Skip to main content
Erschienen in: Translational Stroke Research 6/2017

23.06.2017 | Review

MicroRNA Changes in Preconditioning-Induced Neuroprotection

verfasst von: Josh D. Bell, Jang-Eun Cho, Rona G. Giffard

Erschienen in: Translational Stroke Research | Ausgabe 6/2017

Einloggen, um Zugang zu erhalten

Abstract

Preconditioning is a paradigm in which sublethal stress–prior to a more injurious insult–induces protection against injury. In the central nervous system (CNS), preconditioning against ischemic stroke is induced by short durations of ischemia, brief seizures, exposure to anesthetics, and other stresses. Increasing evidence supports the contribution of microRNAs (miRNAs) to the pathogenesis of cerebral ischemia and ischemic tolerance induced by preconditioning. Studies investigating miRNA changes induced by preconditioning have to date identified 562 miRNAs that change expression levels after preconditioning, and 15% of these changes were reproduced in at least one additional study. Of miRNAs assessed as changed by preconditioning in more than one study, about 40% changed in the same direction in more than one study. Most of the studies to assess the role of specific miRNAs in the neuroprotective mechanism of preconditioning were performed in vitro, with fewer studies manipulating individual miRNAs in vivo. Thus, while many miRNAs change in response to preconditioning stimuli, the mechanisms underlying their effects are not well understood. The data does suggest that miRNAs may play significant roles in preconditioning-induced neuroprotection. This review focuses on the current state of knowledge of the possible role of miRNAs in preconditioning-induced cerebral protection.
Literatur
3.
Zurück zum Zitat McDonough A, Weinstein JR. Neuroimmune response in ischemic preconditioning. Neurotherapeutics: the journal of the American Society for Experimental NeuroTherapeutics. 2016;13(4):748–61. doi:10.1007/s13311-016-0465-z.CrossRef McDonough A, Weinstein JR. Neuroimmune response in ischemic preconditioning. Neurotherapeutics: the journal of the American Society for Experimental NeuroTherapeutics. 2016;13(4):748–61. doi:10.​1007/​s13311-016-0465-z.CrossRef
5.
Zurück zum Zitat Meller R, Thompson SJ, Lusardi TA, Ordonez AN, Ashley MD, Jessick V, et al. Ubiquitin proteasome-mediated synaptic reorganization: a novel mechanism underlying rapid ischemic tolerance. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2008;28(1):50–9. doi:10.1523/jneurosci.3474-07.2008.CrossRef Meller R, Thompson SJ, Lusardi TA, Ordonez AN, Ashley MD, Jessick V, et al. Ubiquitin proteasome-mediated synaptic reorganization: a novel mechanism underlying rapid ischemic tolerance. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2008;28(1):50–9. doi:10.​1523/​jneurosci.​3474-07.​2008.CrossRef
9.
Zurück zum Zitat Kitagawa K, Matsumoto M, Tagaya M, Hata R, Ueda H, Niinobe M, et al. 'Ischemic tolerance' phenomenon found in the brain. Brain Res. 1990;528(1):21–4.CrossRefPubMed Kitagawa K, Matsumoto M, Tagaya M, Hata R, Ueda H, Niinobe M, et al. 'Ischemic tolerance' phenomenon found in the brain. Brain Res. 1990;528(1):21–4.CrossRefPubMed
10.
Zurück zum Zitat Barone FC, White RF, Spera PA, Ellison J, Currie RW, Wang X, et al. Ischemic preconditioning and brain tolerance: temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression. Stroke. 1998;29(9):1937–50. discussion 50-1CrossRefPubMed Barone FC, White RF, Spera PA, Ellison J, Currie RW, Wang X, et al. Ischemic preconditioning and brain tolerance: temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression. Stroke. 1998;29(9):1937–50. discussion 50-1CrossRefPubMed
12.
Zurück zum Zitat Stenzel-Poore MP, Stevens SL, Xiong Z, Lessov NS, Harrington CA, Mori M, et al. Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet (London, England). 2003;362(9389):1028–37. doi:10.1016/s0140-6736(03)14412-1.CrossRef Stenzel-Poore MP, Stevens SL, Xiong Z, Lessov NS, Harrington CA, Mori M, et al. Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet (London, England). 2003;362(9389):1028–37. doi:10.​1016/​s0140-6736(03)14412-1.CrossRef
16.
