Skip to main content
Erschienen in: Endocrine 2/2012

01.10.2012 | Mini Review

Points of integration between the intracellular energy sensor AMP-activated protein kinase (AMPK) activity and the somatotroph axis function

verfasst von: Giovanni Tulipano, Lara Faggi, Valeria Sibilia, Andrea Giustina

Erschienen in: Endocrine | Ausgabe 2/2012

Einloggen, um Zugang zu erhalten

Abstract

AMP-activated protein kinase (AMPK), an enzyme functioning as a cellular sensor of low energy, stores and promotes adaptive changes in growth, differentiation, and metabolism. While AMPK is primarily thought of as a regulator of systemic metabolism, it has been clearly established that it also has a role in the regulation of cell growth and may be a therapeutic target for proliferative disorders. Growth hormone (GH) secretion from the anterior pituitary and GH-induced synthesis and release of insulin-like-growth-factor-1 (IGF-1) from the liver determine linear growth before puberty. Actually, GH and IGF-1 are potent growth factors affecting cell growth and differentiation in different tissues, and still have anabolic functions and serve as essential regulators of fuel metabolism in adulthood, as well. A variety of peripheral hormonal and metabolic signals regulate GH secretion either by acting directly on the anterior pituitary and/or modulating GH-releasing hormone or somatostatin release from the hypothalamus. Actually, intracellular transduction of endocrine and metabolic signals regulating somatotroph function is still debated. Based on the previously summarized contents, the aim of the present work has been to review currently available data suggesting a role of AMPK in the interplay between GH axis activity and metabolic functions.
Literatur
1.
Zurück zum Zitat D.G. Hardie, AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol. 8, 774–785 (2007)PubMedCrossRef D.G. Hardie, AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol. 8, 774–785 (2007)PubMedCrossRef
2.
Zurück zum Zitat S.A. Hawley, J. Boudeau, J.L. Reid, K.J. Mustard, L. Udd, T.P. Mäkelä, D.R. Alessi, D.G. Hardie, Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J. Biol. 2, 28 (2003)PubMedCrossRef S.A. Hawley, J. Boudeau, J.L. Reid, K.J. Mustard, L. Udd, T.P. Mäkelä, D.R. Alessi, D.G. Hardie, Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J. Biol. 2, 28 (2003)PubMedCrossRef
3.
Zurück zum Zitat A. Woods, S.R. Johnstone, K. Dickerson, F.C. Leiper, L.G. Fryer, D. Neumann, U. Schlattner, T. Wallimann, M. Carlson, D. Carling, LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13, 2004–2008 (2003)PubMedCrossRef A. Woods, S.R. Johnstone, K. Dickerson, F.C. Leiper, L.G. Fryer, D. Neumann, U. Schlattner, T. Wallimann, M. Carlson, D. Carling, LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13, 2004–2008 (2003)PubMedCrossRef
4.
Zurück zum Zitat M.C. Towler, G.D. Hardie, AMP-activated protein kinase in metabolic control and insulin signaling. Circ. Res. 100, 328–341 (2007)PubMedCrossRef M.C. Towler, G.D. Hardie, AMP-activated protein kinase in metabolic control and insulin signaling. Circ. Res. 100, 328–341 (2007)PubMedCrossRef
5.
Zurück zum Zitat S.P. Davies, N.R. Helps, P.T. Cohen, D.G. Hardie, 5′-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C{alpha} and native bovine protein phosphatase-2AC. FEBS Lett. 377, 421–425 (1995)PubMedCrossRef S.P. Davies, N.R. Helps, P.T. Cohen, D.G. Hardie, 5′-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C{alpha} and native bovine protein phosphatase-2AC. FEBS Lett. 377, 421–425 (1995)PubMedCrossRef
6.
Zurück zum Zitat C.T. Lim, B. Kola, M. Korbonits, AMPK as a mediator of hormonal signalling. J. Mol. Endocrinol. 44, 87–97 (2009)PubMedCrossRef C.T. Lim, B. Kola, M. Korbonits, AMPK as a mediator of hormonal signalling. J. Mol. Endocrinol. 44, 87–97 (2009)PubMedCrossRef
7.
Zurück zum Zitat S. Sangiao-Alvarellos, L. Varela, M.J. Vazquez, K. Da Boit, S.A. Saha, F. Cordido, C. Dieguez, M. Lopez, Influence of ghrelin and growth hormone deficiency on AMP-activated protein kinase and hypothalamic lipid metabolism. J. Neuroendocrinol. 22, 543–556 (2010)PubMedCrossRef S. Sangiao-Alvarellos, L. Varela, M.J. Vazquez, K. Da Boit, S.A. Saha, F. Cordido, C. Dieguez, M. Lopez, Influence of ghrelin and growth hormone deficiency on AMP-activated protein kinase and hypothalamic lipid metabolism. J. Neuroendocrinol. 22, 543–556 (2010)PubMedCrossRef
8.
