Skip to main content
Erschienen in: European Radiology 6/2012

01.06.2012 | Magnetic Resonance

Precise measurement of renal filtration and vascular parameters using a two-compartment model for dynamic contrast-enhanced MRI of the kidney gives realistic normal values

verfasst von: Paul S. Tofts, Marica Cutajar, Iosif A. Mendichovszky, A. Michael Peters, Isky Gordon

Erschienen in: European Radiology | Ausgabe 6/2012

Einloggen, um Zugang zu erhalten

Abstract

Objective

To model the uptake phase of T1-weighted DCE-MRI data in normal kidneys and to demonstrate that the fitted physiological parameters correlate with published normal values.

Methods

The model incorporates delay and broadening of the arterial vascular peak as it appears in the capillary bed, two distinct compartments for renal intravascular and extravascular Gd tracer, and uses a small-vessel haematocrit value of 24%. Four physiological parameters can be estimated: regional filtration K trans (ml min−1 [ml tissue]−1), perfusion F (ml min−1 [100 ml tissue]−1), blood volume v b (%) and mean residence time MRT (s). From these are found the filtration fraction (FF; %) and total GFR (ml min−1). Fifteen healthy volunteers were imaged twice using oblique coronal slices every 2.5 s to determine the reproducibility.

Results

Using parenchymal ROIs, group mean values for renal biomarkers all agreed with published values: K trans : 0.25; F: 219; v b : 34; MRT: 5.5; FF: 15; GFR: 115. Nominally cortical ROIs consistently underestimated total filtration (by ~50%). Reproducibility was 7–18%. Sensitivity analysis showed that these fitted parameters are most vulnerable to errors in the fixed parameters kidney T1, flip angle, haematocrit and relaxivity.

Conclusions

These renal biomarkers can potentially measure renal physiology in diagnosis and treatment.