20.
25.
Zurück zum Zitat Singh T, Jauhari A, Pandey A, Singh P, Pant AB, Parmar D, et al. Regulatory triangle of neurodegeneration, adult neurogenesis and microRNAs. CNS & neurological disorders drug targets. 2014;13(1):96–103.CrossRef Singh T, Jauhari A, Pandey A, Singh P, Pant AB, Parmar D, et al. Regulatory triangle of neurodegeneration, adult neurogenesis and microRNAs. CNS & neurological disorders drug targets. 2014;13(1):96–103.CrossRef
29.
Zurück zum Zitat Zeng L, Liu J, Wang Y, Wang L, Weng S, Tang Y, et al. MicroRNA-210 as a novel blood biomarker in acute cerebral ischemia. Frontiers in bioscience (Elite edition). 2011;3:1265–72. Zeng L, Liu J, Wang Y, Wang L, Weng S, Tang Y, et al. MicroRNA-210 as a novel blood biomarker in acute cerebral ischemia. Frontiers in bioscience (Elite edition). 2011;3:1265–72.
31.
Zurück zum Zitat Dharap A, Bowen K, Place R, Li LC, Vemuganti R. Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2009;29(4):675–87. doi:10.1038/jcbfm.2008.157.CrossRef Dharap A, Bowen K, Place R, Li LC, Vemuganti R. Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2009;29(4):675–87. doi:10.​1038/​jcbfm.​2008.​157.CrossRef
34.
Zurück zum Zitat Thompson JW, Dave KR, Young JI, Perez-Pinzon MA. Ischemic preconditioning alters the epigenetic profile of the brain from ischemic intolerance to ischemic tolerance. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics. 2013;10(4):789–97. doi:10.1007/s13311-013-0202-9.CrossRef Thompson JW, Dave KR, Young JI, Perez-Pinzon MA. Ischemic preconditioning alters the epigenetic profile of the brain from ischemic intolerance to ischemic tolerance. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics. 2013;10(4):789–97. doi:10.​1007/​s13311-013-0202-9.CrossRef
35.
Zurück zum Zitat Lusardi TA, Farr CD, Faulkner CL, Pignataro G, Yang T, Lan J, et al. Ischemic preconditioning regulates expression of microRNAs and a predicted target, MeCP2, in mouse cortex. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2010;30(4):744–56. doi:10.1038/jcbfm.2009.253.CrossRef Lusardi TA, Farr CD, Faulkner CL, Pignataro G, Yang T, Lan J, et al. Ischemic preconditioning regulates expression of microRNAs and a predicted target, MeCP2, in mouse cortex. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2010;30(4):744–56. doi:10.​1038/​jcbfm.​2009.​253.CrossRef
37.
Zurück zum Zitat Hu K, Xie YY, Zhang C, Ouyang DS, Long HY, Sun DN, et al. MicroRNA expression profile of the hippocampus in a rat model of temporal lobe epilepsy and miR-34a-targeted neuroprotection against hippocampal neurone cell apoptosis post-status epilepticus. BMC Neurosci. 2012;13:115. doi:10.1186/1471-2202-13-115.CrossRefPubMedPubMedCentral Hu K, Xie YY, Zhang C, Ouyang DS, Long HY, Sun DN, et al. MicroRNA expression profile of the hippocampus in a rat model of temporal lobe epilepsy and miR-34a-targeted neuroprotection against hippocampal neurone cell apoptosis post-status epilepticus. BMC Neurosci. 2012;13:115. doi:10.​1186/​1471-2202-13-115.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Moon JM, Xu L, Giffard RG. Inhibition of microRNA-181 reduces forebrain ischemia-induced neuronal loss. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2013;33(12):1976–82. doi:10.1038/jcbfm.2013.157.CrossRef Moon JM, Xu L, Giffard RG. Inhibition of microRNA-181 reduces forebrain ischemia-induced neuronal loss. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2013;33(12):1976–82. doi:10.​1038/​jcbfm.​2013.​157.CrossRef
41.