Zurück zum Zitat R.L. Hurley, K.A. Anderson, J.M. Franzone, B.E. Kemp, A.R. Means, L.A. Witters, The Ca2+/calmoldulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J. Biol. Chem. 280, 29060–29066 (2005)PubMedCrossRef R.L. Hurley, K.A. Anderson, J.M. Franzone, B.E. Kemp, A.R. Means, L.A. Witters, The Ca2+/calmoldulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J. Biol. Chem. 280, 29060–29066 (2005)PubMedCrossRef
9.
Zurück zum Zitat M. Lu, Q. Tang, J.M. Olefsky, P.L. Mellon, N.J. Webster, Adiponectin activates adenosine monophosphate-activated protein kinase and decreases luteinizing hormone secretion in L(beta)T2 gonadotropes. Mol. Endocrinol. 22, 760–771 (2008)PubMedCrossRef M. Lu, Q. Tang, J.M. Olefsky, P.L. Mellon, N.J. Webster, Adiponectin activates adenosine monophosphate-activated protein kinase and decreases luteinizing hormone secretion in L(beta)T2 gonadotropes. Mol. Endocrinol. 22, 760–771 (2008)PubMedCrossRef
10.
Zurück zum Zitat Z. Luo, Y. Zhang, F. Li, J. He, H. Ding, L. Yan, H. Cheng, Resistin induces insulin resistance in both AMPK dependent and AMPK independent mechanisms in HepG2 cells. Endocrine 36, 60–69 (2009)PubMedCrossRef Z. Luo, Y. Zhang, F. Li, J. He, H. Ding, L. Yan, H. Cheng, Resistin induces insulin resistance in both AMPK dependent and AMPK independent mechanisms in HepG2 cells. Endocrine 36, 60–69 (2009)PubMedCrossRef
11.
Zurück zum Zitat X. Xiao, Y. Dong, J. Zhong, R. Cao, X. Zhao, G. Wen, J. Liu, Adiponectin protects endothelial cells from the damages induced by the intermittent high levels of glucose. Endocrine 40, 386–393 (2011)PubMedCrossRef X. Xiao, Y. Dong, J. Zhong, R. Cao, X. Zhao, G. Wen, J. Liu, Adiponectin protects endothelial cells from the damages induced by the intermittent high levels of glucose. Endocrine 40, 386–393 (2011)PubMedCrossRef
12.
Zurück zum Zitat X.B. Cheng, J.P. Wen, Y. Yang, J. Yang, G. Ning, X.Y. Li, GnRH secretion is inhibited by adiponectin through activation of AMPK-activated protein kinase and extracellular signal-regulated kinase. Endocrine 39, 6–12 (2011)PubMedCrossRef X.B. Cheng, J.P. Wen, Y. Yang, J. Yang, G. Ning, X.Y. Li, GnRH secretion is inhibited by adiponectin through activation of AMPK-activated protein kinase and extracellular signal-regulated kinase. Endocrine 39, 6–12 (2011)PubMedCrossRef
13.
Zurück zum Zitat M. Xie, D. Zhang, J.R. Dyck, Y. Li, H. Zhang, M. Morishima, D.L. Mann, G.E. Taffet, A. Baldini, D.S. Khoury, M.D. Schneider, A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proc. Natl. Acad. Sci. USA 103, 17378–17383 (2006)PubMedCrossRef M. Xie, D. Zhang, J.R. Dyck, Y. Li, H. Zhang, M. Morishima, D.L. Mann, G.E. Taffet, A. Baldini, D.S. Khoury, M.D. Schneider, A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proc. Natl. Acad. Sci. USA 103, 17378–17383 (2006)PubMedCrossRef
14.
Zurück zum Zitat A. Suzuki, G. Kusakai, A. Kishimoto, Y. Shimojo, T. Ogura, M.F. Lavin, H. Esumi, IGF-1 phosphorylates AMPK-alpha subunit in ATM-dependent and LKB1-independent manner. Biochem. Biophys. Res. Commun. 324, 986–992 (2004)PubMedCrossRef A. Suzuki, G. Kusakai, A. Kishimoto, Y. Shimojo, T. Ogura, M.F. Lavin, H. Esumi, IGF-1 phosphorylates AMPK-alpha subunit in ATM-dependent and LKB1-independent manner. Biochem. Biophys. Res. Commun. 324, 986–992 (2004)PubMedCrossRef
15.
Zurück zum Zitat E. Tomas, T.S. Tsao, A.K. Saha, H.E. Murrey, C. Zhang Cc, S.I. Itani, H.F. Lodish, N.B. Ruderman, Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc. Natl. Acad. Sci. USA 99, 16309–16313 (2002)PubMedCrossRef E. Tomas, T.S. Tsao, A.K. Saha, H.E. Murrey, C. Zhang Cc, S.I. Itani, H.F. Lodish, N.B. Ruderman, Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc. Natl. Acad. Sci. USA 99, 16309–16313 (2002)PubMedCrossRef
16.