Key Points

Dynamic contrast-enhanced magnetic resonance imaging can measure renal function.
Filtration and perfusion values in healthy volunteers agree with published normal values.
Precision measured in healthy volunteers is between 7 and 15%.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Annet L, Hermoye L, Peeters F, Jamar F, Dehoux JP, Van Beers BE (2004) Glomerular filtration rate: assessment with dynamic contrast-enhanced MRI and a cortical-compartment model in the rabbit kidney. J Magn Reson Imaging 20:843–849PubMedCrossRef Annet L, Hermoye L, Peeters F, Jamar F, Dehoux JP, Van Beers BE (2004) Glomerular filtration rate: assessment with dynamic contrast-enhanced MRI and a cortical-compartment model in the rabbit kidney. J Magn Reson Imaging 20:843–849PubMedCrossRef
2.
Zurück zum Zitat Pedersen M, Shi Y, Anderson P, Stodkilde-Jorgensen H, Djurhuus JC, Gordon I, Frokiaer J (2004) Quantitation of differential renal blood flow and renal function using dynamic contrast-enhanced MRI in rats. Magn Reson Med 51:510–517PubMedCrossRef Pedersen M, Shi Y, Anderson P, Stodkilde-Jorgensen H, Djurhuus JC, Gordon I, Frokiaer J (2004) Quantitation of differential renal blood flow and renal function using dynamic contrast-enhanced MRI in rats. Magn Reson Med 51:510–517PubMedCrossRef
3.
Zurück zum Zitat Dujardin M, Sourbron S, Luypaert R, Verbeelen D, Stadnik T (2005) Quantification of renal perfusion and function on a voxel-by-voxel basis: a feasibility study. Magn Reson Med 54:841–849PubMedCrossRef Dujardin M, Sourbron S, Luypaert R, Verbeelen D, Stadnik T (2005) Quantification of renal perfusion and function on a voxel-by-voxel basis: a feasibility study. Magn Reson Med 54:841–849PubMedCrossRef
4.
Zurück zum Zitat Hackstein N, Kooijman H, Tomaselli S, Rau WS (2005) Glomerular filtration rate measured using the Patlak plot technique and contrast-enhanced dynamic MRI with different amounts of gadolinium-DTPA. J Magn Reson Imaging 22:406–414PubMedCrossRef Hackstein N, Kooijman H, Tomaselli S, Rau WS (2005) Glomerular filtration rate measured using the Patlak plot technique and contrast-enhanced dynamic MRI with different amounts of gadolinium-DTPA. J Magn Reson Imaging 22:406–414PubMedCrossRef
5.
Zurück zum Zitat Buckley DL, Shurrab AE, Cheung CM, Jones AP, Mamtora H, Kalra PA (2006) Measurement of single kidney function using dynamic contrast-enhanced MRI: comparison of two models in human subjects. J Magn Reson Imaging 24:1117–1123PubMedCrossRef Buckley DL, Shurrab AE, Cheung CM, Jones AP, Mamtora H, Kalra PA (2006) Measurement of single kidney function using dynamic contrast-enhanced MRI: comparison of two models in human subjects. J Magn Reson Imaging 24:1117–1123PubMedCrossRef
6.
Zurück zum Zitat Sourbron SP, Michaely HJ, Reiser MF, Schoenberg SO (2008) MRI-measurement of perfusion and glomerular filtration in the human kidney with a separable compartment model. Invest Radiol 43:40–48PubMedCrossRef Sourbron SP, Michaely HJ, Reiser MF, Schoenberg SO (2008) MRI-measurement of perfusion and glomerular filtration in the human kidney with a separable compartment model. Invest Radiol 43:40–48PubMedCrossRef
7.
Zurück zum Zitat Zhang JL, Rusinek H, Bokacheva L, Lerman LO, Chen Q, Prince C, Oesingmann N, Song T, Lee VS (2008) Functional assessment of the kidney from magnetic resonance and computed tomography renography: impulse retention approach to a multicompartment model. Magn Reson Med 59:278–288PubMedCrossRef Zhang JL, Rusinek H, Bokacheva L, Lerman LO, Chen Q, Prince C, Oesingmann N, Song T, Lee VS (2008) Functional assessment of the kidney from magnetic resonance and computed tomography renography: impulse retention approach to a multicompartment model. Magn Reson Med 59:278–288PubMedCrossRef
8.
Zurück zum Zitat Dujardin M, Luypaert R, Sourbron S, Verbeelen D, Stadnik T, de Mey J (2009) Age dependence of T1 perfusion MRI-based hemodynamic parameters in human kidneys. J Magn Reson Imaging 29:398–403PubMedCrossRef Dujardin M, Luypaert R, Sourbron S, Verbeelen D, Stadnik T, de Mey J (2009) Age dependence of T1 perfusion MRI-based hemodynamic parameters in human kidneys. J Magn Reson Imaging 29:398–403PubMedCrossRef
