Skip to main content
Erschienen in: Translational Stroke Research 6/2017

09.07.2017 | Review

Preclinical and Clinical Evidence on Ipsilateral Corticospinal Projections: Implication for Motor Recovery

verfasst von: Ali Alawieh, Stephen Tomlinson, DeAnna Adkins, Steve Kautz, Wuwei Feng

Erschienen in: Translational Stroke Research | Ausgabe 6/2017

Einloggen, um Zugang zu erhalten

Abstract

Motor impairment is the most common complication after stroke, and recovery of motor function has been shown to be dependent on the extent of lesion in the ipsilesional corticospinal tract (iCST) and activity within ipsilesional primary and secondary motor cortices. However, work from neuroimaging research has suggested a role of the contralesional hemisphere in promoting recovery after stroke potentially through the ipsilateral uncrossed CST fibers descending to ipsilateral spinal segments. These ipsilateral fibers, sometimes referred to as “latent” projections, are thought to contribute to motor recovery independent of the crossed CST. The aim of this paper is to evaluate using cumulative evidence from animal models and human patients on whether an uncrossed CST component is present in mammals and conserved through primates and humans, and whether iCST fibers have a functional role in hemiparetic/hemiplegic human conditions. This review highlights that an ipsilateral uncrossed CST exists in human during development, but the evidence on a functionally relevant iCST component in adult humans is still elusive. In addition, this review argues that whereas activity within the ipsilesional cortex is essential for enhancing motor recovery after stroke, the role of iCST projections specifically is still controversial. Finally, conclusions from current literature emphasize the importance of activity in the ipsilesional cortex and the integrity of crossed CST fibers as major determinants of motor recovery after brain injury.
Literatur
1.
Zurück zum Zitat Armand J. Topical versus diffuse organization of the corticospinal tract in the cat. Journal de physiologie. 1978;74(3):227–30.PubMed Armand J. Topical versus diffuse organization of the corticospinal tract in the cat. Journal de physiologie. 1978;74(3):227–30.PubMed
2.
Zurück zum Zitat Satomi H, Takahashi K, Kosaka I, Aoki M. Reappraisal of projection levels of the corticospinal fibers in the cat, with special reference to the fibers descending through the dorsal funiculus: a WGA-HRP study. Brain Res. 1989;492(1–2):255–60.CrossRefPubMed Satomi H, Takahashi K, Kosaka I, Aoki M. Reappraisal of projection levels of the corticospinal fibers in the cat, with special reference to the fibers descending through the dorsal funiculus: a WGA-HRP study. Brain Res. 1989;492(1–2):255–60.CrossRefPubMed
3.
Zurück zum Zitat Lacroix S, Havton LA, McKay H, Yang H, Brant A, Roberts J, et al. Bilateral corticospinal projections arise from each motor cortex in the macaque monkey: a quantitative study. J Comp Neurol. 2004;473(2):147–61. doi:10.1002/cne.20051.CrossRefPubMed Lacroix S, Havton LA, McKay H, Yang H, Brant A, Roberts J, et al. Bilateral corticospinal projections arise from each motor cortex in the macaque monkey: a quantitative study. J Comp Neurol. 2004;473(2):147–61. doi:10.​1002/​cne.​20051.CrossRefPubMed
4.
Zurück zum Zitat Tigges J, Nakagawa S, Tigges M. Efferents of area 4 in a south American monkey (Saimiri). I. Terminations in the spinal cord. Brain Res. 1979;171(1):1–10.CrossRefPubMed Tigges J, Nakagawa S, Tigges M. Efferents of area 4 in a south American monkey (Saimiri). I. Terminations in the spinal cord. Brain Res. 1979;171(1):1–10.CrossRefPubMed
5.
Zurück zum Zitat Gerloff C, Bushara K, Sailer A, Wassermann EM, Chen R, Matsuoka T, et al. Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain. 2006;129(Pt 3):791–808. doi:10.1093/brain/awh713.CrossRefPubMed Gerloff C, Bushara K, Sailer A, Wassermann EM, Chen R, Matsuoka T, et al. Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain. 2006;129(Pt 3):791–808. doi:10.​1093/​brain/​awh713.CrossRefPubMed
7.