Zurück zum Zitat W.W. Winder, D.G. Hardie, Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am. J. Physiol. 270, E299–E304 (1996)PubMed W.W. Winder, D.G. Hardie, Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am. J. Physiol. 270, E299–E304 (1996)PubMed
17.
Zurück zum Zitat M.E. Young, G.K. Radda, B. Leighton, Activation of glycogen phosphorylase and glycogenolysis in rat skeletal muscle by AICAR—an activator of AMP-activated protein kinase. FEBS Lett. 382, 43–47 (1996)PubMedCrossRef M.E. Young, G.K. Radda, B. Leighton, Activation of glycogen phosphorylase and glycogenolysis in rat skeletal muscle by AICAR—an activator of AMP-activated protein kinase. FEBS Lett. 382, 43–47 (1996)PubMedCrossRef
18.
Zurück zum Zitat G.R. Steinberg, S.B. Jorgensen, The AMP-activated protein kinase: role in regulation of skeletal muscle metabolism and insulin sensitivity. Mini-Rev. Med. Chem. 7, 521–528 (2007)CrossRef G.R. Steinberg, S.B. Jorgensen, The AMP-activated protein kinase: role in regulation of skeletal muscle metabolism and insulin sensitivity. Mini-Rev. Med. Chem. 7, 521–528 (2007)CrossRef
19.
Zurück zum Zitat V. Locatelli, A. Torsello, Pyruvate and satiety: can we fool the brain? Endocrinology 146, 1–2 (2005)PubMedCrossRef V. Locatelli, A. Torsello, Pyruvate and satiety: can we fool the brain? Endocrinology 146, 1–2 (2005)PubMedCrossRef
20.
Zurück zum Zitat M.F. McCarty, Chronic activation of AMP-activated kinase as a strategy for slowing aging. Med. Hypotheses 63, 334–339 (2004)PubMedCrossRef M.F. McCarty, Chronic activation of AMP-activated kinase as a strategy for slowing aging. Med. Hypotheses 63, 334–339 (2004)PubMedCrossRef
21.
Zurück zum Zitat M.M. Mihaylova, R.J. Shaw, The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13, 1016–1023 (2011)PubMedCrossRef M.M. Mihaylova, R.J. Shaw, The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13, 1016–1023 (2011)PubMedCrossRef
22.
Zurück zum Zitat M. Josie, M. Evans, Metformin and reduced risk of cancer in diabetic patients. Br. Med. J. 330, 1304–1305 (2005)CrossRef M. Josie, M. Evans, Metformin and reduced risk of cancer in diabetic patients. Br. Med. J. 330, 1304–1305 (2005)CrossRef
23.
Zurück zum Zitat H. Motoshima, B.J. Goldstein, M. Igata, E. Araki, AMPK and cell proliferation—AMPK as a therapeutic target for atherosclerosis and cancer. J. Physiol. 574, 63–71 (2006)PubMedCrossRef H. Motoshima, B.J. Goldstein, M. Igata, E. Araki, AMPK and cell proliferation—AMPK as a therapeutic target for atherosclerosis and cancer. J. Physiol. 574, 63–71 (2006)PubMedCrossRef
24.
Zurück zum Zitat M. Zakikhani, R. Dowling, I.G. Fantus, N. Sonenberg, M. Pollak, Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res. 66, 10269–10273 (2006)PubMedCrossRef M. Zakikhani, R. Dowling, I.G. Fantus, N. Sonenberg, M. Pollak, Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res. 66, 10269–10273 (2006)PubMedCrossRef
25.
Zurück zum Zitat T.K. Sengupta, G.M. Leclerc, T.T. Hsieh-Kinser, G.J. Leclerc, I. Singh, J.C. Barredo, Cytotoxic effect of 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) on childhood acute lymphoblastic leukemia (ALL) cells: implication for targeted therapy. Mol. Cancer 6, 46–58 (2007)PubMedCrossRef T.K. Sengupta, G.M. Leclerc, T.T. Hsieh-Kinser, G.J. Leclerc, I. Singh, J.C. Barredo, Cytotoxic effect of 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) on childhood acute lymphoblastic leukemia (ALL) cells: implication for targeted therapy. Mol. Cancer 6, 46–58 (2007)PubMedCrossRef
26.
Zurück zum Zitat M. Buzzai, R.G. Jones, R.K. Amaravadi, J.J. Lum, R.J. DeBerardinis, F. Zhao, B. Villet, C.B. Thompson, Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 67, 6745–6752 (2007)PubMedCrossRef M. Buzzai, R.G. Jones, R.K. Amaravadi, J.J. Lum, R.J. DeBerardinis, F. Zhao, B. Villet, C.B. Thompson, Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 67, 6745–6752 (2007)PubMedCrossRef
27.