Zurück zum Zitat Wang P, Liang J, Li Y, Li J, Yang X, Zhang X, et al. Down-regulation of miRNA-30a alleviates cerebral ischemic injury through enhancing beclin 1-mediated autophagy. Neurochem Res. 2014;39(7):1279–91. doi:10.1007/s11064-014-1310-6.CrossRefPubMed Wang P, Liang J, Li Y, Li J, Yang X, Zhang X, et al. Down-regulation of miRNA-30a alleviates cerebral ischemic injury through enhancing beclin 1-mediated autophagy. Neurochem Res. 2014;39(7):1279–91. doi:10.​1007/​s11064-014-1310-6.CrossRefPubMed
42.
Zurück zum Zitat Wang P, Zhang N, Liang J, Li J, Han S, Li J. Micro-RNA-30a regulates ischemia-induced cell death by targeting heat shock protein HSPA5 in primary cultured cortical neurons and mouse brain after stroke. J Neurosci Res. 2015;93(11):1756–68. doi:10.1002/jnr.23637.CrossRefPubMed Wang P, Zhang N, Liang J, Li J, Han S, Li J. Micro-RNA-30a regulates ischemia-induced cell death by targeting heat shock protein HSPA5 in primary cultured cortical neurons and mouse brain after stroke. J Neurosci Res. 2015;93(11):1756–68. doi:10.​1002/​jnr.​23637.CrossRefPubMed
43.
Zurück zum Zitat Wei N, Xiao L, Xue R, Zhang D, Zhou J, Ren H, et al. MicroRNA-9 mediates the cell apoptosis by targeting Bcl2l11 in ischemic stroke. Mol Neurobiol. 2015; doi:10.1007/s12035-015-9605-4. Wei N, Xiao L, Xue R, Zhang D, Zhou J, Ren H, et al. MicroRNA-9 mediates the cell apoptosis by targeting Bcl2l11 in ischemic stroke. Mol Neurobiol. 2015; doi:10.​1007/​s12035-015-9605-4.
45.
Zurück zum Zitat Duris K, Lipkova J. The role of microRNA in ischemic and hemorrhagic stroke. Current drug delivery 2016. Duris K, Lipkova J. The role of microRNA in ischemic and hemorrhagic stroke. Current drug delivery 2016.
46.
Zurück zum Zitat Meng R, Ding Y, Asmaro K, Brogan D, Meng L, Sui M, et al. Ischemic conditioning is safe and effective for octo- and nonagenarians in stroke prevention and treatment. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics. 2015;12(3):667–77. doi:10.1007/s13311-015-0358-6.CrossRef Meng R, Ding Y, Asmaro K, Brogan D, Meng L, Sui M, et al. Ischemic conditioning is safe and effective for octo- and nonagenarians in stroke prevention and treatment. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics. 2015;12(3):667–77. doi:10.​1007/​s13311-015-0358-6.CrossRef
47.
Zurück zum Zitat Slagsvold KH, Moreira JB, Rognmo O, Hoydal M, Bye A, Wisloff U, et al. Remote ischemic preconditioning preserves mitochondrial function and activates pro-survival protein kinase Akt in the left ventricle during cardiac surgery: a randomized trial. Int J Cardiol. 2014;177(2):409–17. doi:10.1016/j.ijcard.2014.09.206.CrossRefPubMed Slagsvold KH, Moreira JB, Rognmo O, Hoydal M, Bye A, Wisloff U, et al. Remote ischemic preconditioning preserves mitochondrial function and activates pro-survival protein kinase Akt in the left ventricle during cardiac surgery: a randomized trial. Int J Cardiol. 2014;177(2):409–17. doi:10.​1016/​j.​ijcard.​2014.​09.​206.CrossRefPubMed
48.