9.
Zurück zum Zitat Bokacheva L, Rusinek H, Zhang JL, Lee VS (2008) Assessment of renal function with dynamic contrast-enhanced MR imaging. Magn Reson Imaging Clin N Am 16:597–611PubMedCrossRef Bokacheva L, Rusinek H, Zhang JL, Lee VS (2008) Assessment of renal function with dynamic contrast-enhanced MR imaging. Magn Reson Imaging Clin N Am 16:597–611PubMedCrossRef
10.
Zurück zum Zitat Grenier N, Hauger O, Cimpean A, Perot V (2006) Update of renal imaging. Semin Nucl Med 36:3–15PubMedCrossRef Grenier N, Hauger O, Cimpean A, Perot V (2006) Update of renal imaging. Semin Nucl Med 36:3–15PubMedCrossRef
11.
Zurück zum Zitat Michaely HJ, Sourbron S, Dietrich O, Attenberger U, Reiser MF, Schoenberg SO (2007) Functional renal MR imaging: an overview. Abdom Imaging 32:758–771CrossRef Michaely HJ, Sourbron S, Dietrich O, Attenberger U, Reiser MF, Schoenberg SO (2007) Functional renal MR imaging: an overview. Abdom Imaging 32:758–771CrossRef
12.
Zurück zum Zitat Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HB, Lee TY, Mayr NA, Parker GJ, Port RE, Taylor J, Weisskoff RM (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232PubMedCrossRef Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HB, Lee TY, Mayr NA, Parker GJ, Port RE, Taylor J, Weisskoff RM (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232PubMedCrossRef
13.
Zurück zum Zitat Leach MO, Brindle KM, Evelhoch JL, Griffiths JR, Horsman MR, Jackson A, Jayson GC, Judson IR, Knopp MV, Maxwell RJ, McIntyre D, Padhani AR, Price P, Rathbone R, Rustin GJ, Tofts PS, Tozer GM, Vennart W, Waterton JC, Williams SR, Workman P (2005) The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer 92:1599–1610PubMedCrossRef Leach MO, Brindle KM, Evelhoch JL, Griffiths JR, Horsman MR, Jackson A, Jayson GC, Judson IR, Knopp MV, Maxwell RJ, McIntyre D, Padhani AR, Price P, Rathbone R, Rustin GJ, Tofts PS, Tozer GM, Vennart W, Waterton JC, Williams SR, Workman P (2005) The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer 92:1599–1610PubMedCrossRef
14.
Zurück zum Zitat Tofts, PS, Mendichovszky IA, Buckley DL, Miles KA, Peters AM, Gordon I (2008) A simple two-compartment model that describes dynamic contrast-enhanced MRI signal in the kidney. Proc Intl Soc Mag Reson Med, 16th annual meeting, Toronto 454 Tofts, PS, Mendichovszky IA, Buckley DL, Miles KA, Peters AM, Gordon I (2008) A simple two-compartment model that describes dynamic contrast-enhanced MRI signal in the kidney. Proc Intl Soc Mag Reson Med, 16th annual meeting, Toronto 454
15.
Zurück zum Zitat Tofts, PS, Cutajar M, Mendichovszky IA, Gordon I (2009) Estimating GFR from early (uptake) portion of DCE MRI renal data, using a 3-compartment model, improves reproducibility and may eliminate need for cortical segmentation. Proc Intl Soc Mag Reson Med, 17th annual meeting, Honolulu 408 Tofts, PS, Cutajar M, Mendichovszky IA, Gordon I (2009) Estimating GFR from early (uptake) portion of DCE MRI renal data, using a 3-compartment model, improves reproducibility and may eliminate need for cortical segmentation. Proc Intl Soc Mag Reson Med, 17th annual meeting, Honolulu 408
16.
Zurück zum Zitat Tofts PS, Cutajar M, Mendichovszky IA, Gordon I (2010) Accurate and precise measurement of renal filtration and vascular parameters using DCE-MRI and a 3-compartment model. Proc Intl Soc Mag Reson Med, 18th annual meeting, Stockholm 326 Tofts PS, Cutajar M, Mendichovszky IA, Gordon I (2010) Accurate and precise measurement of renal filtration and vascular parameters using DCE-MRI and a 3-compartment model. Proc Intl Soc Mag Reson Med, 18th annual meeting, Stockholm 326
17.
