Skip to main content
Erschienen in: Critical Care 2/2014

Open Access 01.04.2014 | Review

Preventing ischemic brain injury after sudden cardiac arrest using NO inhalation

verfasst von: Kotaro Kida, Fumito Ichinose

Erschienen in: Critical Care | Ausgabe 2/2014

Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​cc13779) contains supplementary material, which is available to authorized users.

Competing interests

Dr Ichinose has received a sponsored research agreement from Ikaria, Inc that makets inhaled NO (INOMAX) in the US.
Abkürzungen
AED
automatic electrical defibrillator
CPR
cardiopulmonary resuscitation
DWI
diffusion-weighted imaging
I/R
ischemia-reperfusion
NO
nitric oxide
NOS
NO synthase
OHCA
out-of-hospital cardiac arrest
PDE
phospodiesterases
PKG
protein kinase G
ROS
reactive oxygen species
ROSC
return of spontaneous circulation
sGC
soluble guanylate cyclise
VF
ventricular fibrillation
WT
wild-type.

Introduction

Sudden cardiac arrest is a leading cause of death worldwide [1]. Despite advances in cardiopulmonary resuscitation (CPR) methods, including the introduction of the automatic electrical defibrillator (AED) and therapeutic hypothermia [2], [3], only about 10 % of adult out-of-hospital cardiac arrest (OHCA) victims survive to hospital discharge [4], and the majority of survivors have moderate to severe cognitive deficits 3 months after resuscitation [5]. Resuscitation from cardiac arrest is the ultimate whole body ischemia-reperfusion (I/R) injury affecting multiple organ systems including brain and heart [6]. No pharmacological agent is available to im¬prove outcome from post-cardiac arrest syndrome.
Inhaled nitric oxide (NO) has been widely used for the treatment of neonatal hypoxemia with acute pulmonary hypertension. However, accumulating evidence has demonstrated that inhaled NO exerts beneficial effects on I/R injury in extrapulmonary organs without causing hypotension. Along these lines, we recently reported that inhaled NO improved outcomes after cardiac arrest/CPR in mice. This chapter provides insights into the potential salutary effects of inhaled NO in ischemic brain injury associated with sudden cardiac arrest.

Importance of sudden cardiac arrest to public health

Approximately 360,000 Americans experience OHCA each year [4]. In a recent meta-analysis of more than 140,000 patients with OHCA, survival to hospital admis¬sion was 23.8 %, and survival to hospital discharge was only 7.6 % [7]. Densely populated urban areas such as New York, NY, and Chicago, Ill, where a large number of cardiac arrests occur, report even lower (1.4 % to 2 %) survival rates [8],[9]. Unlike other areas of cardiovascular health, such as myocardial infarction (MI) which has seen a 3-fold decrease in acute mortality [10], improve¬ments in outcome from OHCA have remained modest over the last 25 years [11]. Although OHCA is obviously a life-threatening condition, it is a 'treatable disease' in the sense that medical interventions can improve survival significantly [1214]. A nearly 500 % difference in survival rates exists across communities in the United States, suggesting that variability in the quality of resus¬citation care is driving large differences in community survival rates [15]. Collectively, these data suggest the potential that a major improvement in survival rates could save tens of thousands of lives. Moreover, the financial burden of care of post-arrest patients on society is enormous. A recent estimate suggests that on average it costs $ 102,017 to take care of a patient after OHCA with conventional care (without therapeutic hypother¬mia) [16]. More than $ 33 billion of health care cost is spent on OHCA annually in US.

Pathophysiology and current treatment for post-cardiac arrest syndrome

The greatest proportion of post-cardiac arrest mortality and morbidity is caused by global ischemic brain injury [17]. The mechanisms responsible for post-cardiac arrest brain injury include excitotoxicity, free radical formation, pathological activation of proteases, and cell death signaling [18],[19]. Many of the injurious pathways are executed over hours to days following return of spon¬taneous circulation (ROSC) [20],[21]. While the pro¬tracted time-course of brain injury suggests a broad therapeutic window for neuroprotective strategies following cardiac arrest [19], no pharmacological agents have been proven to be effective in improving neuro¬logical outcomes in post-cardiac arrest patients. Two randomized clinical trials have shown that therapeutic hypothermia confers significant protective effects when applied for 12-24 h after ventricular fibrillation (VF)- induced cardiac arrest in adults [2], [3]. Based on these findings, the American Heart Association 2010 ACLS guidelines gave the highest level of recommendation for the use of hypothermia in comatose patients after OHCA. Currently, mortality at six months after cardiac arrest in patients treated with or without therapeutic hypothermia is 41 % and 55 %, respectively. At six months, 55 % and 39 % of the patients treated with or without therapeutic hypothermia, respectively, have a favorable neurologic outcome. A meta-analysis con¬cluded that the number needed to treat to achieve one additional patient with good neurological outcome was 6 [22]. Although therapeutic hypothermia clearly provides a statistically significant improvement in OHCA patients, the benefit is clinically quite modest [22]. In 40 %-66 % of patients treated with therapeutic hypothermia after cardiac arrest, consciousness never returns [2], [3], [23]. Therefore, additional therapies are urgently needed [6].