Zurück zum Zitat Staudt M, Grodd W, Gerloff C, Erb M, Stitz J, Krageloh-Mann I. Two types of ipsilateral reorganization in congenital hemiparesis: a TMS and fMRI study. Brain. 2002;125(Pt 10):2222–37.CrossRefPubMed Staudt M, Grodd W, Gerloff C, Erb M, Stitz J, Krageloh-Mann I. Two types of ipsilateral reorganization in congenital hemiparesis: a TMS and fMRI study. Brain. 2002;125(Pt 10):2222–37.CrossRefPubMed
8.
Zurück zum Zitat Lawrence DG, Kuypers HG. Pyramidal and non-pyramidal pathways in monkeys: anatomical and functional correlation. Science. 1965;148(3672):973–5.CrossRefPubMed Lawrence DG, Kuypers HG. Pyramidal and non-pyramidal pathways in monkeys: anatomical and functional correlation. Science. 1965;148(3672):973–5.CrossRefPubMed
9.
Zurück zum Zitat Herbert WJ, Powell K, Buford JA. Evidence for a role of the reticulospinal system in recovery of skilled reaching after cortical stroke: initial results from a model of ischemic cortical injury. Exp Brain Res. 2015;233(11):3231–51. doi:10.1007/s00221-015-4390-x.CrossRefPubMed Herbert WJ, Powell K, Buford JA. Evidence for a role of the reticulospinal system in recovery of skilled reaching after cortical stroke: initial results from a model of ischemic cortical injury. Exp Brain Res. 2015;233(11):3231–51. doi:10.​1007/​s00221-015-4390-x.CrossRefPubMed
13.
Zurück zum Zitat Eyre JA, Taylor JP, Villagra F, Smith M, Miller S. Evidence of activity-dependent withdrawal of corticospinal projections during human development. Neurology. 2001;57(9):1543–54.CrossRefPubMed Eyre JA, Taylor JP, Villagra F, Smith M, Miller S. Evidence of activity-dependent withdrawal of corticospinal projections during human development. Neurology. 2001;57(9):1543–54.CrossRefPubMed
14.
Zurück zum Zitat Dum RP, Strick PL. Spinal cord terminations of the medial wall motor areas in macaque monkeys. J Neurosci. 1996;16(20):6513–25.PubMed Dum RP, Strick PL. Spinal cord terminations of the medial wall motor areas in macaque monkeys. J Neurosci. 1996;16(20):6513–25.PubMed
15.
Zurück zum Zitat Ralston DD, Ralston HJ. The terminations of corticospinal tract axons in the macaque monkey. J Comp Neurol. 1985;242(3):325–37.CrossRefPubMed Ralston DD, Ralston HJ. The terminations of corticospinal tract axons in the macaque monkey. J Comp Neurol. 1985;242(3):325–37.CrossRefPubMed
16.
Zurück zum Zitat Kim SH, Pohl PS, Luchies CW, Stylianou AP, Won Y. Ipsilateral deficits of targeted movements after stroke. Arch Phys Med Rehabil. 2003;84(5):719–24.CrossRefPubMed Kim SH, Pohl PS, Luchies CW, Stylianou AP, Won Y. Ipsilateral deficits of targeted movements after stroke. Arch Phys Med Rehabil. 2003;84(5):719–24.CrossRefPubMed
18.
Zurück zum Zitat Marchi V, Guzzetta A, Cioni G. Cerebral plasticity and functional reorganization in children with congenital brain lesions. Neonatology. 2017:1–10. Marchi V, Guzzetta A, Cioni G. Cerebral plasticity and functional reorganization in children with congenital brain lesions. Neonatology. 2017:1–10.
19.
Zurück zum Zitat Rehme AK, Fink GR, von Cramon DY, Grefkes C. The role of the contralesional motor cortex for motor recovery in the early days after stroke assessed with longitudinal FMRI. Cereb Cortex. 2011;21(4):756–68. doi:10.1093/cercor/bhq140.CrossRefPubMed Rehme AK, Fink GR, von Cramon DY, Grefkes C. The role of the contralesional motor cortex for motor recovery in the early days after stroke assessed with longitudinal FMRI. Cereb Cortex. 2011;21(4):756–68. doi:10.​1093/​cercor/​bhq140.CrossRefPubMed
25.
Zurück zum Zitat Cramer SC, Nelles G, Benson RR, Kaplan JD, Parker RA, Kwong KK, et al. A functional MRI study of subjects recovered from hemiparetic stroke. Stroke. 1997;28(12):2518–27.CrossRefPubMed Cramer SC, Nelles G, Benson RR, Kaplan JD, Parker RA, Kwong KK, et al. A functional MRI study of subjects recovered from hemiparetic stroke. Stroke. 1997;28(12):2518–27.CrossRefPubMed
26.