Zurück zum Zitat Tian Y, Li H, Liu P, Xu JM, Irwin MG, Xia Z, et al. Captopril pretreatment produces an additive cardioprotection to isoflurane preconditioning in attenuating myocardial ischemia reperfusion injury in rabbits and in humans. Mediat Inflamm. 2015;2015:819232. doi:10.1155/2015/819232.CrossRef Tian Y, Li H, Liu P, Xu JM, Irwin MG, Xia Z, et al. Captopril pretreatment produces an additive cardioprotection to isoflurane preconditioning in attenuating myocardial ischemia reperfusion injury in rabbits and in humans. Mediat Inflamm. 2015;2015:819232. doi:10.​1155/​2015/​819232.CrossRef
50.
Zurück zum Zitat Guicciardi ME, Gores GJ. Life and death by death receptors. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2009;23(6):1625–37. doi:10.1096/fj.08-111005.CrossRef Guicciardi ME, Gores GJ. Life and death by death receptors. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2009;23(6):1625–37. doi:10.​1096/​fj.​08-111005.CrossRef
52.
Zurück zum Zitat Chen S, Guttridge DC, You Z, Zhang Z, Fribley A, Mayo MW, et al. Wnt-1 signaling inhibits apoptosis by activating beta-catenin/T cell factor-mediated transcription. J Cell Biol. 2001;152(1):87–96.CrossRefPubMedPubMedCentral Chen S, Guttridge DC, You Z, Zhang Z, Fribley A, Mayo MW, et al. Wnt-1 signaling inhibits apoptosis by activating beta-catenin/T cell factor-mediated transcription. J Cell Biol. 2001;152(1):87–96.CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Li F, Chong ZZ, Maiese K. Winding through the WNT pathway during cellular development and demise. Histol Histopathol. 2006;21(1):103–24.PubMedPubMedCentral Li F, Chong ZZ, Maiese K. Winding through the WNT pathway during cellular development and demise. Histol Histopathol. 2006;21(1):103–24.PubMedPubMedCentral
54.
Zurück zum Zitat Sun M, Yamashita T, Shang J, Liu N, Deguchi K, Feng J, et al. Time-dependent profiles of microRNA expression induced by ischemic preconditioning in the gerbil hippocampus. Cell Transplant. 2015;24(3):367–76. doi:10.3727/096368915x686869.CrossRefPubMed Sun M, Yamashita T, Shang J, Liu N, Deguchi K, Feng J, et al. Time-dependent profiles of microRNA expression induced by ischemic preconditioning in the gerbil hippocampus. Cell Transplant. 2015;24(3):367–76. doi:10.​3727/​096368915x686869​.CrossRefPubMed
55.
Zurück zum Zitat Sun M, Yamashita T, Shang J, Liu N, Deguchi K, Liu W, et al. Acceleration of TDP43 and FUS/TLS protein expressions in the preconditioned hippocampus following repeated transient ischemia. J Neurosci Res. 2014;92(1):54–63. doi:10.1002/jnr.23301.CrossRefPubMed Sun M, Yamashita T, Shang J, Liu N, Deguchi K, Liu W, et al. Acceleration of TDP43 and FUS/TLS protein expressions in the preconditioned hippocampus following repeated transient ischemia. J Neurosci Res. 2014;92(1):54–63. doi:10.​1002/​jnr.​23301.CrossRefPubMed
56.
Zurück zum Zitat Liu C, Peng Z, Zhang N, Yu L, Han S, Li D, et al. Identification of differentially expressed microRNAs and their PKC-isoform specific gene network prediction during hypoxic pre-conditioning and focal cerebral ischemia of mice. J Neurochem. 2012;120(5):830–41. doi:10.1111/j.1471-4159.2011.07624.x.CrossRefPubMed Liu C, Peng Z, Zhang N, Yu L, Han S, Li D, et al. Identification of differentially expressed microRNAs and their PKC-isoform specific gene network prediction during hypoxic pre-conditioning and focal cerebral ischemia of mice. J Neurochem. 2012;120(5):830–41. doi:10.​1111/​j.​1471-4159.​2011.​07624.​x.CrossRefPubMed
57.
Zurück zum Zitat Klein ME, Lioy DT, Ma L, Impey S, Mandel G, Goodman RH. Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nat Neurosci. 2007;10(12):1513–4. doi:10.1038/nn2010.CrossRefPubMed Klein ME, Lioy DT, Ma L, Impey S, Mandel G, Goodman RH. Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nat Neurosci. 2007;10(12):1513–4. doi:10.​1038/​nn2010.CrossRefPubMed
60.