Zurück zum Zitat H.U. Park, S. Suy, M. Danner, V. Dailey, Y. Zhang, H. Li, D.R. Hyduke, B.T. Collins, G. Gagnon, B. Kallakury, D. Kumar, M.L. Brown, A. Fornace, A. Dritschilo, S.P. Collins, AMP-activated protein kinase promotes human prostate cancer cell growth and survival. Mol. Cancer Ther. 8, 733–741 (2009)PubMedCrossRef H.U. Park, S. Suy, M. Danner, V. Dailey, Y. Zhang, H. Li, D.R. Hyduke, B.T. Collins, G. Gagnon, B. Kallakury, D. Kumar, M.L. Brown, A. Fornace, A. Dritschilo, S.P. Collins, AMP-activated protein kinase promotes human prostate cancer cell growth and survival. Mol. Cancer Ther. 8, 733–741 (2009)PubMedCrossRef
28.
Zurück zum Zitat J.M. Corton, J.G. Gillespie, S.A. Hawley, D.G. Hardie, 5-Aminoimidazole-4-carboxamide ribonucleoside: a specific method for activating AMP-activated protein kinase in intact cells? Eur. J. Biochem. 229, 558–565 (1995)PubMedCrossRef J.M. Corton, J.G. Gillespie, S.A. Hawley, D.G. Hardie, 5-Aminoimidazole-4-carboxamide ribonucleoside: a specific method for activating AMP-activated protein kinase in intact cells? Eur. J. Biochem. 229, 558–565 (1995)PubMedCrossRef
29.
Zurück zum Zitat R. Rattan, S. Giri, A.K. Singh, I. Singh, 5-Aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside inhibits cancer cell proliferation in vitro and in vivo via AMP-activated protein kinase. J. Biol. Chem. 280, 39582–39593 (2005)PubMedCrossRef R. Rattan, S. Giri, A.K. Singh, I. Singh, 5-Aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside inhibits cancer cell proliferation in vitro and in vivo via AMP-activated protein kinase. J. Biol. Chem. 280, 39582–39593 (2005)PubMedCrossRef
30.
Zurück zum Zitat Y. Gao, Y. Zhou, A. Xu, D. Wu, Effects of an AMP-activated protein kinase inhibitor, compound C, on adipogenic differentiation of 3T3-L1 cells. Biol. Pharm. Bull. 31, 1716–1722 (2008)PubMedCrossRef Y. Gao, Y. Zhou, A. Xu, D. Wu, Effects of an AMP-activated protein kinase inhibitor, compound C, on adipogenic differentiation of 3T3-L1 cells. Biol. Pharm. Bull. 31, 1716–1722 (2008)PubMedCrossRef
31.
Zurück zum Zitat I. Kanazawa, T. Yamaguchi, S. Yano, M. Yamauchi, T. Sugimoto, Activation of AMP kinase and inhibition of Rho kinase induce the mineralization of osteoblastic MC3T3E1 cells through endothelial NOS and BMP-2 expression. Am. J. Physiol. Endocrinol. Metab. 296, 139–146 (2009)CrossRef I. Kanazawa, T. Yamaguchi, S. Yano, M. Yamauchi, T. Sugimoto, Activation of AMP kinase and inhibition of Rho kinase induce the mineralization of osteoblastic MC3T3E1 cells through endothelial NOS and BMP-2 expression. Am. J. Physiol. Endocrinol. Metab. 296, 139–146 (2009)CrossRef
32.
Zurück zum Zitat G. Zhou, R. Myers, Y. Li, Y. Chen, X. Shen, J. Fenyk-Melody, M. Wu, J. Ventre, T. Doebber, N. Fujii, N. Musi, M.F. Hirshman, L.J. Goodyear, D.E. Moller, Role of AMPK-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001)PubMed G. Zhou, R. Myers, Y. Li, Y. Chen, X. Shen, J. Fenyk-Melody, M. Wu, J. Ventre, T. Doebber, N. Fujii, N. Musi, M.F. Hirshman, L.J. Goodyear, D.E. Moller, Role of AMPK-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001)PubMed
33.
Zurück zum Zitat E.E. Müller, V. Locatelli, D. Cocchi, Neuroendocrine control of growth hormone secretion. Physiol. Rev. 79, 511–607 (1999)PubMed E.E. Müller, V. Locatelli, D. Cocchi, Neuroendocrine control of growth hormone secretion. Physiol. Rev. 79, 511–607 (1999)PubMed
34.