Zurück zum Zitat Foltys H, Krings T, Meister IG, Sparing R, Boroojerdi B, Thron A, et al. Motor representation in patients rapidly recovering after stroke: a functional magnetic resonance imaging and transcranial magnetic stimulation study. Clin Neurophysiol. 2003;114(12):2404–15.CrossRefPubMed Foltys H, Krings T, Meister IG, Sparing R, Boroojerdi B, Thron A, et al. Motor representation in patients rapidly recovering after stroke: a functional magnetic resonance imaging and transcranial magnetic stimulation study. Clin Neurophysiol. 2003;114(12):2404–15.CrossRefPubMed
27.
Zurück zum Zitat Marshall RS, Perera GM, Lazar RM, Krakauer JW, Constantine RC, DeLaPaz RL. Evolution of cortical activation during recovery from corticospinal tract infarction. Stroke. 2000;31(3):656–61.CrossRefPubMed Marshall RS, Perera GM, Lazar RM, Krakauer JW, Constantine RC, DeLaPaz RL. Evolution of cortical activation during recovery from corticospinal tract infarction. Stroke. 2000;31(3):656–61.CrossRefPubMed
28.
Zurück zum Zitat Ward NS, Newton JM, Swayne OB, Lee L, Thompson AJ, Greenwood RJ, et al. Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain. 2006;129(3):809–19.CrossRefPubMedPubMedCentral Ward NS, Newton JM, Swayne OB, Lee L, Thompson AJ, Greenwood RJ, et al. Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain. 2006;129(3):809–19.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Armand J, Kuypers HG. Organization of contralateral and bilateral projections of corticospinal tracts in cats. C R Hebd Seances Acad Sci D. 1977;285(16):1455–8. Armand J, Kuypers HG. Organization of contralateral and bilateral projections of corticospinal tracts in cats. C R Hebd Seances Acad Sci D. 1977;285(16):1455–8.
30.
Zurück zum Zitat Satomi H, Takahashi K, Aoki M, Kosaka I. Anatomical evidence for the re-crossing of lateral corticospinal fibers via the posterior gray commissure in the cat spinal cord. Neurosci Lett. 1988;88(2):157–60.CrossRefPubMed Satomi H, Takahashi K, Aoki M, Kosaka I. Anatomical evidence for the re-crossing of lateral corticospinal fibers via the posterior gray commissure in the cat spinal cord. Neurosci Lett. 1988;88(2):157–60.CrossRefPubMed
31.
Zurück zum Zitat Rapisarda C, Simonelli G, Monti S. Cells of origin and topographic organization of corticospinal neurons in the guinea pig by the retrograde HRP method. Brain Res. 1985;334(1):85–96.CrossRefPubMed Rapisarda C, Simonelli G, Monti S. Cells of origin and topographic organization of corticospinal neurons in the guinea pig by the retrograde HRP method. Brain Res. 1985;334(1):85–96.CrossRefPubMed
32.
Zurück zum Zitat Armand J, Kuypers HG. Cells of origin of crossed and uncrossed corticospinal fibers in the cat: a quantitative horseradish peroxidase study. Exp Brain Res. 1980;40(1):23–34.CrossRefPubMed Armand J, Kuypers HG. Cells of origin of crossed and uncrossed corticospinal fibers in the cat: a quantitative horseradish peroxidase study. Exp Brain Res. 1980;40(1):23–34.CrossRefPubMed
33.
Zurück zum Zitat Brosamle C, Schwab ME. Cells of origin, course, and termination patterns of the ventral, uncrossed component of the mature rat corticospinal tract. J Comp Neurol. 1997;386(2):293–303.CrossRefPubMed Brosamle C, Schwab ME. Cells of origin, course, and termination patterns of the ventral, uncrossed component of the mature rat corticospinal tract. J Comp Neurol. 1997;386(2):293–303.CrossRefPubMed
34.
Zurück zum Zitat Alstermark B, Ogawa J, Isa T. Lack of monosynaptic corticomotoneuronal EPSPs in rats: disynaptic EPSPs mediated via reticulospinal neurons and polysynaptic EPSPs via segmental interneurons. J Neurophysiol. 2004;91(4):1832–9.CrossRefPubMed Alstermark B, Ogawa J, Isa T. Lack of monosynaptic corticomotoneuronal EPSPs in rats: disynaptic EPSPs mediated via reticulospinal neurons and polysynaptic EPSPs via segmental interneurons. J Neurophysiol. 2004;91(4):1832–9.CrossRefPubMed
37.