Zurück zum Zitat Hackstein N, Heckrodt J, Rau WS (2003) Measurement of single-kidney glomerular filtration rate using a contrast-enhanced dynamic gradient-echo sequence and the Rutland-Patlak plot technique. J Magn Reson Imaging 18:714–725PubMedCrossRef Hackstein N, Heckrodt J, Rau WS (2003) Measurement of single-kidney glomerular filtration rate using a contrast-enhanced dynamic gradient-echo sequence and the Rutland-Patlak plot technique. J Magn Reson Imaging 18:714–725PubMedCrossRef
18.
Zurück zum Zitat de Senneville BD, Mendichovszky IA, Roujol S, Gordon I, Moonen C, Grenier N (2008) Improvement of MRI-functional measurement with automatic movement correction in native and transplanted kidneys. J Magn Reson Imaging 28:970–978PubMedCrossRef de Senneville BD, Mendichovszky IA, Roujol S, Gordon I, Moonen C, Grenier N (2008) Improvement of MRI-functional measurement with automatic movement correction in native and transplanted kidneys. J Magn Reson Imaging 28:970–978PubMedCrossRef
19.
Zurück zum Zitat Peters AM, Brown J, Crossman D, Brady AJ, Hemingway AP, Roddie ME, Allison DJ (1990) Noninvasive measurement of renal blood flow with technetium-99 m-DTPA in the evaluation of patients with suspected renovascular hypertension. J Nucl Med 31:1980–1985PubMed Peters AM, Brown J, Crossman D, Brady AJ, Hemingway AP, Roddie ME, Allison DJ (1990) Noninvasive measurement of renal blood flow with technetium-99 m-DTPA in the evaluation of patients with suspected renovascular hypertension. J Nucl Med 31:1980–1985PubMed
20.
Zurück zum Zitat Boron WF, Boulpaep EL (2008) Medical physiology. Saunders, Philadelphia Boron WF, Boulpaep EL (2008) Medical physiology. Saunders, Philadelphia
21.
Zurück zum Zitat Tofts PS, Shuter B, Pope JM (1993) Ni-DTPA doped agarose gel—a phantom material for Gd-DTPA enhancement measurements. Magn Reson Imaging 11:125–133PubMedCrossRef Tofts PS, Shuter B, Pope JM (1993) Ni-DTPA doped agarose gel—a phantom material for Gd-DTPA enhancement measurements. Magn Reson Imaging 11:125–133PubMedCrossRef
22.
Zurück zum Zitat Spees WM, Yablonskiy DA, Oswood MC, Ackerman JJ (2001) Water proton MR properties of human blood at 1.5 Tesla: magnetic susceptibility, T(1), T(2), T*(2), and non-Lorentzian signal behavior. Magn Reson Med 45:533–542PubMedCrossRef Spees WM, Yablonskiy DA, Oswood MC, Ackerman JJ (2001) Water proton MR properties of human blood at 1.5 Tesla: magnetic susceptibility, T(1), T(2), T*(2), and non-Lorentzian signal behavior. Magn Reson Med 45:533–542PubMedCrossRef
23.
Zurück zum Zitat de Bazelaire CM, Duhamel GD, Rofsky NM, Alsop DC (2004) MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 230:652–659PubMedCrossRef de Bazelaire CM, Duhamel GD, Rofsky NM, Alsop DC (2004) MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 230:652–659PubMedCrossRef
24.
Zurück zum Zitat Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310PubMedCrossRef Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310PubMedCrossRef
25.
Zurück zum Zitat Tofts PS (2003) Quantitative MRI of the brain: measuring changes caused by disease. Wiley, New York Tofts PS (2003) Quantitative MRI of the brain: measuring changes caused by disease. Wiley, New York
26.
Zurück zum Zitat Tofts PS, Silver NC, Barker GJ, Gass A (2005) Object strength—an accurate measure for small objects that is insensitive to partial volume effects. MAGMA 18:162–169PubMedCrossRef Tofts PS, Silver NC, Barker GJ, Gass A (2005) Object strength—an accurate measure for small objects that is insensitive to partial volume effects. MAGMA 18:162–169PubMedCrossRef
27.
Zurück zum Zitat Tofts PS, Berkowitz B, Schnall MD (1995) Quantitative analysis of dynamic Gd-DTPA enhancement in breast tumors using a permeability model. Magn Reson Med 33:564–568PubMedCrossRef Tofts PS, Berkowitz B, Schnall MD (1995) Quantitative analysis of dynamic Gd-DTPA enhancement in breast tumors using a permeability model. Magn Reson Med 33:564–568PubMedCrossRef
28.
Zurück zum Zitat Gehan EA, George SL (1970) Estimation of human body surface area from height and weight. Cancer Chemother Rep 54:225–235PubMed Gehan EA, George SL (1970) Estimation of human body surface area from height and weight. Cancer Chemother Rep 54:225–235PubMed