Zurück zum Zitat Peng Z, Li J, Li Y, Yang X, Feng S, Han S, et al. Downregulation of miR-181b in mouse brain following ischemic stroke induces neuroprotection against ischemic injury through targeting heat shock protein A5 and ubiquitin carboxyl-terminal hydrolase isozyme L1. J Neurosci Res. 2013;91(10):1349–62. doi:10.1002/jnr.23255.CrossRefPubMed Peng Z, Li J, Li Y, Yang X, Feng S, Han S, et al. Downregulation of miR-181b in mouse brain following ischemic stroke induces neuroprotection against ischemic injury through targeting heat shock protein A5 and ubiquitin carboxyl-terminal hydrolase isozyme L1. J Neurosci Res. 2013;91(10):1349–62. doi:10.​1002/​jnr.​23255.CrossRefPubMed
61.
62.
63.
Zurück zum Zitat Ciechanover A, Brundin P. The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron. 2003;40(2):427–46.CrossRefPubMed Ciechanover A, Brundin P. The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron. 2003;40(2):427–46.CrossRefPubMed
70.
Zurück zum Zitat Miller JT, Bartley JH, Wimborne HJ, Walker AL, Hess DC, Hill WD, et al. The neuroblast and angioblast chemotaxic factor SDF-1 (CXCL12) expression is briefly up regulated by reactive astrocytes in brain following neonatal hypoxic-ischemic injury. BMC Neurosci. 2005;6:63. doi:10.1186/1471-2202-6-63.CrossRefPubMedPubMedCentral Miller JT, Bartley JH, Wimborne HJ, Walker AL, Hess DC, Hill WD, et al. The neuroblast and angioblast chemotaxic factor SDF-1 (CXCL12) expression is briefly up regulated by reactive astrocytes in brain following neonatal hypoxic-ischemic injury. BMC Neurosci. 2005;6:63. doi:10.​1186/​1471-2202-6-63.CrossRefPubMedPubMedCentral
72.
Zurück zum Zitat Feng Y, Li W, Wang JQ. MicroRNA-33A expression is reduced in cerebral cortex in a rat model of ischemic tolerance. Cellular and molecular biology (Noisy-le-Grand, France). 2015;61(3):24–9. Feng Y, Li W, Wang JQ. MicroRNA-33A expression is reduced in cerebral cortex in a rat model of ischemic tolerance. Cellular and molecular biology (Noisy-le-Grand, France). 2015;61(3):24–9.
74.
Zurück zum Zitat Wang H, Lu S, Yu Q, Liang W, Gao H, Li P, et al. Sevoflurane preconditioning confers neuroprotection via anti-inflammatory effects. Frontiers in bioscience (Elite edition). 2011;3:604–15. Wang H, Lu S, Yu Q, Liang W, Gao H, Li P, et al. Sevoflurane preconditioning confers neuroprotection via anti-inflammatory effects. Frontiers in bioscience (Elite edition). 2011;3:604–15.
75.
Zurück zum Zitat Yang Q, Dong H, Deng J, Wang Q, Ye R, Li X, et al. Sevoflurane preconditioning induces neuroprotection through reactive oxygen species-mediated up-regulation of antioxidant enzymes in rats. Anesth Analg. 2011;112(4):931–7. doi:10.1213/ANE.0b013e31820bcfa4.CrossRefPubMed Yang Q, Dong H, Deng J, Wang Q, Ye R, Li X, et al. Sevoflurane preconditioning induces neuroprotection through reactive oxygen species-mediated up-regulation of antioxidant enzymes in rats. Anesth Analg. 2011;112(4):931–7. doi:10.​1213/​ANE.​0b013e31820bcfa4​.CrossRefPubMed
76.
Zurück zum Zitat Yu Q, Chu M, Wang H, Lu S, Gao H, Li P, et al. Sevoflurane preconditioning protects blood-brain-barrier against brain ischemia. Frontiers in bioscience (Elite edition). 2011;3:978–88. Yu Q, Chu M, Wang H, Lu S, Gao H, Li P, et al. Sevoflurane preconditioning protects blood-brain-barrier against brain ischemia. Frontiers in bioscience (Elite edition). 2011;3:978–88.