Zurück zum Zitat Hoff E, Hoff H. Spinal terminations of the projection fibers from the motor cortex of primates. Brain. 1934. Hoff E, Hoff H. Spinal terminations of the projection fibers from the motor cortex of primates. Brain. 1934.
38.
Zurück zum Zitat Nakagawa S. Onuf's nucleus of the sacral cord in a south American monkey (Saimiri): its location and bilateral cortical input from area 4. Brain Res. 1980;191(2):337–44.CrossRefPubMed Nakagawa S. Onuf's nucleus of the sacral cord in a south American monkey (Saimiri): its location and bilateral cortical input from area 4. Brain Res. 1980;191(2):337–44.CrossRefPubMed
39.
Zurück zum Zitat Rosenzweig ES, Brock JH, Culbertson MD, Lu P, Moseanko R, Edgerton VR, et al. Extensive spinal decussation and bilateral termination of cervical corticospinal projections in rhesus monkeys. J Comp Neurol. 2009;513(2):151–63.CrossRefPubMedPubMedCentral Rosenzweig ES, Brock JH, Culbertson MD, Lu P, Moseanko R, Edgerton VR, et al. Extensive spinal decussation and bilateral termination of cervical corticospinal projections in rhesus monkeys. J Comp Neurol. 2009;513(2):151–63.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Morecraft RJ, Ge J, Stilwell-Morecraft KS, McNeal DW, Pizzimenti MA, Darling WG. Terminal distribution of the corticospinal projection from the hand/arm region of the primary motor cortex to the cervical enlargement in rhesus monkey. J Comp Neurol. 2013;521(18):4205–35. doi:10.1002/cne.23410.CrossRefPubMedPubMedCentral Morecraft RJ, Ge J, Stilwell-Morecraft KS, McNeal DW, Pizzimenti MA, Darling WG. Terminal distribution of the corticospinal projection from the hand/arm region of the primary motor cortex to the cervical enlargement in rhesus monkey. J Comp Neurol. 2013;521(18):4205–35. doi:10.​1002/​cne.​23410.CrossRefPubMedPubMedCentral
42.
43.
Zurück zum Zitat Aizawa H, Mushiake H, Inase M, Tanji J. An output zone of the monkey primary motor cortex specialized for bilateral hand movement. Exp Brain Res. 1990;82(1):219–21.CrossRefPubMed Aizawa H, Mushiake H, Inase M, Tanji J. An output zone of the monkey primary motor cortex specialized for bilateral hand movement. Exp Brain Res. 1990;82(1):219–21.CrossRefPubMed
44.
Zurück zum Zitat Boudrias MH, Lee SP, Svojanovsky S, Cheney PD. Forelimb muscle representations and output properties of motor areas in the mesial wall of rhesus macaques. Cereb Cortex. 2010;20(3):704–19. doi:10.1093/cercor/bhp136.CrossRefPubMed Boudrias MH, Lee SP, Svojanovsky S, Cheney PD. Forelimb muscle representations and output properties of motor areas in the mesial wall of rhesus macaques. Cereb Cortex. 2010;20(3):704–19. doi:10.​1093/​cercor/​bhp136.CrossRefPubMed
46.
Zurück zum Zitat Morecraft RJ, Ge J, Stilwell-Morecraft KS, McNeal DW, Hynes SM, Pizzimenti MA, et al. Vulnerability of the medial frontal corticospinal projection accompanies combined lateral frontal and parietal cortex injury in rhesus monkey. J Comp Neurol. 2015;523(4):669–97. doi:10.1002/cne.23703.CrossRefPubMed Morecraft RJ, Ge J, Stilwell-Morecraft KS, McNeal DW, Hynes SM, Pizzimenti MA, et al. Vulnerability of the medial frontal corticospinal projection accompanies combined lateral frontal and parietal cortex injury in rhesus monkey. J Comp Neurol. 2015;523(4):669–97. doi:10.​1002/​cne.​23703.CrossRefPubMed
47.
Zurück zum Zitat Aisaka A, Aimi Y, Yasuhara O, Tooyama I, Kimura H, Shimada M. Two modes of corticospinal reinnervation occur close to spinal targets following unilateral lesion of the motor cortex in neonatal hamsters. Neuroscience. 1999;90(1):53–67.CrossRefPubMed Aisaka A, Aimi Y, Yasuhara O, Tooyama I, Kimura H, Shimada M. Two modes of corticospinal reinnervation occur close to spinal targets following unilateral lesion of the motor cortex in neonatal hamsters. Neuroscience. 1999;90(1):53–67.CrossRefPubMed
49.