29.
Zurück zum Zitat Gray HG (1918) Anatomy of the human body Gray HG (1918) Anatomy of the human body
30.
Zurück zum Zitat Tauxe WN, Todd-Pokropek A, Soussaline F, Raynaud C, Kellershohn C (1983) Estimates of kidney volume by single photon emission tomography: a preliminary report. Eur J Nucl Med 8:72–74PubMedCrossRef Tauxe WN, Todd-Pokropek A, Soussaline F, Raynaud C, Kellershohn C (1983) Estimates of kidney volume by single photon emission tomography: a preliminary report. Eur J Nucl Med 8:72–74PubMedCrossRef
31.
Zurück zum Zitat Crystal GJ, Downey HF, Bashour FA (1981) Small vessel and total coronary blood volume during intracoronary adenosine. Am J Physiol 241:H194–H201PubMed Crystal GJ, Downey HF, Bashour FA (1981) Small vessel and total coronary blood volume during intracoronary adenosine. Am J Physiol 241:H194–H201PubMed
32.
Zurück zum Zitat Sakai F, Nakazawa K, Tazaki Y, Ishii K, Hino H, Igarashi H, Kanda T (1985) Regional cerebral blood volume and hematocrit measured in normal human volunteers by single-photon emission computed tomography. J Cereb Blood Flow Metab 5:207–213PubMedCrossRef Sakai F, Nakazawa K, Tazaki Y, Ishii K, Hino H, Igarashi H, Kanda T (1985) Regional cerebral blood volume and hematocrit measured in normal human volunteers by single-photon emission computed tomography. J Cereb Blood Flow Metab 5:207–213PubMedCrossRef
33.
Zurück zum Zitat Rempp KA, Brix G, Wenz F, Becker CR, Guckel F, Lorenz WJ (1994) Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 193:637–641PubMed Rempp KA, Brix G, Wenz F, Becker CR, Guckel F, Lorenz WJ (1994) Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 193:637–641PubMed
34.
Zurück zum Zitat Pries AR, Ley K, Gaehtgens P (1986) Generalization of the Fahraeus principle for microvessel networks. Am J Physiol 251:H1324–H1332PubMed Pries AR, Ley K, Gaehtgens P (1986) Generalization of the Fahraeus principle for microvessel networks. Am J Physiol 251:H1324–H1332PubMed
35.
Zurück zum Zitat Lamkin-Kennard KA, Jaron D, Buerk DG (2004) Impact of the Fahraeus effect on NO and O2 biotransport: a computer model. Microcirculation 11:337–349PubMedCrossRef Lamkin-Kennard KA, Jaron D, Buerk DG (2004) Impact of the Fahraeus effect on NO and O2 biotransport: a computer model. Microcirculation 11:337–349PubMedCrossRef
36.
Zurück zum Zitat Gaehtgens P (1980) Flow of blood through narrow capillaries: rheological mechanisms determining capillary hematocrit and apparent viscosity. Biorheology 17:183–189PubMed Gaehtgens P (1980) Flow of blood through narrow capillaries: rheological mechanisms determining capillary hematocrit and apparent viscosity. Biorheology 17:183–189PubMed
37.
Zurück zum Zitat Shuter B, Tofts PS, Wang SC, Pope JM (1996) The relaxivity of Gd-EOB-DTPA and Gd-DTPA in liver and kidney of the Wistar rat. Magn Reson Imaging 14:243–253PubMedCrossRef Shuter B, Tofts PS, Wang SC, Pope JM (1996) The relaxivity of Gd-EOB-DTPA and Gd-DTPA in liver and kidney of the Wistar rat. Magn Reson Imaging 14:243–253PubMedCrossRef
38.
Zurück zum Zitat Mendichovszky I, Pedersen M, Frokiaer J, Dissing T, Grenier N, Anderson P, McHugh K, Yang Q, Gordon I (2008) How accurate is dynamic contrast-enhanced MRI in the assessment of renal glomerular filtration rate? A critical appraisal. J Magn Reson Imaging 27:925–931PubMedCrossRef Mendichovszky I, Pedersen M, Frokiaer J, Dissing T, Grenier N, Anderson P, McHugh K, Yang Q, Gordon I (2008) How accurate is dynamic contrast-enhanced MRI in the assessment of renal glomerular filtration rate? A critical appraisal. J Magn Reson Imaging 27:925–931PubMedCrossRef
39.
Zurück zum Zitat Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7PubMedCrossRef Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7PubMedCrossRef
40.