78.
Zurück zum Zitat Shi H, Sun BL, Zhang J, Lu S, Zhang P, Wang H, et al. MiR-15b suppression of Bcl-2 contributes to cerebral ischemic injury and is reversed by sevoflurane preconditioning. CNS & neurological disorders drug targets. 2013;12(3):381–91.CrossRef Shi H, Sun BL, Zhang J, Lu S, Zhang P, Wang H, et al. MiR-15b suppression of Bcl-2 contributes to cerebral ischemic injury and is reversed by sevoflurane preconditioning. CNS & neurological disorders drug targets. 2013;12(3):381–91.CrossRef
80.
Zurück zum Zitat Sun Y, Li Y, Liu L, Wang Y, Xia Y, Zhang L, et al. Identification of miRNAs involved in the protective effect of sevoflurane preconditioning against hypoxic injury in PC12 cells. Cell Mol Neurobiol. 2015;35(8):1117–25. doi:10.1007/s10571-015-0205-7.CrossRefPubMed Sun Y, Li Y, Liu L, Wang Y, Xia Y, Zhang L, et al. Identification of miRNAs involved in the protective effect of sevoflurane preconditioning against hypoxic injury in PC12 cells. Cell Mol Neurobiol. 2015;35(8):1117–25. doi:10.​1007/​s10571-015-0205-7.CrossRefPubMed
83.
Zurück zum Zitat Jimenez-Mateos EM, Henshall DC. Seizure preconditioning and epileptic tolerance: models and mechanisms. Int J Physiol Pathophysiol pharmacol. 2009;1(2):180–91.PubMedPubMedCentral Jimenez-Mateos EM, Henshall DC. Seizure preconditioning and epileptic tolerance: models and mechanisms. Int J Physiol Pathophysiol pharmacol. 2009;1(2):180–91.PubMedPubMedCentral
88.
Zurück zum Zitat Frerichs KU, Hallenbeck JM. Hibernation in ground squirrels induces state and species-specific tolerance to hypoxia and aglycemia: an in vitro study in hippocampal slices. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 1998;18(2):168–75. doi:10.1097/00004647-199802000-00007.CrossRef Frerichs KU, Hallenbeck JM. Hibernation in ground squirrels induces state and species-specific tolerance to hypoxia and aglycemia: an in vitro study in hippocampal slices. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 1998;18(2):168–75. doi:10.​1097/​00004647-199802000-00007.CrossRef
89.
Zurück zum Zitat Lee YJ, Miyake S, Wakita H, McMullen DC, Azuma Y, Auh S, et al. Protein SUMOylation is massively increased in hibernation torpor and is critical for the cytoprotection provided by ischemic preconditioning and hypothermia in SHSY5Y cells. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2007;27(5):950–62. doi:10.1038/sj.jcbfm.9600395.CrossRef Lee YJ, Miyake S, Wakita H, McMullen DC, Azuma Y, Auh S, et al. Protein SUMOylation is massively increased in hibernation torpor and is critical for the cytoprotection provided by ischemic preconditioning and hypothermia in SHSY5Y cells. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2007;27(5):950–62. doi:10.​1038/​sj.​jcbfm.​9600395.CrossRef
98.
Zurück zum Zitat Greenberg DS, Soreq H. MicroRNA therapeutics in neurological disease. Curr Pharm Des. 2014;20(38):6022–7.CrossRefPubMed Greenberg DS, Soreq H. MicroRNA therapeutics in neurological disease. Curr Pharm Des. 2014;20(38):6022–7.CrossRefPubMed
Metadaten
Titel
MicroRNA Changes in Preconditioning-Induced Neuroprotection
verfasst von
Josh D. Bell
Jang-Eun Cho
Rona G. Giffard
Publikationsdatum
23.06.2017
Verlag
Springer US
Erschienen in
Translational Stroke Research / Ausgabe 6/2017
Print ISSN: 1868-4483
Elektronische ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-017-0547-1

Weitere Artikel der Ausgabe 6/2017

Translational Stroke Research 6/2017 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.