5–6):165–70.PubMedCrossRef Jiang R, Yamaori S, Takeda S, et al. Identification of cytochrome P450 enzymes responsible for metabolism of cannabidiol by human liver microsomes. Life Sci. 2011;89(5–6):165–70.PubMedCrossRef
78.
Zurück zum Zitat Hawksworth G, McArdle K. Metabolism and pharmacokinetics of cannabinoids. London: Pharmaceutical Press; 2004. Hawksworth G, McArdle K. Metabolism and pharmacokinetics of cannabinoids. London: Pharmaceutical Press; 2004.
79.
Zurück zum Zitat Consroe P, Kennedy K, Schram K. Assay of plasma cannabidiol by capillary gas chromatography/ion trap mass spectroscopy following high-dose repeated daily oral administration in humans. Pharmacol Biochem Behav. 1991;40(3):517–22.PubMedCrossRef Consroe P, Kennedy K, Schram K. Assay of plasma cannabidiol by capillary gas chromatography/ion trap mass spectroscopy following high-dose repeated daily oral administration in humans. Pharmacol Biochem Behav. 1991;40(3):517–22.PubMedCrossRef
80.
Zurück zum Zitat Agurell S, Carlsson S, Lindgren JE, et al. Interactions of delta 1-tetrahydrocannabinol with cannabinol and cannabidiol following oral administration in man: assay of cannabinol and cannabidiol by mass fragmentography. Experientia. 1981;37(10):1090–2.PubMedCrossRef Agurell S, Carlsson S, Lindgren JE, et al. Interactions of delta 1-tetrahydrocannabinol with cannabinol and cannabidiol following oral administration in man: assay of cannabinol and cannabidiol by mass fragmentography. Experientia. 1981;37(10):1090–2.PubMedCrossRef
81.
Zurück zum Zitat Stott CG, White L, Wright S, et al. A phase I study to assess the single and multiple dose pharmacokinetics of THC/CBD oromucosal spray. Eur J Clin Pharmacol. 2013;69(5):1135–47.PubMedCrossRef Stott CG, White L, Wright S, et al. A phase I study to assess the single and multiple dose pharmacokinetics of THC/CBD oromucosal spray. Eur J Clin Pharmacol. 2013;69(5):1135–47.PubMedCrossRef
82.
Zurück zum Zitat Stout SM, Cimino NM. Exogenous cannabinoids as substrates, inhibitors, and inducers of human drug metabolizing enzymes: a systematic review. Drug Metab Rev. 2014;46(1):86–95.PubMedCrossRef Stout SM, Cimino NM. Exogenous cannabinoids as substrates, inhibitors, and inducers of human drug metabolizing enzymes: a systematic review. Drug Metab Rev. 2014;46(1):86–95.PubMedCrossRef
83.
Zurück zum Zitat Roth MD, Marques-Magallanes JA, Yuan M, et al. Induction and regulation of the carcinogen-metabolizing enzyme CYP1A1 by marijuana smoke and delta (9)-tetrahydrocannabinol. Am J Respir Cell Mol Biol. 2001;24(3):339–44.PubMedCrossRef Roth MD, Marques-Magallanes JA, Yuan M, et al. Induction and regulation of the carcinogen-metabolizing enzyme CYP1A1 by marijuana smoke and delta (9)-tetrahydrocannabinol. Am J Respir Cell Mol Biol. 2001;24(3):339–44.PubMedCrossRef
84.
Zurück zum Zitat Yamaori S, Kinugasa Y, Jiang R, et al. Cannabidiol induces expression of human cytochrome P450 1A1 that is possibly mediated through aryl hydrocarbon receptor signaling in HepG2 cells. Life Sci. 2015;136:87–93.PubMedCrossRef Yamaori S, Kinugasa Y, Jiang R, et al. Cannabidiol induces expression of human cytochrome P450 1A1 that is possibly mediated through aryl hydrocarbon receptor signaling in HepG2 cells. Life Sci. 2015;136:87–93.PubMedCrossRef
85.
Zurück zum Zitat Jiang R, Yamaori S, Okamoto Y, et al. Cannabidiol is a potent inhibitor of the catalytic activity of cytochrome P450 2C19. Drug Metab Pharmacokinet. 2013;28(4):332–8.PubMedCrossRef Jiang R, Yamaori S, Okamoto Y, et al. Cannabidiol is a potent inhibitor of the catalytic activity of cytochrome P450 2C19. Drug Metab Pharmacokinet. 2013;28(4):332–8.PubMedCrossRef
86.