Zurück zum Zitat Whishaw IQ, Metz GA. Absence of impairments or recovery mediated by the uncrossed pyramidal tract in the rat versus enduring deficits produced by the crossed pyramidal tract. Behav Brain Res. 2002;134(1–2):323–36.CrossRefPubMed Whishaw IQ, Metz GA. Absence of impairments or recovery mediated by the uncrossed pyramidal tract in the rat versus enduring deficits produced by the crossed pyramidal tract. Behav Brain Res. 2002;134(1–2):323–36.CrossRefPubMed
50.
Zurück zum Zitat Carmel JB, Kimura H, Berrol LJ, Martin JH. Motor cortex electrical stimulation promotes axon outgrowth to brain stem and spinal targets that control the forelimb impaired by unilateral corticospinal injury. Eur J Neurosci. 2013;37(7):1090–102.CrossRefPubMedPubMedCentral Carmel JB, Kimura H, Berrol LJ, Martin JH. Motor cortex electrical stimulation promotes axon outgrowth to brain stem and spinal targets that control the forelimb impaired by unilateral corticospinal injury. Eur J Neurosci. 2013;37(7):1090–102.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Gonzalez CL, Gharbawie OA, Williams PT, Kleim JA, Kolb B, Whishaw IQ. Evidence for bilateral control of skilled movements: ipsilateral skilled forelimb reaching deficits and functional recovery in rats follow motor cortex and lateral frontal cortex lesions. Eur J Neurosci. 2004;20(12):3442–52. doi:10.1111/j.1460-9568.2004.03751.x.CrossRefPubMed Gonzalez CL, Gharbawie OA, Williams PT, Kleim JA, Kolb B, Whishaw IQ. Evidence for bilateral control of skilled movements: ipsilateral skilled forelimb reaching deficits and functional recovery in rats follow motor cortex and lateral frontal cortex lesions. Eur J Neurosci. 2004;20(12):3442–52. doi:10.​1111/​j.​1460-9568.​2004.​03751.​x.CrossRefPubMed
53.
Zurück zum Zitat Wahl AS, Omlor W, Rubio JC, Chen JL, Zheng H, Schroter A, et al. Neuronal repair. Asynchronous therapy restores motor control by rewiring of the rat corticospinal tract after stroke. Science. 2014;344(6189):1250–5. doi:10.1126/science.1253050.CrossRefPubMed Wahl AS, Omlor W, Rubio JC, Chen JL, Zheng H, Schroter A, et al. Neuronal repair. Asynchronous therapy restores motor control by rewiring of the rat corticospinal tract after stroke. Science. 2014;344(6189):1250–5. doi:10.​1126/​science.​1253050.CrossRefPubMed
55.
Zurück zum Zitat Freund P, Schmidlin E, Wannier T, Bloch J, Mir A, Schwab ME, et al. Nogo-A-specific antibody treatment enhances sprouting and functional recovery after cervical lesion in adult primates. Nat Med. 2006;12(7):790–2. doi:10.1038/nm1436.CrossRefPubMed Freund P, Schmidlin E, Wannier T, Bloch J, Mir A, Schwab ME, et al. Nogo-A-specific antibody treatment enhances sprouting and functional recovery after cervical lesion in adult primates. Nat Med. 2006;12(7):790–2. doi:10.​1038/​nm1436.CrossRefPubMed
57.
Zurück zum Zitat Nathan PW, Smith MC, Deacon P. The corticospinal tracts in man. Course and location of fibres at different segmental levels. Brain. 1990;113(Pt 2):303–24.CrossRefPubMed Nathan PW, Smith MC, Deacon P. The corticospinal tracts in man. Course and location of fibres at different segmental levels. Brain. 1990;113(Pt 2):303–24.CrossRefPubMed
58.
Zurück zum Zitat Colebatch JG, Rothwell JC, Day BL, Thompson PD, Marsden CD. Cortical outflow to proximal arm muscles in man. Brain. 1990;113(Pt 6):1843–56.CrossRefPubMed Colebatch JG, Rothwell JC, Day BL, Thompson PD, Marsden CD. Cortical outflow to proximal arm muscles in man. Brain. 1990;113(Pt 6):1843–56.CrossRefPubMed
59.