Zurück zum Zitat W.B. Wehrenberg, P.J. Bergman, L. Stagg, J. Ndon, A. Giustina, Glucocorticoid inhibition of growth in rats: partial reversal with somatostatin antibodies. Endocrinology 127, 2705–2708 (1990)PubMedCrossRef W.B. Wehrenberg, P.J. Bergman, L. Stagg, J. Ndon, A. Giustina, Glucocorticoid inhibition of growth in rats: partial reversal with somatostatin antibodies. Endocrinology 127, 2705–2708 (1990)PubMedCrossRef
35.
Zurück zum Zitat G. Tulipano, J.E. Taylor, H.A. Halem, R. Datta, J.Z. Dong, M.D. Culler, I. Bianchi, D. Cocchi, A. Giustina, Glucocorticoid inhibition of growth in rats: partial reversal with the full-length ghrelin analog BIM-28125. Pituitary 10, 267–274 (2007)PubMedCrossRef G. Tulipano, J.E. Taylor, H.A. Halem, R. Datta, J.Z. Dong, M.D. Culler, I. Bianchi, D. Cocchi, A. Giustina, Glucocorticoid inhibition of growth in rats: partial reversal with the full-length ghrelin analog BIM-28125. Pituitary 10, 267–274 (2007)PubMedCrossRef
36.
Zurück zum Zitat A. Giustina, J.D. Veldhuis, Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr. Rev. 19, 717–797 (1998)PubMedCrossRef A. Giustina, J.D. Veldhuis, Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr. Rev. 19, 717–797 (1998)PubMedCrossRef
37.
Zurück zum Zitat A. Giustina, W.B. Wehrenberg, Influence of thyroid hormones on the regulation of growth hormone secretion. Eur. J. Endocrinol. 133, 646–653 (1995)PubMedCrossRef A. Giustina, W.B. Wehrenberg, Influence of thyroid hormones on the regulation of growth hormone secretion. Eur. J. Endocrinol. 133, 646–653 (1995)PubMedCrossRef
38.
Zurück zum Zitat M. Christ-Crain, B. Kola, F. Lolli, C. Fekete, D. Seboek, G. Wittmann, D. Feltrin, S.C. Igreja, S. Ajodha, J. Harvey-White, G. Kunos, B. Müller, F. Pralong, G. Aubert, G. Arnaldi, G. Giacchetti, M. Boscaro, A.B. Grossman, M. Korbonits, AMP-activated protein kinase mediates glucocorticoid-induced metabolic changes: a novel mechanism in Cushing’s syndrome. FASEB J. 22, 1673–1683 (2008)CrossRef M. Christ-Crain, B. Kola, F. Lolli, C. Fekete, D. Seboek, G. Wittmann, D. Feltrin, S.C. Igreja, S. Ajodha, J. Harvey-White, G. Kunos, B. Müller, F. Pralong, G. Aubert, G. Arnaldi, G. Giacchetti, M. Boscaro, A.B. Grossman, M. Korbonits, AMP-activated protein kinase mediates glucocorticoid-induced metabolic changes: a novel mechanism in Cushing’s syndrome. FASEB J. 22, 1673–1683 (2008)CrossRef
39.
Zurück zum Zitat M. Lopez, R. Lage, A.K. Saha, D. Perez-Tilve, M.J. Vazquez, L. Varela, S. Sangiao-Alvarellos, S. Tovar, K. Raghay, S. Rodriguez-Cuenca, R.M. Deoliveira, T. Castaneda, R. Datta, J.Z. Dong, M. Culler, M.W. Sleeman, C.V. Alvarez, R. Gallego, C.J. Lelliot, D. Carling, M.H. Tschop, C. Dieguez, A. Vidal-Puig, Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell Metab. 7, 389–399 (2008)PubMedCrossRef M. Lopez, R. Lage, A.K. Saha, D. Perez-Tilve, M.J. Vazquez, L. Varela, S. Sangiao-Alvarellos, S. Tovar, K. Raghay, S. Rodriguez-Cuenca, R.M. Deoliveira, T. Castaneda, R. Datta, J.Z. Dong, M. Culler, M.W. Sleeman, C.V. Alvarez, R. Gallego, C.J. Lelliot, D. Carling, M.H. Tschop, C. Dieguez, A. Vidal-Puig, Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell Metab. 7, 389–399 (2008)PubMedCrossRef
40.
Zurück zum Zitat Z.B. Andrews, Z.W. Liu, N. Wallingford, D.M. Erion, E. Borok, J.M. Friedman, M.H. Tschop, M. Shanabrough, G. Cline, G.I. Shulman, A. Coppola, X.B. Gao, T.L. Horvath, S. Diano, UCP2 mediates ghrelin’s action on NPY/AgRP neurons by lowering free radicals. Nature 454, 846–851 (2008)PubMedCrossRef Z.B. Andrews, Z.W. Liu, N. Wallingford, D.M. Erion, E. Borok, J.M. Friedman, M.H. Tschop, M. Shanabrough, G. Cline, G.I. Shulman, A. Coppola, X.B. Gao, T.L. Horvath, S. Diano, UCP2 mediates ghrelin’s action on NPY/AgRP neurons by lowering free radicals. Nature 454, 846–851 (2008)PubMedCrossRef
41.