Zurück zum Zitat Yamaori S, Koeda K, Kushihara M, et al. Comparison in the in vitro inhibitory effects of major phytocannabinoids and polycyclic aromatic hydrocarbons contained in marijuana smoke on cytochrome P450 2C9 activity. Drug Metab Pharmacokinet. 2012;27(3):294–300.PubMedCrossRef Yamaori S, Koeda K, Kushihara M, et al. Comparison in the in vitro inhibitory effects of major phytocannabinoids and polycyclic aromatic hydrocarbons contained in marijuana smoke on cytochrome P450 2C9 activity. Drug Metab Pharmacokinet. 2012;27(3):294–300.PubMedCrossRef
87.
Zurück zum Zitat Tjia JF, Colbert J, Back DJ. Theophylline metabolism in human liver microsomes: inhibition studies. J Pharmacol Exp Ther. 1996;276(3):912–7.PubMed Tjia JF, Colbert J, Back DJ. Theophylline metabolism in human liver microsomes: inhibition studies. J Pharmacol Exp Ther. 1996;276(3):912–7.PubMed
88.
Zurück zum Zitat Wojcikowski J, Boksa J, Daniel WA. Main contribution of the cytochrome P450 isoenzyme 1A2 (CYP1A2) to N-demethylation and 5-sulfoxidation of the phenothiazine neuroleptic chlorpromazine in human liver—a comparison with other phenothiazines. Biochem Pharmacol. 2010;80(8):1252–9.PubMedCrossRef Wojcikowski J, Boksa J, Daniel WA. Main contribution of the cytochrome P450 isoenzyme 1A2 (CYP1A2) to N-demethylation and 5-sulfoxidation of the phenothiazine neuroleptic chlorpromazine in human liver—a comparison with other phenothiazines. Biochem Pharmacol. 2010;80(8):1252–9.PubMedCrossRef
89.
Zurück zum Zitat Jusko WJ, Schentag JJ, Clark JH, et al. Enhanced biotransformation of theophylline in marihuana and tobacco smokers. Clin Pharmacol Ther. 1978;24(4):405–10.PubMedCrossRef Jusko WJ, Schentag JJ, Clark JH, et al. Enhanced biotransformation of theophylline in marihuana and tobacco smokers. Clin Pharmacol Ther. 1978;24(4):405–10.PubMedCrossRef
90.
Zurück zum Zitat Jusko WJ, Gardner MJ, Mangione A, et al. Factors affecting theophylline clearances: age, tobacco, marijuana, cirrhosis, congestive heart failure, obesity, oral contraceptives, benzodiazepines, barbiturates, and ethanol. J Pharm Sci. 1979;68(11):1358–66.PubMedCrossRef Jusko WJ, Gardner MJ, Mangione A, et al. Factors affecting theophylline clearances: age, tobacco, marijuana, cirrhosis, congestive heart failure, obesity, oral contraceptives, benzodiazepines, barbiturates, and ethanol. J Pharm Sci. 1979;68(11):1358–66.PubMedCrossRef
91.
Zurück zum Zitat Gardner MJ, Tornatore KM, Jusko WJ, et al. Effects of tobacco smoking and oral contraceptive use on theophylline disposition. Br J Clin Pharmacol. 1983;16(3):271–80.PubMedPubMedCentralCrossRef Gardner MJ, Tornatore KM, Jusko WJ, et al. Effects of tobacco smoking and oral contraceptive use on theophylline disposition. Br J Clin Pharmacol. 1983;16(3):271–80.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Chetty M, Miller R, Moodley SV. Smoking and body weight influence the clearance of chlorpromazine. Eur J Clin Pharmacol. 1994;46(6):523–6.PubMedCrossRef Chetty M, Miller R, Moodley SV. Smoking and body weight influence the clearance of chlorpromazine. Eur J Clin Pharmacol. 1994;46(6):523–6.PubMedCrossRef
93.
Zurück zum Zitat Engel G, Hofmann U, Heidemann H, et al. Antipyrine as a probe for human oxidative drug metabolism: identification of the cytochrome P450 enzymes catalyzing 4-hydroxyantipyrine, 3-hydroxymethylantipyrine, and norantipyrine formation. Clin Pharmacol Ther. 1996;59:613–23.PubMedCrossRef Engel G, Hofmann U, Heidemann H, et al. Antipyrine as a probe for human oxidative drug metabolism: identification of the cytochrome P450 enzymes catalyzing 4-hydroxyantipyrine, 3-hydroxymethylantipyrine, and norantipyrine formation. Clin Pharmacol Ther. 1996;59:613–23.PubMedCrossRef
94.