Zurück zum Zitat Prigent A, Cosgriff P, Gates GF, Granerus G, Fine EJ, Itoh K, Peters M, Piepsz A, Rehling M, Rutland M, Taylor A Jr (1999) Consensus report on quality control of quantitative measurements of renal function obtained from the renogram: International Consensus Committee from the Scientific Committee of Radionuclides in Nephrourology. Semin Nucl Med 29:146–159PubMedCrossRef Prigent A, Cosgriff P, Gates GF, Granerus G, Fine EJ, Itoh K, Peters M, Piepsz A, Rehling M, Rutland M, Taylor A Jr (1999) Consensus report on quality control of quantitative measurements of renal function obtained from the renogram: International Consensus Committee from the Scientific Committee of Radionuclides in Nephrourology. Semin Nucl Med 29:146–159PubMedCrossRef
41.
Zurück zum Zitat Miles KA, Leggett DA, Bennett GA (1999) CT derived Patlak images of the human kidney. Br J Radiol 72:153–158PubMed Miles KA, Leggett DA, Bennett GA (1999) CT derived Patlak images of the human kidney. Br J Radiol 72:153–158PubMed
42.
Zurück zum Zitat Helck A, Sommer WH, Klotz E, Wessely M, Sourbron SP, Nikolaou K, Clevert DA, Notohamiprodjo M, Illner WD, Reiser M, Becker HC (2010) Determination of glomerular filtration rate using dynamic CT-angiography: simultaneous acquisition of morphological and functional information. Invest Radiol 45:387–392PubMed Helck A, Sommer WH, Klotz E, Wessely M, Sourbron SP, Nikolaou K, Clevert DA, Notohamiprodjo M, Illner WD, Reiser M, Becker HC (2010) Determination of glomerular filtration rate using dynamic CT-angiography: simultaneous acquisition of morphological and functional information. Invest Radiol 45:387–392PubMed
43.
Zurück zum Zitat Tsushima Y, Blomley MJ, Kusano S, Endo K (1999) Use of contrast-enhanced computed tomography to measure clearance per unit renal volume: a novel measurement of renal function and fractional vascular volume. Am J Kidney Dis 33:754–760PubMedCrossRef Tsushima Y, Blomley MJ, Kusano S, Endo K (1999) Use of contrast-enhanced computed tomography to measure clearance per unit renal volume: a novel measurement of renal function and fractional vascular volume. Am J Kidney Dis 33:754–760PubMedCrossRef
44.
Zurück zum Zitat Bokacheva L, Rusinek H, Zhang JL, Chen Q, Lee VS (2009) Estimates of glomerular filtration rate from MR renography and tracer kinetic models. J Magn Reson Imaging 29:371–382PubMedCrossRef Bokacheva L, Rusinek H, Zhang JL, Chen Q, Lee VS (2009) Estimates of glomerular filtration rate from MR renography and tracer kinetic models. J Magn Reson Imaging 29:371–382PubMedCrossRef
46.
Zurück zum Zitat Eaton DC, Pooler JP (2009) Vander's renal physiology. McGraw-Hill, New York Eaton DC, Pooler JP (2009) Vander's renal physiology. McGraw-Hill, New York
47.
Zurück zum Zitat Gutierrez DR, Wells K, Diaz MO, Moran SA, Mendichovszky IA, Gordon I (2010) Partial volume effects in dynamic contrast magnetic resonance renal studies. Eur J Radiol 75:221–229PubMedCrossRef Gutierrez DR, Wells K, Diaz MO, Moran SA, Mendichovszky IA, Gordon I (2010) Partial volume effects in dynamic contrast magnetic resonance renal studies. Eur J Radiol 75:221–229PubMedCrossRef
48.
Zurück zum Zitat Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40:715–724PubMedCrossRef Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40:715–724PubMedCrossRef
49.
Zurück zum Zitat Pedersen M, Vajda Z, Stodkilde-Jorgensen H, Nielsen S, Frokiaer J (2007) Furosemide increases water content in renal tissue. Am J Physiol Renal Physiol 292:F1645–F1651PubMedCrossRef Pedersen M, Vajda Z, Stodkilde-Jorgensen H, Nielsen S, Frokiaer J (2007) Furosemide increases water content in renal tissue. Am J Physiol Renal Physiol 292:F1645–F1651PubMedCrossRef
50.
Zurück zum Zitat Stanisz GJ, Henkelman RM (2000) Gd-DTPA relaxivity depends on macromolecular content. Magn Reson Med 44:665–667PubMedCrossRef Stanisz GJ, Henkelman RM (2000) Gd-DTPA relaxivity depends on macromolecular content. Magn Reson Med 44:665–667PubMedCrossRef
51.