Zurück zum Zitat M. Pollak, Insulin and Insulin-like growth factor signalling in neoplasia. Nat. Rev. Cancer 8, 915–928 (2008)PubMedCrossRef M. Pollak, Insulin and Insulin-like growth factor signalling in neoplasia. Nat. Rev. Cancer 8, 915–928 (2008)PubMedCrossRef
42.
Zurück zum Zitat I. Chopra, H.F. Li, H. Wang, K.A. Webster, Phosphorylation of the insulin receptor by AMP-activated protein kinase (AMPK) promotes ligand-independent activation of the insulin signalling pathway in rodent muscle. Diabetologia. doi:10.1007/s00125-011-2407-y (2012) I. Chopra, H.F. Li, H. Wang, K.A. Webster, Phosphorylation of the insulin receptor by AMP-activated protein kinase (AMPK) promotes ligand-independent activation of the insulin signalling pathway in rodent muscle. Diabetologia. doi:10.​1007/​s00125-011-2407-y (2012)
43.
Zurück zum Zitat A.A. Hayashi, C.G. Proud, The rapid inactivation of protein synthesis by growth hormone requires signaling through mTOR. Am. J. Physiol. Endocrinol. Metab. 292, E1647–E1655 (2007)PubMedCrossRef A.A. Hayashi, C.G. Proud, The rapid inactivation of protein synthesis by growth hormone requires signaling through mTOR. Am. J. Physiol. Endocrinol. Metab. 292, E1647–E1655 (2007)PubMedCrossRef
44.
Zurück zum Zitat C. Beauloye, A.S. Marsin, L. Bertrand, U. Krause, D.G. Hardie, J.L. Vanoverschelde, L. Hue, Insulin antagonizes AMP-activated protein kinase activation by ischemia or anoxia in rat hearts, without affecting total adenine nucleotides. FEBS Lett. 505, 348–352 (2001)PubMedCrossRef C. Beauloye, A.S. Marsin, L. Bertrand, U. Krause, D.G. Hardie, J.L. Vanoverschelde, L. Hue, Insulin antagonizes AMP-activated protein kinase activation by ischemia or anoxia in rat hearts, without affecting total adenine nucleotides. FEBS Lett. 505, 348–352 (2001)PubMedCrossRef
45.
Zurück zum Zitat S. Kovacic, C.L. Soltys, A.J. Barr, I. Shiojima, K. Walsh, J.R. Dyck, Akt activity negatively regulates phosphorylation of AMP-activated protein kinase in the heart. J. Biol. Chem. 278, 39422–39427 (2003)PubMedCrossRef S. Kovacic, C.L. Soltys, A.J. Barr, I. Shiojima, K. Walsh, J.R. Dyck, Akt activity negatively regulates phosphorylation of AMP-activated protein kinase in the heart. J. Biol. Chem. 278, 39422–39427 (2003)PubMedCrossRef
46.
Zurück zum Zitat K. To, H. Yamaza, T. Komatsu, T. Hayashida, H. Hayashi, H. Toyama, T. Chiba, Y. Higami, I. Shimokawa, Down-regulation of AMP-activated protein kinase by calorie restriction in rat liver. Exp. Gerontol. 42, 1063–1071 (2007)PubMedCrossRef K. To, H. Yamaza, T. Komatsu, T. Hayashida, H. Hayashi, H. Toyama, T. Chiba, Y. Higami, I. Shimokawa, Down-regulation of AMP-activated protein kinase by calorie restriction in rat liver. Exp. Gerontol. 42, 1063–1071 (2007)PubMedCrossRef
47.
Zurück zum Zitat K.A. Al-Regaiey, M.M. Masternak, M. Bonkowski, L. Sun, A. Bartke, Long-lived growth hormone receptor knockout mice: interaction of reduced insulin-like growth factor 1/insulin signaling and caloric restriction. Endocrinology 2005(146), 851–860 (2005) K.A. Al-Regaiey, M.M. Masternak, M. Bonkowski, L. Sun, A. Bartke, Long-lived growth hormone receptor knockout mice: interaction of reduced insulin-like growth factor 1/insulin signaling and caloric restriction. Endocrinology 2005(146), 851–860 (2005)
48.
Zurück zum Zitat Z. Wang, M.M. Masternak, K.A. Al-Regaiey, A. Bartke, Adipocytokines and the regulation of lipid metabolism in growth hormone transgenic and calorie-restricted mice. Endocrinology 148, 2845–2853 (2007)PubMedCrossRef Z. Wang, M.M. Masternak, K.A. Al-Regaiey, A. Bartke, Adipocytokines and the regulation of lipid metabolism in growth hormone transgenic and calorie-restricted mice. Endocrinology 148, 2845–2853 (2007)PubMedCrossRef
49.