Zurück zum Zitat Vesell ES, Passananti GT. Inhibition of drug metabolism in man. Drug Metab Dispos. 1973;1(1):402–10.PubMed Vesell ES, Passananti GT. Inhibition of drug metabolism in man. Drug Metab Dispos. 1973;1(1):402–10.PubMed
95.
Zurück zum Zitat Benowitz NL, Jones RT. Effects of delta-9-tetrahydrocannabinol on drug distribution and metabolism: antipyrine, pentobarbital, and ethanol. Clin Pharmacol Ther. 1977;22(3):259–68.PubMedCrossRef Benowitz NL, Jones RT. Effects of delta-9-tetrahydrocannabinol on drug distribution and metabolism: antipyrine, pentobarbital, and ethanol. Clin Pharmacol Ther. 1977;22(3):259–68.PubMedCrossRef
96.
Zurück zum Zitat Mwenifumbo JC, Sellers EM, Tyndale RF. Nicotine metabolism and CYP2A6 activity in a population of black African descent: impact of gender and light smoking. Drug Alcohol Depend. 2007;89(1):24–33.PubMedCrossRef Mwenifumbo JC, Sellers EM, Tyndale RF. Nicotine metabolism and CYP2A6 activity in a population of black African descent: impact of gender and light smoking. Drug Alcohol Depend. 2007;89(1):24–33.PubMedCrossRef
97.
Zurück zum Zitat Barry M, Mulcahy F, Merry C, et al. Pharmacokinetics and potential interactions amongst antiretroviral agents used to treat patients with HIV infection. Clin Pharmacokinet. 1999;36(4):289–304.PubMedCrossRef Barry M, Mulcahy F, Merry C, et al. Pharmacokinetics and potential interactions amongst antiretroviral agents used to treat patients with HIV infection. Clin Pharmacokinet. 1999;36(4):289–304.PubMedCrossRef
98.
Zurück zum Zitat Regazzi M, Maserati R, Villani P, et al. Clinical pharmacokinetics of nelfinavir and its metabolite M8 in human immunodeficiency virus (HIV)-positive and HIV–hepatitis C virus–coinfected subjects. Antimicrob Agents Chemother. 2005;49(2):643–9.PubMedPubMedCentralCrossRef Regazzi M, Maserati R, Villani P, et al. Clinical pharmacokinetics of nelfinavir and its metabolite M8 in human immunodeficiency virus (HIV)-positive and HIV–hepatitis C virus–coinfected subjects. Antimicrob Agents Chemother. 2005;49(2):643–9.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Kosel BW, Aweeka FT, Benowitz NL, et al. The effects of cannabinoids on the pharmacokinetics of indinavir and nelfinavir. AIDS. 2002;16(4):543–50.PubMedCrossRef Kosel BW, Aweeka FT, Benowitz NL, et al. The effects of cannabinoids on the pharmacokinetics of indinavir and nelfinavir. AIDS. 2002;16(4):543–50.PubMedCrossRef
100.
Zurück zum Zitat Giraud C, Tran A, Rey E, et al. In vitro characterization of clobazam metabolism by recombinant cytochrome P450 enzymes: importance of CYP2C19. Drug Metab Dispos. 2004;32(11):1279–86.PubMed Giraud C, Tran A, Rey E, et al. In vitro characterization of clobazam metabolism by recombinant cytochrome P450 enzymes: importance of CYP2C19. Drug Metab Dispos. 2004;32(11):1279–86.PubMed
101.
Zurück zum Zitat Geffrey AL, Pollack SF, Bruno PL, et al. Drug-drug interaction between clobazam and cannabidiol in children with refractory epilepsy. Epilepsia. 2015;56(8):1246–51.PubMedCrossRef Geffrey AL, Pollack SF, Bruno PL, et al. Drug-drug interaction between clobazam and cannabidiol in children with refractory epilepsy. Epilepsia. 2015;56(8):1246–51.PubMedCrossRef
102.