Zurück zum Zitat Berardelli A, Priori A, Inghilleri M, Cruccu G, Mercuri B, Manfredi M. Corticobulbar and corticospinal projections to neck muscle motoneurons in man. A functional study with magnetic and electric transcranial brain stimulation. Exp Brain Res. 1991;87(2):402–6.CrossRefPubMed Berardelli A, Priori A, Inghilleri M, Cruccu G, Mercuri B, Manfredi M. Corticobulbar and corticospinal projections to neck muscle motoneurons in man. A functional study with magnetic and electric transcranial brain stimulation. Exp Brain Res. 1991;87(2):402–6.CrossRefPubMed
60.
Zurück zum Zitat Carr LJ, Harrison LM, Stephens JA. Evidence for bilateral innervation of certain homologous motoneurone pools in man. J Physiol. 1994;475(2):217–27.CrossRefPubMedPubMedCentral Carr LJ, Harrison LM, Stephens JA. Evidence for bilateral innervation of certain homologous motoneurone pools in man. J Physiol. 1994;475(2):217–27.CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Strutton PH, Beith ID, Theodorou S, Catley M, McGregor AH, Davey NJ. Corticospinal activation of internal oblique muscles has a strong ipsilateral component and can be lateralised in man. Exp Brain Res. 2004;158(4):474–9. doi:10.1007/s00221-004-1939-5.CrossRefPubMed Strutton PH, Beith ID, Theodorou S, Catley M, McGregor AH, Davey NJ. Corticospinal activation of internal oblique muscles has a strong ipsilateral component and can be lateralised in man. Exp Brain Res. 2004;158(4):474–9. doi:10.​1007/​s00221-004-1939-5.CrossRefPubMed
62.
Zurück zum Zitat Quartarone A, MacKinnon C, Rothwell J. Ipsilateral EMG responses in pectoralis major muscle evoked by transcranial magnetic stimulation over the motor cortex. J Physiol Paris. 1999;520:74P. Quartarone A, MacKinnon C, Rothwell J. Ipsilateral EMG responses in pectoralis major muscle evoked by transcranial magnetic stimulation over the motor cortex. J Physiol Paris. 1999;520:74P.
63.
Zurück zum Zitat Tunstill SA, Wynn-Davies AC, Nowicky AV, McGregor AH, Davey NJ. Corticospinal facilitation studied during voluntary contraction of human abdominal muscles. Exp Physiol. 2001;86(1):131–6.CrossRefPubMed Tunstill SA, Wynn-Davies AC, Nowicky AV, McGregor AH, Davey NJ. Corticospinal facilitation studied during voluntary contraction of human abdominal muscles. Exp Physiol. 2001;86(1):131–6.CrossRefPubMed
64.
Zurück zum Zitat Ziemann U, Ishii K, Borgheresi A, Yaseen Z, Battaglia F, Hallett M, et al. Dissociation of the pathways mediating ipsilateral and contralateral motor-evoked potentials in human hand and arm muscles. J Physiol. 1999;518(Pt 3):895–906.CrossRefPubMedPubMedCentral Ziemann U, Ishii K, Borgheresi A, Yaseen Z, Battaglia F, Hallett M, et al. Dissociation of the pathways mediating ipsilateral and contralateral motor-evoked potentials in human hand and arm muscles. J Physiol. 1999;518(Pt 3):895–906.CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat Ellaway PH, Davey NJ, Maskill DW, Rawlinson SR, Lewis HS, Anissimova NP. Variability in the amplitude of skeletal muscle responses to magnetic stimulation of the motor cortex in man. Electroencephalogr Clin Neurophysiol. 1998;109(2):104–13.CrossRefPubMed Ellaway PH, Davey NJ, Maskill DW, Rawlinson SR, Lewis HS, Anissimova NP. Variability in the amplitude of skeletal muscle responses to magnetic stimulation of the motor cortex in man. Electroencephalogr Clin Neurophysiol. 1998;109(2):104–13.CrossRefPubMed
70.
Zurück zum Zitat Wolpaw JR, Kaas JH. Taking sides: corticospinal tract plasticity during development. Neurology. 2001;57(9):1530–1.CrossRefPubMed Wolpaw JR, Kaas JH. Taking sides: corticospinal tract plasticity during development. Neurology. 2001;57(9):1530–1.CrossRefPubMed
71.