Zurück zum Zitat B. Olsson, Y.M. Bohlooly, S.M. Fitzgerald, F. Frick, A. Ljungberg, B. Ahren, J. Tornell, G. Bergstrom, J. Oscarsson, Bovine growth hormone transgenic mice are resistant to diet-induced obesity but develop hyperphagia, dyslipidemia, and diabetes on a high-fat diet. Endocrinology 146, 920–930 (2005)PubMedCrossRef B. Olsson, Y.M. Bohlooly, S.M. Fitzgerald, F. Frick, A. Ljungberg, B. Ahren, J. Tornell, G. Bergstrom, J. Oscarsson, Bovine growth hormone transgenic mice are resistant to diet-induced obesity but develop hyperphagia, dyslipidemia, and diabetes on a high-fat diet. Endocrinology 146, 920–930 (2005)PubMedCrossRef
50.
Zurück zum Zitat S. Sangiao-Alvarellos, M.J. Vazquez, L. Varela, R. Nogueiras, A.K. Saha, F. Cordido, M. Lopez, C. Dieguez, Central ghrelin regulates peripheral lipid metabolism in a growth hormone-independent fashion. Endocrinology 150, 4562–4574 (2009)PubMedCrossRef S. Sangiao-Alvarellos, M.J. Vazquez, L. Varela, R. Nogueiras, A.K. Saha, F. Cordido, M. Lopez, C. Dieguez, Central ghrelin regulates peripheral lipid metabolism in a growth hormone-independent fashion. Endocrinology 150, 4562–4574 (2009)PubMedCrossRef
51.
Zurück zum Zitat G. Tulipano, M. Giovannini, M. Spinello, V. Sibilia, A. Giustina, D. Cocchi, AMP-activated protein kinase regulates normal rat somatotroph cell function and growth of rat pituitary adenomatous cells. Pituitary 14, 242–252 (2011)PubMedCrossRef G. Tulipano, M. Giovannini, M. Spinello, V. Sibilia, A. Giustina, D. Cocchi, AMP-activated protein kinase regulates normal rat somatotroph cell function and growth of rat pituitary adenomatous cells. Pituitary 14, 242–252 (2011)PubMedCrossRef
52.
Zurück zum Zitat G. Tulipano, D. Soldi, M. Bagnasco, M.D. Culler, J.E. Taylor, D. Cocchi, A. Giustina, Characterization of new selective somatostatin receptor subtype-2 (sst2) antagonists, BIM-23627 and BIM-23454. Effects of BIM-23627 on GH release in anesthetized male rats after short-term high-dose dexamethasone treatment. Endocrinology 143, 1218–1224 (2002)PubMedCrossRef G. Tulipano, D. Soldi, M. Bagnasco, M.D. Culler, J.E. Taylor, D. Cocchi, A. Giustina, Characterization of new selective somatostatin receptor subtype-2 (sst2) antagonists, BIM-23627 and BIM-23454. Effects of BIM-23627 on GH release in anesthetized male rats after short-term high-dose dexamethasone treatment. Endocrinology 143, 1218–1224 (2002)PubMedCrossRef
53.
Zurück zum Zitat M.S. Lewitt, Stimulation of IGF-binding protein-1 secretion by AMP-activated protein kinase. Biochem. Biophys. Res. Commun. 282, 1126–1131 (2001)PubMedCrossRef M.S. Lewitt, Stimulation of IGF-binding protein-1 secretion by AMP-activated protein kinase. Biochem. Biophys. Res. Commun. 282, 1126–1131 (2001)PubMedCrossRef
54.
Zurück zum Zitat S. Melmed, A. Colao, A. Barkan, M. Molitch, A.B. Grossman, D. Kleinberg, D. Clemmons, P. Chanson, E. Laws, J. Schlechte, M.L. Vance, K. Ho, A. Giustina, Guidelines for acromegaly management: an update. J. Clin. Endocrinol. Metab. 94, 1509–1517 (2009)PubMedCrossRef S. Melmed, A. Colao, A. Barkan, M. Molitch, A.B. Grossman, D. Kleinberg, D. Clemmons, P. Chanson, E. Laws, J. Schlechte, M.L. Vance, K. Ho, A. Giustina, Guidelines for acromegaly management: an update. J. Clin. Endocrinol. Metab. 94, 1509–1517 (2009)PubMedCrossRef
55.