Zurück zum Zitat Nadulski T, Pragst F, Weinberg G, et al. Randomized, double-blind, placebo-controlled study about the effects of cannabidiol (CBD) on the pharmacokinetics of delta9-tetrahydrocannabinol (THC) after oral application of THC verses standardized cannabis extract. Ther Drug Monit. 2005;27(6):799–810.PubMedCrossRef Nadulski T, Pragst F, Weinberg G, et al. Randomized, double-blind, placebo-controlled study about the effects of cannabidiol (CBD) on the pharmacokinetics of delta9-tetrahydrocannabinol (THC) after oral application of THC verses standardized cannabis extract. Ther Drug Monit. 2005;27(6):799–810.PubMedCrossRef
103.
Zurück zum Zitat Stott C, White L, Wright S, et al. A phase I, open-label, randomized, crossover study in three parallel groups to evaluate the effect of rifampicin, ketoconazole, and omeprazole on the pharmacokinetics of THC/CBD oromucosal spray in healthy volunteers. Springerplus. 2013;2(1):236.PubMedPubMedCentralCrossRef Stott C, White L, Wright S, et al. A phase I, open-label, randomized, crossover study in three parallel groups to evaluate the effect of rifampicin, ketoconazole, and omeprazole on the pharmacokinetics of THC/CBD oromucosal spray in healthy volunteers. Springerplus. 2013;2(1):236.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Findlay JW, Van Wyck Fleet J, Smith PG, et al. Pharmacokinetics of bupropion, a novel antidepressant agent, following oral administration to healthy subjects. Eur J Clin Pharmacol. 1981;21(2):127–35.PubMedCrossRef Findlay JW, Van Wyck Fleet J, Smith PG, et al. Pharmacokinetics of bupropion, a novel antidepressant agent, following oral administration to healthy subjects. Eur J Clin Pharmacol. 1981;21(2):127–35.PubMedCrossRef
105.
Zurück zum Zitat Kirchheiner J, Klein C, Meineke I, et al. Bupropion and 4-OH-bupropion pharmacokinetics in relation to genetic polymorphisms in CYP2B6. Pharmacogenetics. 2003;13(10):619–26.PubMedCrossRef Kirchheiner J, Klein C, Meineke I, et al. Bupropion and 4-OH-bupropion pharmacokinetics in relation to genetic polymorphisms in CYP2B6. Pharmacogenetics. 2003;13(10):619–26.PubMedCrossRef
106.
Zurück zum Zitat Kharasch ED, Mitchell D, Coles R. Stereoselective bupropion hydroxylation as an in vivo phenotypic probe for cytochrome P4502B6 (CYP2B6) activity. J Clin Pharmacol. 2008;48(4):464–74.PubMedCrossRef Kharasch ED, Mitchell D, Coles R. Stereoselective bupropion hydroxylation as an in vivo phenotypic probe for cytochrome P4502B6 (CYP2B6) activity. J Clin Pharmacol. 2008;48(4):464–74.PubMedCrossRef
107.
Zurück zum Zitat Jefferson JW, Pradko JF, Muir KT. Bupropion for major depressive disorder: pharmacokinetic and formulation considerations. Clin Ther. 2005;27(11):1685–95.PubMedCrossRef Jefferson JW, Pradko JF, Muir KT. Bupropion for major depressive disorder: pharmacokinetic and formulation considerations. Clin Ther. 2005;27(11):1685–95.PubMedCrossRef
108.
Zurück zum Zitat Hemauer SJ, Patrikeeva SL, Wang X, et al. Role of transporter-mediated efflux in the placental biodisposition of bupropion and its metabolite, OH-bupropion. Biochem Pharmacol. 2010;80(7):1080–6.PubMedPubMedCentralCrossRef Hemauer SJ, Patrikeeva SL, Wang X, et al. Role of transporter-mediated efflux in the placental biodisposition of bupropion and its metabolite, OH-bupropion. Biochem Pharmacol. 2010;80(7):1080–6.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Reese MJ, Wurm RM, Muir KT, et al. An in vitro mechanistic study to elucidate the desipramine/bupropion clinical drug-drug interaction. Drug Metab Dispos. 2008;36(7):1198–201.PubMedCrossRef Reese MJ, Wurm RM, Muir KT, et al. An in vitro mechanistic study to elucidate the desipramine/bupropion clinical drug-drug interaction. Drug Metab Dispos. 2008;36(7):1198–201.PubMedCrossRef
110.
Zurück zum Zitat Shad MU, Preskorn SH. A possible bupropion and imipramine interaction. J Clin Psychopharmacol. 1997;17(2):118–9.PubMedCrossRef Shad MU, Preskorn SH. A possible bupropion and imipramine interaction. J Clin Psychopharmacol. 1997;17(2):118–9.PubMedCrossRef
111.