Zurück zum Zitat Brouwer B, Smits E. Corticospinal input onto motor neurons projecting to ankle muscles in individuals with cerebral palsy. Dev Med Child Neurol. 1996;38(9):787–96.CrossRefPubMed Brouwer B, Smits E. Corticospinal input onto motor neurons projecting to ankle muscles in individuals with cerebral palsy. Dev Med Child Neurol. 1996;38(9):787–96.CrossRefPubMed
72.
Zurück zum Zitat Can L, Harrison L, Evans A, Stephens J. Patterns of central motor reorganization in hemiplegic cerebral palsy. Brain. 1993;116:1223–47.CrossRef Can L, Harrison L, Evans A, Stephens J. Patterns of central motor reorganization in hemiplegic cerebral palsy. Brain. 1993;116:1223–47.CrossRef
73.
Zurück zum Zitat Farmer SF, Harrison LM, Ingram DA, Stephens JA. Plasticity of central motor pathways in children with hemiplegic cerebral palsy. Neurology. 1991;41(9):1505.CrossRefPubMed Farmer SF, Harrison LM, Ingram DA, Stephens JA. Plasticity of central motor pathways in children with hemiplegic cerebral palsy. Neurology. 1991;41(9):1505.CrossRefPubMed
74.
Zurück zum Zitat Leonard CT, Goldberger ME. Consequences of damage to the sensorimotor cortex in neonatal and adult cats. II. Maintenance of exuberant projections. Dev Brain Res. 1987;32(1):15–30.CrossRef Leonard CT, Goldberger ME. Consequences of damage to the sensorimotor cortex in neonatal and adult cats. II. Maintenance of exuberant projections. Dev Brain Res. 1987;32(1):15–30.CrossRef
75.
Zurück zum Zitat Nathan PW, Smith M, Deacon P. Vestibulospinal, reticulospinal and descending propriospinal nerve fibres in man. Brain. 1996;119(Pt 6):1809–33.CrossRefPubMed Nathan PW, Smith M, Deacon P. Vestibulospinal, reticulospinal and descending propriospinal nerve fibres in man. Brain. 1996;119(Pt 6):1809–33.CrossRefPubMed
76.
Zurück zum Zitat Staudt M, Gerloff C, Grodd W, Holthausen H, Niemann G, Krägeloh-Mann I. Reorganization in congenital hemiparesis acquired at different gestational ages. Ann Neurol. 2004;56(6):854–63.CrossRefPubMed Staudt M, Gerloff C, Grodd W, Holthausen H, Niemann G, Krägeloh-Mann I. Reorganization in congenital hemiparesis acquired at different gestational ages. Ann Neurol. 2004;56(6):854–63.CrossRefPubMed
78.
Zurück zum Zitat Stanfield BB. The development of the corticospinal projection. Prog Neurobiol. 1992;38(2):169–202.CrossRefPubMed Stanfield BB. The development of the corticospinal projection. Prog Neurobiol. 1992;38(2):169–202.CrossRefPubMed
79.
Zurück zum Zitat Verhaart W. Hypertrophy of pes pedunculi and pyramid al result of degeneration of contralateral corticofugal fiber tracts. J Comp Neurol. 1950;92(1):1–15.CrossRef Verhaart W. Hypertrophy of pes pedunculi and pyramid al result of degeneration of contralateral corticofugal fiber tracts. J Comp Neurol. 1950;92(1):1–15.CrossRef
80.
Zurück zum Zitat Sebastianelli L, Versace V, Taylor A, Brigo F, Nothdurfter W, Saltuari L et al. Functional reorganization after hemispherectomy in humans and animal models: what can we learn about the brain’s resilience to extensive unilateral lesions? Brain Res Bull. 2017. Sebastianelli L, Versace V, Taylor A, Brigo F, Nothdurfter W, Saltuari L et al. Functional reorganization after hemispherectomy in humans and animal models: what can we learn about the brain’s resilience to extensive unilateral lesions? Brain Res Bull. 2017.
81.
Zurück zum Zitat Rutten GJ, Ramsey NF, van Rijen PC, Franssen H, van Veelen CW. Interhemispheric reorganization of motor hand function to the primary motor cortex predicted with functional magnetic resonance imaging and transcranial magnetic stimulation. J Child Neurol. 2002;17(4):292–7. doi:10.1177/088307380201700411.CrossRefPubMed Rutten GJ, Ramsey NF, van Rijen PC, Franssen H, van Veelen CW. Interhemispheric reorganization of motor hand function to the primary motor cortex predicted with functional magnetic resonance imaging and transcranial magnetic stimulation. J Child Neurol. 2002;17(4):292–7. doi:10.​1177/​0883073802017004​11.CrossRefPubMed
85.