Zurück zum Zitat A. Giustina, P. Chanson, M.D. Bronstein, A. Klibanski, S.W. Lamberts, P.P. Casanueva, P. Trainer, E. Ghigo, K. Ho, S. Melmed, A consensus on criteria for cure of acromegaly. J. Clin. Endocrinol. Metab. 95, 3141–3148 (2010)PubMedCrossRef A. Giustina, P. Chanson, M.D. Bronstein, A. Klibanski, S.W. Lamberts, P.P. Casanueva, P. Trainer, E. Ghigo, K. Ho, S. Melmed, A consensus on criteria for cure of acromegaly. J. Clin. Endocrinol. Metab. 95, 3141–3148 (2010)PubMedCrossRef
56.
57.
Zurück zum Zitat A. Gorshtein, H. Rubinfeld, E. Kendler, M. Theodoropoulou, V. Cerovac, G.K. Stalla, Z.R. Cohen, M. Hadani, I. Shimon, Mammalian target of rapamycin inhibitors rapamycin and RAD001 (everolimus) induce anti-proliferative effects in GH-secreting pituitary tumor cells in vitro. Endocr. Relat. Cancer 16, 1017–1027 (2009)PubMedCrossRef A. Gorshtein, H. Rubinfeld, E. Kendler, M. Theodoropoulou, V. Cerovac, G.K. Stalla, Z.R. Cohen, M. Hadani, I. Shimon, Mammalian target of rapamycin inhibitors rapamycin and RAD001 (everolimus) induce anti-proliferative effects in GH-secreting pituitary tumor cells in vitro. Endocr. Relat. Cancer 16, 1017–1027 (2009)PubMedCrossRef
58.
Zurück zum Zitat G. Tulipano, L. Faggi, M. Losa, P. Mortini, M. Spinello, D. Cocchi, A. Giustina, Effects of the combined treatment with AMPK activator and somatostatin-14 on hormone secretion and cell proliferation in cultured GH-secreting pituitary tumor cells, in International Congress of Endocrinology/European congress of Endocrinology 2012, Florence, May 5–9 (2012) G. Tulipano, L. Faggi, M. Losa, P. Mortini, M. Spinello, D. Cocchi, A. Giustina, Effects of the combined treatment with AMPK activator and somatostatin-14 on hormone secretion and cell proliferation in cultured GH-secreting pituitary tumor cells, in International Congress of Endocrinology/European congress of Endocrinology 2012, Florence, May 5–9 (2012)
59.
Zurück zum Zitat O. Ali, S. Banerjee, D.F. Kelly, P.D.K. Lee, Management of type 2 diabetes mellitus associated with pituitary gigantism. Pituitary 10, 359–364 (2007)PubMedCrossRef O. Ali, S. Banerjee, D.F. Kelly, P.D.K. Lee, Management of type 2 diabetes mellitus associated with pituitary gigantism. Pituitary 10, 359–364 (2007)PubMedCrossRef
60.
Zurück zum Zitat L. Fontana, The scientific basis of caloric restriction leading to longer life. Curr. Opin. Gastroenterol. 25, 144–150 (2009)PubMedCrossRef L. Fontana, The scientific basis of caloric restriction leading to longer life. Curr. Opin. Gastroenterol. 25, 144–150 (2009)PubMedCrossRef
61.
Zurück zum Zitat A. Bartke, Pleiotropic effects of growth hormone signaling in aging. Trends. Endocrinol. Metab. 22, 437–442 (2011)PubMedCrossRef A. Bartke, Pleiotropic effects of growth hormone signaling in aging. Trends. Endocrinol. Metab. 22, 437–442 (2011)PubMedCrossRef
Metadaten
Titel
Points of integration between the intracellular energy sensor AMP-activated protein kinase (AMPK) activity and the somatotroph axis function
verfasst von
Giovanni Tulipano
Lara Faggi
Valeria Sibilia
Andrea Giustina
Publikationsdatum
01.10.2012
Verlag
Springer US
Erschienen in
Endocrine / Ausgabe 2/2012
Print ISSN: 1355-008X
Elektronische ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-012-9732-x

Weitere Artikel der Ausgabe 2/2012

Endocrine 2/2012 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Strenge Blutdruckeinstellung lohnt auch im Alter noch

30.04.2024 Arterielle Hypertonie Nachrichten

Ältere Frauen, die von chronischen Erkrankungen weitgehend verschont sind, haben offenbar die besten Chancen, ihren 90. Geburtstag zu erleben, wenn ihr systolischer Blutdruck < 130 mmHg liegt. Das scheint selbst für 80-Jährige noch zu gelten.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Reizdarmsyndrom: Diäten wirksamer als Medikamente

29.04.2024 Reizdarmsyndrom Nachrichten

Bei Reizdarmsyndrom scheinen Diäten, wie etwa die FODMAP-arme oder die kohlenhydratreduzierte Ernährung, effektiver als eine medikamentöse Therapie zu sein. Das hat eine Studie aus Schweden ergeben, die die drei Therapieoptionen im direkten Vergleich analysierte.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.