Zurück zum Zitat Kennedy SH, McCann SM, Masellis M, et al. Combining bupropion SR with venlafaxine, paroxetine, or fluoxetine: a preliminary report on pharmacokinetic, therapeutic, and sexual dysfunction effects. J Clin Psychiatry. 2002;63(3):181–6.PubMedCrossRef Kennedy SH, McCann SM, Masellis M, et al. Combining bupropion SR with venlafaxine, paroxetine, or fluoxetine: a preliminary report on pharmacokinetic, therapeutic, and sexual dysfunction effects. J Clin Psychiatry. 2002;63(3):181–6.PubMedCrossRef
112.
Zurück zum Zitat Guzey C, Norstrom A, Spigset O. Change from the CYP2D6 extensive metabolizer to the poor metabolizer phenotype during treatment with bupropion. Ther Drug Monit. 2002;24(3):436–7.PubMedCrossRef Guzey C, Norstrom A, Spigset O. Change from the CYP2D6 extensive metabolizer to the poor metabolizer phenotype during treatment with bupropion. Ther Drug Monit. 2002;24(3):436–7.PubMedCrossRef
113.
Zurück zum Zitat Kotlyar M, Brauer LH, Tracy TS, et al. Inhibition of CYP2D6 activity by bupropion. J Clin Psychopharmacol. 2005;25(3):226–9.PubMedCrossRef Kotlyar M, Brauer LH, Tracy TS, et al. Inhibition of CYP2D6 activity by bupropion. J Clin Psychopharmacol. 2005;25(3):226–9.PubMedCrossRef
114.
Zurück zum Zitat Ketter TA, Jenkins JB, Schroeder DH, et al. Carbamazepine but not valproate induces bupropion metabolism. J Clin Psychopharmacol. 1995;15(5):327–33.PubMedCrossRef Ketter TA, Jenkins JB, Schroeder DH, et al. Carbamazepine but not valproate induces bupropion metabolism. J Clin Psychopharmacol. 1995;15(5):327–33.PubMedCrossRef
115.
Zurück zum Zitat Loboz KK, Gross AS, Williams KM, et al. Cytochrome P450 2B6 activity as measured by bupropion hydroxylation: effect of induction by rifampin and ethnicity. Clin Pharmacol Ther. 2006;80(1):75–84.PubMedCrossRef Loboz KK, Gross AS, Williams KM, et al. Cytochrome P450 2B6 activity as measured by bupropion hydroxylation: effect of induction by rifampin and ethnicity. Clin Pharmacol Ther. 2006;80(1):75–84.PubMedCrossRef
116.
Zurück zum Zitat Chung JY, Cho JY, Lim HS, et al. Effects of pregnane X receptor (NR1I2) and CYP2B6 genetic polymorphisms on the induction of bupropion hydroxylation by rifampin. Drug Metab Dispos. 2011;39(1):92–7.PubMedCrossRef Chung JY, Cho JY, Lim HS, et al. Effects of pregnane X receptor (NR1I2) and CYP2B6 genetic polymorphisms on the induction of bupropion hydroxylation by rifampin. Drug Metab Dispos. 2011;39(1):92–7.PubMedCrossRef
117.
Zurück zum Zitat Robertson SM, Penzak SR, Pau A. Drug interactions in the management of HIV infection: an update. Expert Opin Pharmacother. 2007;8(17):2947–63.PubMedCrossRef Robertson SM, Penzak SR, Pau A. Drug interactions in the management of HIV infection: an update. Expert Opin Pharmacother. 2007;8(17):2947–63.PubMedCrossRef
118.
Zurück zum Zitat Kharasch ED, Mitchell D, Coles R, et al. Rapid clinical induction of hepatic cytochrome P4502B6 activity by ritonavir. Antimicrob Agents Chemother. 2008;52(5):1663–9.PubMedPubMedCentralCrossRef Kharasch ED, Mitchell D, Coles R, et al. Rapid clinical induction of hepatic cytochrome P4502B6 activity by ritonavir. Antimicrob Agents Chemother. 2008;52(5):1663–9.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Hesse LM, Greenblatt DJ, von Moltke LL, et al. Ritonavir has minimal impact on the pharmacokinetic disposition of a single dose of bupropion administered to human volunteers. J Clin Pharmacol. 2006;46(5):567–76.PubMedCrossRef Hesse LM, Greenblatt DJ, von Moltke LL, et al. Ritonavir has minimal impact on the pharmacokinetic disposition of a single dose of bupropion administered to human volunteers. J Clin Pharmacol. 2006;46(5):567–76.PubMedCrossRef
120.