Zurück zum Zitat Schaechter JD, Fricker ZP, Perdue KL, Helmer KG, Vangel MG, Greve DN, et al. Microstructural status of ipsilesional and contralesional corticospinal tract correlates with motor skill in chronic stroke patients. Hum Brain Mapp. 2009;30(11):3461–74. doi:10.1002/hbm.20770.CrossRefPubMedPubMedCentral Schaechter JD, Fricker ZP, Perdue KL, Helmer KG, Vangel MG, Greve DN, et al. Microstructural status of ipsilesional and contralesional corticospinal tract correlates with motor skill in chronic stroke patients. Hum Brain Mapp. 2009;30(11):3461–74. doi:10.​1002/​hbm.​20770.CrossRefPubMedPubMedCentral
87.
Zurück zum Zitat Verleger R, Adam S, Rose M, Vollmer C, Wauschkuhn B, Kompf D. Control of hand movements after striatocapsular stroke: high-resolution temporal analysis of the function of ipsilateral activation. Clin Neurophysiol. 2003;114(8):1468–76.CrossRefPubMed Verleger R, Adam S, Rose M, Vollmer C, Wauschkuhn B, Kompf D. Control of hand movements after striatocapsular stroke: high-resolution temporal analysis of the function of ipsilateral activation. Clin Neurophysiol. 2003;114(8):1468–76.CrossRefPubMed
88.
Zurück zum Zitat Weiller C, Ramsay SC, Wise RJ, Friston KJ, Frackowiak RS. Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Ann Neurol. 1993;33(2):181–9. doi:10.1002/ana.410330208.CrossRefPubMed Weiller C, Ramsay SC, Wise RJ, Friston KJ, Frackowiak RS. Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Ann Neurol. 1993;33(2):181–9. doi:10.​1002/​ana.​410330208.CrossRefPubMed
89.
Zurück zum Zitat Turton A, Wroe S, Trepte N, Fraser C, Lemon RN. Contralateral and ipsilateral EMG responses to transcranial magnetic stimulation during recovery of arm and hand function after stroke. Electroencephalogr Clin Neurophysiol. 1996;101(4):316–28.CrossRefPubMed Turton A, Wroe S, Trepte N, Fraser C, Lemon RN. Contralateral and ipsilateral EMG responses to transcranial magnetic stimulation during recovery of arm and hand function after stroke. Electroencephalogr Clin Neurophysiol. 1996;101(4):316–28.CrossRefPubMed
90.
Zurück zum Zitat Feng W, Wang J, Chhatbar PY, Doughty C, Landsittel D, Lioutas VA, et al. Corticospinal tract lesion load: an imaging biomarker for stroke motor outcomes. Ann Neurol. 2015; doi:10.1002/ana.24510. Feng W, Wang J, Chhatbar PY, Doughty C, Landsittel D, Lioutas VA, et al. Corticospinal tract lesion load: an imaging biomarker for stroke motor outcomes. Ann Neurol. 2015; doi:10.​1002/​ana.​24510.
91.
Zurück zum Zitat Soderblom C, Lee DH, Dawood A, Carballosa M, Jimena Santamaria A, Benavides FD et al. 3D Imaging of Axons in Transparent Spinal Cords from Rodents and Nonhuman Primates. eNeuro. 2015;2(2). doi:10.1523/ENEURO.0001-15.2015. Soderblom C, Lee DH, Dawood A, Carballosa M, Jimena Santamaria A, Benavides FD et al. 3D Imaging of Axons in Transparent Spinal Cords from Rodents and Nonhuman Primates. eNeuro. 2015;2(2). doi:10.​1523/​ENEURO.​0001-15.​2015.
Metadaten
Titel
Preclinical and Clinical Evidence on Ipsilateral Corticospinal Projections: Implication for Motor Recovery
verfasst von
Ali Alawieh
Stephen Tomlinson
DeAnna Adkins
Steve Kautz
Wuwei Feng
Publikationsdatum
09.07.2017
Verlag
Springer US
Erschienen in
Translational Stroke Research / Ausgabe 6/2017
Print ISSN: 1868-4483
Elektronische ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-017-0551-5

Weitere Artikel der Ausgabe 6/2017

Translational Stroke Research 6/2017 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.