Zurück zum Zitat Bluml S, Schad LR, Stepanow B, Lorenz WJ (1993) Spin-lattice relaxation time measurement by means of a TurboFLASH technique. Magn Reson Med 30:289–295PubMedCrossRef Bluml S, Schad LR, Stepanow B, Lorenz WJ (1993) Spin-lattice relaxation time measurement by means of a TurboFLASH technique. Magn Reson Med 30:289–295PubMedCrossRef
52.
Zurück zum Zitat Jones RA, Ries M, Moonen CT, Grenier N (2002) Imaging the changes in renal T1 induced by the inhalation of pure oxygen: a feasibility study. Magn Reson Med 47:728–735PubMedCrossRef Jones RA, Ries M, Moonen CT, Grenier N (2002) Imaging the changes in renal T1 induced by the inhalation of pure oxygen: a feasibility study. Magn Reson Med 47:728–735PubMedCrossRef
53.
Zurück zum Zitat Dowell NG, Tofts PS (2007) Fast, accurate, and precise mapping of the RF field in vivo using the 180 degrees signal null. Magn Reson Med 58:622–630PubMedCrossRef Dowell NG, Tofts PS (2007) Fast, accurate, and precise mapping of the RF field in vivo using the 180 degrees signal null. Magn Reson Med 58:622–630PubMedCrossRef
54.
Zurück zum Zitat Cutajar M, Mendichovszky IA, Tofts PS, Gordon I (2010) The importance of AIF ROI selection in DCE-MRI renography: reproducibility and variability of renal perfusion and filtration. Eur J Radiol 74:e154–e160PubMedCrossRef Cutajar M, Mendichovszky IA, Tofts PS, Gordon I (2010) The importance of AIF ROI selection in DCE-MRI renography: reproducibility and variability of renal perfusion and filtration. Eur J Radiol 74:e154–e160PubMedCrossRef
55.
Zurück zum Zitat Donaldson SB, West CM, Davidson SE, Carrington BM, Hutchison G, Jones AP, Sourbron SP, Buckley DL (2010) A comparison of tracer kinetic models for T1-weighted dynamic contrast-enhanced MRI: application in carcinoma of the cervix. Magn Reson Med 63:691–700PubMedCrossRef Donaldson SB, West CM, Davidson SE, Carrington BM, Hutchison G, Jones AP, Sourbron SP, Buckley DL (2010) A comparison of tracer kinetic models for T1-weighted dynamic contrast-enhanced MRI: application in carcinoma of the cervix. Magn Reson Med 63:691–700PubMedCrossRef
56.
Zurück zum Zitat Dujardin M, Luypaert R, Vandenbroucke F, Van der Niepen P, Sourbron S, Verbeelen D, Stadnik T, de Mey J (2009) Combined T1-based perfusion MRI and MR angiography in kidney: first experience in normals and pathology. Eur J Radiol 69:542–549PubMedCrossRef Dujardin M, Luypaert R, Vandenbroucke F, Van der Niepen P, Sourbron S, Verbeelen D, Stadnik T, de Mey J (2009) Combined T1-based perfusion MRI and MR angiography in kidney: first experience in normals and pathology. Eur J Radiol 69:542–549PubMedCrossRef
57.
Zurück zum Zitat Attenberger UI, Sourbron SP, Schoenberg SO, Morelli J, Leiner T, Schoeppler GM, Samtleben W, Birkemeier KL, Glaser C, Reiser MF, Michaely HJ (2010) Comprehensive MR evaluation of renal disease: added clinical value of quantified renal perfusion values over single MR angiography. J Magn Reson Imaging 31:125–133PubMedCrossRef Attenberger UI, Sourbron SP, Schoenberg SO, Morelli J, Leiner T, Schoeppler GM, Samtleben W, Birkemeier KL, Glaser C, Reiser MF, Michaely HJ (2010) Comprehensive MR evaluation of renal disease: added clinical value of quantified renal perfusion values over single MR angiography. J Magn Reson Imaging 31:125–133PubMedCrossRef
58.
Zurück zum Zitat Scheid F (1968) Schaum's outline of theory and problems of numerical analysis. McGraw-Hill, New York Scheid F (1968) Schaum's outline of theory and problems of numerical analysis. McGraw-Hill, New York
Metadaten
Titel
Precise measurement of renal filtration and vascular parameters using a two-compartment model for dynamic contrast-enhanced MRI of the kidney gives realistic normal values
verfasst von
Paul S. Tofts
Marica Cutajar
Iosif A. Mendichovszky
A. Michael Peters
Isky Gordon
Publikationsdatum
01.06.2012
Verlag
Springer-Verlag
Erschienen in
European Radiology / Ausgabe 6/2012
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-012-2382-9

Weitere Artikel der Ausgabe 6/2012

European Radiology 6/2012 Zur Ausgabe

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.