Zurück zum Zitat Hogeland GW, Swindells S, McNabb JC, et al. Lopinavir/ritonavir reduces bupropion plasma concentrations in healthy subjects. Clin Pharmacol Ther. 2007;81(1):69–75.PubMedCrossRef Hogeland GW, Swindells S, McNabb JC, et al. Lopinavir/ritonavir reduces bupropion plasma concentrations in healthy subjects. Clin Pharmacol Ther. 2007;81(1):69–75.PubMedCrossRef
121.
Zurück zum Zitat Robertson SM, Maldarelli F, Natarajan V, et al. Efavirenz induces CYP2B6-mediated hydroxylation of bupropion in healthy subjects. J Acquir Immune Defic Syndr. 2008;49(5):513–9.PubMedCrossRef Robertson SM, Maldarelli F, Natarajan V, et al. Efavirenz induces CYP2B6-mediated hydroxylation of bupropion in healthy subjects. J Acquir Immune Defic Syndr. 2008;49(5):513–9.PubMedCrossRef
122.
Zurück zum Zitat Turpeinen M, Tolonen A, Uusitalo J, et al. Effect of clopidogrel and ticlopidine on cytochrome P450 2B6 activity as measured by bupropion hydroxylation. Clin Pharmacol Ther. 2005;77(6):553–9.PubMedCrossRef Turpeinen M, Tolonen A, Uusitalo J, et al. Effect of clopidogrel and ticlopidine on cytochrome P450 2B6 activity as measured by bupropion hydroxylation. Clin Pharmacol Ther. 2005;77(6):553–9.PubMedCrossRef
123.
Zurück zum Zitat Palovaara S, Pelkonen O, Uusitalo J, et al. Inhibition of cytochrome P450 2B6 activity by hormone replacement therapy and oral contraceptive as measured by bupropion hydroxylation. Clin Pharmacol Ther. 2003;74(4):326–33.PubMedCrossRef Palovaara S, Pelkonen O, Uusitalo J, et al. Inhibition of cytochrome P450 2B6 activity by hormone replacement therapy and oral contraceptive as measured by bupropion hydroxylation. Clin Pharmacol Ther. 2003;74(4):326–33.PubMedCrossRef
124.
Zurück zum Zitat Lei HP, Yu XY, Xie HT, et al. Effect of St. John’s wort supplementation on the pharmacokinetics of bupropion in healthy male Chinese volunteers. Xenobiotica. 2010;40(4):275–81.PubMedCrossRef Lei HP, Yu XY, Xie HT, et al. Effect of St. John’s wort supplementation on the pharmacokinetics of bupropion in healthy male Chinese volunteers. Xenobiotica. 2010;40(4):275–81.PubMedCrossRef
125.
Zurück zum Zitat Fan L, Wang JC, Jiang F, et al. Induction of cytochrome P450 2B6 activity by the herbal medicine baicalin as measured by bupropion hydroxylation. Eur J Clin Pharmacol. 2009;65(4):403–9.PubMedCrossRef Fan L, Wang JC, Jiang F, et al. Induction of cytochrome P450 2B6 activity by the herbal medicine baicalin as measured by bupropion hydroxylation. Eur J Clin Pharmacol. 2009;65(4):403–9.PubMedCrossRef
126.
Zurück zum Zitat Kim H, Kim KB, Ku HY, et al. Identification and characterization of potent CYP2B6 inhibitors in Woohwangcheongsimwon suspension, an herbal preparation used in the treatment and prevention of apoplexy in Korea and China. Drug Metab Dispos. 2008;36(6):1010–5.PubMedCrossRef Kim H, Kim KB, Ku HY, et al. Identification and characterization of potent CYP2B6 inhibitors in Woohwangcheongsimwon suspension, an herbal preparation used in the treatment and prevention of apoplexy in Korea and China. Drug Metab Dispos. 2008;36(6):1010–5.PubMedCrossRef
127.
Zurück zum Zitat Umegaki K, Saito K, Kubota Y, et al. Ginkgo biloba extract markedly induces pentoxyresorufin O-dealkylase activity in rats. Jpn J Pharmacol. 2002;90(4):345–51.PubMedCrossRef Umegaki K, Saito K, Kubota Y, et al. Ginkgo biloba extract markedly induces pentoxyresorufin O-dealkylase activity in rats. Jpn J Pharmacol. 2002;90(4):345–51.PubMedCrossRef
128.
Zurück zum Zitat Lei HP, Ji W, Lin J, et al. Effects of Ginkgo biloba extract on the pharmacokinetics of bupropion in healthy volunteers. Br J Clin Pharmacol. 2009;68(2):201–6.PubMedPubMedCentralCrossRef Lei HP, Ji W, Lin J, et al. Effects of Ginkgo biloba extract on the pharmacokinetics of bupropion in healthy volunteers. Br J Clin Pharmacol. 2009;68(2):201–6.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Kim H, Bae SK, Park SJ, et al. Effects of woohwangcheongsimwon suspension on the pharmacokinetics of bupropion and its active metabolite, 4-hydroxybupropion, in healthy subjects. Br J Clin Pharmacol. 2010;70(1):126–31.PubMedPubMedCentralCrossRef Kim H, Bae SK, Park SJ, et al. Effects of woohwangcheongsimwon suspension on the pharmacokinetics of bupropion and its active metabolite, 4-hydroxybupropion, in healthy subjects. Br J Clin Pharmacol. 2010;70(1):126–31.PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Faessel HM, Obach RS, Rollema H, et al. A review of the clinical pharmacokinetics and pharmacodynamics of varenicline for smoking cessation. Clin Pharmacokinet. 2010;49(12):799–816.PubMedCrossRef Faessel HM, Obach RS, Rollema H, et al. A review of the clinical pharmacokinetics and pharmacodynamics of varenicline for smoking cessation. Clin Pharmacokinet. 2010;49(12):799–816.PubMedCrossRef
131.
Zurück zum Zitat Feng B, Obach RS, Burstein AH, et al. Effect of human renal cationic transporter inhibition on the pharmacokinetics of varenicline, a new therapy for smoking cessation: an in vitro–in vivo study. Clin Pharmacol Ther. 2008;83(4):567–76.PubMedCrossRef Feng B, Obach RS, Burstein AH, et al. Effect of human renal cationic transporter inhibition on the pharmacokinetics of varenicline, a new therapy for smoking cessation: an in vitro–in vivo study. Clin Pharmacol Ther. 2008;83(4):567–76.PubMedCrossRef
132.
Zurück zum Zitat Burstein AH, Clark DJ, O’Gorman M, et al. Lack of pharmacokinetic and pharmacodynamic interactions between a smoking cessation therapy, varenicline, and warfarin: an in vivo and in vitro study. J Clin Pharmacol. 2007;47(11):1421–9.PubMedCrossRef Burstein AH, Clark DJ, O’Gorman M, et al. Lack of pharmacokinetic and pharmacodynamic interactions between a smoking cessation therapy, varenicline, and warfarin: an in vivo and in vitro study. J Clin Pharmacol. 2007;47(11):1421–9.PubMedCrossRef
133.
Zurück zum Zitat Faessel HM, Burstein AH, Troutman MD, et al. Lack of a pharmacokinetic interaction between a new smoking cessation therapy, varenicline, and digoxin in adult smokers. Eur J Clin Pharmacol. 2008;64(11):1101–9.PubMedCrossRef Faessel HM, Burstein AH, Troutman MD, et al. Lack of a pharmacokinetic interaction between a new smoking cessation therapy, varenicline, and digoxin in adult smokers. Eur J Clin Pharmacol. 2008;64(11):1101–9.PubMedCrossRef
134.
Zurück zum Zitat Urakami Y, Okuda M, Masuda S, et al. Functional characteristics and membrane localization of rat multispecific organic cation transporters, OCT1 and OCT2, mediating tubular secretion of cationic drugs. J Pharmacol Exp Ther. 1998;287(2):800–5.PubMed Urakami Y, Okuda M, Masuda S, et al. Functional characteristics and membrane localization of rat multispecific organic cation transporters, OCT1 and OCT2, mediating tubular secretion of cationic drugs. J Pharmacol Exp Ther. 1998;287(2):800–5.PubMed
135.
Zurück zum Zitat Etter JF, Lukas RJ, Benowitz NL, et al. Cytisine for smoking cessation: a research agenda. Drug Alcohol Depend. 2008;92(1–3):3–8.PubMedCrossRef Etter JF, Lukas RJ, Benowitz NL, et al. Cytisine for smoking cessation: a research agenda. Drug Alcohol Depend. 2008;92(1–3):3–8.PubMedCrossRef
136.
Zurück zum Zitat Radchenko EV, Dravolina OA, Bespalov AY. Agonist and antagonist effects of cytisine in vivo. Neuropharmacology. 2015;95:206–14.PubMedCrossRef Radchenko EV, Dravolina OA, Bespalov AY. Agonist and antagonist effects of cytisine in vivo. Neuropharmacology. 2015;95:206–14.PubMedCrossRef
137.
Zurück zum Zitat Jeong SH, Newcombe D, Sheridan J, et al. Pharmacokinetics of cytisine, an alpha4 beta2 nicotinic receptor partial agonist, in healthy smokers following a single dose. Drug Test Anal. 2015;7(6):475–82.PubMedCrossRef Jeong SH, Newcombe D, Sheridan J, et al. Pharmacokinetics of cytisine, an alpha4 beta2 nicotinic receptor partial agonist, in healthy smokers following a single dose. Drug Test Anal. 2015;7(6):475–82.PubMedCrossRef
138.
Zurück zum Zitat Rollema H, Shrikhande A, Ward KM, et al. Pre-clinical properties of the alpha4beta2 nicotinic acetylcholine receptor partial agonists varenicline, cytisine and dianicline translate to clinical efficacy for nicotine dependence. Br J Pharmacol. 2010;160(2):334–45.PubMedPubMedCentralCrossRef Rollema H, Shrikhande A, Ward KM, et al. Pre-clinical properties of the alpha4beta2 nicotinic acetylcholine receptor partial agonists varenicline, cytisine and dianicline translate to clinical efficacy for nicotine dependence. Br J Pharmacol. 2010;160(2):334–45.PubMedPubMedCentralCrossRef
139.
Zurück zum Zitat Cahill K, Stevens S, Perera R, et al. Pharmacological interventions for smoking cessation: an overview and network meta-analysis. Cochrane Database Syst Rev. 2013;5:CD009329.PubMed Cahill K, Stevens S, Perera R, et al. Pharmacological interventions for smoking cessation: an overview and network meta-analysis. Cochrane Database Syst Rev. 2013;5:CD009329.PubMed
140.
Zurück zum Zitat Aubin HJ, Luquiens A, Berlin I. Pharmacotherapy for smoking cessation: pharmacological principles and clinical practice. Br J Clin Pharmacol. 2014;77(2):324–36.PubMedPubMedCentralCrossRef Aubin HJ, Luquiens A, Berlin I. Pharmacotherapy for smoking cessation: pharmacological principles and clinical practice. Br J Clin Pharmacol. 2014;77(2):324–36.PubMedPubMedCentralCrossRef
141.
Zurück zum Zitat Olesen OV, Linnet K. Hydroxylation and demethylation of the tricyclic antidepressant nortriptyline by cDNA-expressed human cytochrome P-450 isozymes. Drug Metab Dispos. 1997;25(6):740–4.PubMed Olesen OV, Linnet K. Hydroxylation and demethylation of the tricyclic antidepressant nortriptyline by cDNA-expressed human cytochrome P-450 isozymes. Drug Metab Dispos. 1997;25(6):740–4.PubMed
142.
Zurück zum Zitat Venkatakrishnan K, von Moltke LL, Greenblatt DJ. Nortriptyline E-10-hydroxylation in vitro is mediated by human CYP2D6 (high affinity) and CYP3A4 (low affinity): implications for interactions with enzyme-inducing drugs. J Clin Pharmacol. 1999;39(6):567–77.PubMedCrossRef Venkatakrishnan K, von Moltke LL, Greenblatt DJ. Nortriptyline E-10-hydroxylation in vitro is mediated by human CYP2D6 (high affinity) and CYP3A4 (low affinity): implications for interactions with enzyme-inducing drugs. J Clin Pharmacol. 1999;39(6):567–77.PubMedCrossRef
Metadaten
Titel
Pharmacokinetic Drug Interactions with Tobacco, Cannabinoids and Smoking Cessation Products
verfasst von
Gail D. Anderson
Lingtak-Neander Chan
Publikationsdatum
22.04.2016
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 11/2016
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-016-0400-9

Weitere Artikel der Ausgabe 11/2016

Clinical Pharmacokinetics 11/2016 Zur Ausgabe