Nitric oxide

NO is synthesized from L-arginine by NO synthases (NOS1, NOS2, and NOS3). One of the primary targets of NO is soluble guanylate cyclase (sGC), which generates the second messenger, cGMP, upon activation. sGC is a heme-containing heterodimeric enzyme composed of one α and one β subunit. In most tissues, including heart, lung, and vascular smooth muscle cells, the sGCα1β1 heterodimer is the predominant isoform. NO binds to the heme moiety of sGC and stimulates the synthesis of cGMP [24]. cGMP exerts its effects by interacting with cGMP-dependent protein kinase (PKG), cGMP-regulated phosphodiesterases (PDE), and cGMP-regulated ion channels. Although the biological effects of NO are mainly mediated via a cGMP-dependent mechanism, studies have demonstrated that cGMP-independent signaling plays an important role in diverse aspects of NO signaling. For example, a number of effects of NO are mediated by S-nitrosylation, which is the covalent modification of a protein cysteine thiol (-SH) to generate an S-nitrosothiol (-SNO) by NO [25].

NO/sGC and ischemia-reperfusion injury

NO exerts a variety of effects that would be expected to be beneficial during I/R injury [26]. For example, NO is a potent vasodilator that inhibits platelet and leukocyte activation and adhesion, inhibits reactive oxygen species (ROS)-producing enzymes, and directly scavenges ROS [27]. Deficiency of NOS3 has been shown to aggravate I/R injury in brain and heart [28], [29]. We reported that deficiency of NOS3 or sGCα1 worsened outcomes of cardiac arrest/CPR, whereas cardiomyocyte-specific overexpression of NOS3 rescued NOS3-deficient mice from myocardial and neurological dysfunction and death after cardiac arrest/CPR [30]. Along these lines, Beiser and colleagues reported that poor cardiovascular outcomes and survival in NOS3-deficient mice after cardiac arrest/CPR were associated with decreased myocardial cGMP levels [31].
The salutary effects of NO in I/R appear to be mediated via multiple mechanisms. Dezfulian and colleagues showed that systemic administration of nitrite, which is converted in vivo to NO, improves outcomes in mice 24 h after cardiac arrest/CPR by reducing pathological cardiac mitochondrial oxygen consumption resulting from ROS formation [32]. Systemic administration of nitrite pre¬vented oxidative enzymatic injury via reversible specific inhibition of mitochondrial respiratory chain complex I after cardiac arrest/CPR. cGMP may elicit its cyto- protective effects via protein kinase G (PKG), which, in turn, activates mitochondrial protein kinase Cε via ERK signaling [33]. Recent studies showed that activation of cGMP-PKG-dependent signaling altered the glial inflam¬matory response and decreased oxidative stress and cell death induced by focal brain injury [34].

Inhaled NO and I/R injury

Inhaled NO is a selective pulmonary vasodilator that does not produce systemic hypotension when inhaled at concentrations up to 80 ppm in multiple species, including man [35]. The absence of systemic vasodilation during NO inhalation is due to the rapid scavenging of NO by hemoglobin in the blood. Inhaled NO has been approved for the treatment of neonatal hypoxemia with acute pulmonary hypertension [36]. However, breathing NO also has systemic effects [37]. Breathing NO was shown to reduce I/R injury of extrapulmonary organs in a variety of animal models [3842]. For example, Hataishi and colleagues examined the ability of breathing NO to decrease cardiac I/R injury in intact mice [40]. They observed that breathing NO for the final 20 minutes of ischemia and for 24 h after reperfusion decreased the size of MI and improved systolic and diastolic function. Breathing 80 ppm NO decreased MI size similarly after 30, 60, or 120 min of ischemia. Breathing 40 and 80 ppm NO decreased myocardial I/R injury to a similar degree, but 20 ppm was not effective. Breathing NO decreased cardiac neutrophil accumulation, and leukocyte deple¬tion prevented the beneficial effects of NO on MI size. Observations in rodents have been extended to a clinically-relevant porcine model of cardiac I/R injury: Liu and colleagues reported that, in pigs subjected to 50 min of cardiac ischemia and 4 h of reperfusion, breathing 80 ppm NO decreased MI size and improved myocardial perfusion [41]. Taken together, these obser¬vations suggest that inhaled NO exerts beneficial effects on I/R and protects extrapulmonary organs from I/R injury in small and large mammals.
The ability of inhaled NO to reduce I/R injury was subsequently reproduced in 'proof-of-concept' human studies [4345]. Lang and colleagues reported a prospective, blinded, placebo-controlled study that demonstrated that 80 ppm NO inhalation during liver transplantation prevented hepatic I/R injury after transplantation. The investigators observed significantly decreased hospital length of stay, serum transaminases, coagulation times, and hepatic apoptosis after liver transplantation [43]. Gianetti and colleagues reported that breathing 20 ppm NO during and after cardio¬pulmonary bypass decreased myocardial injury and left ventricular dysfunction in patients undergoing aortic valve replacement via anti-inflammatory properties [44]. Mathru and colleagues reported that breathing 80 ppm NO reduced I/R induced inflammatory injury in patients undergoing knee surgery [45]. Based on these obser¬vations, we hypothesized that NO inhalation could improve outcomes after cardiac arrest/CPR.

Inhaled NO improves outcomes after cardiac arrest and CPR in mice

To examine the effects of NO inhalation on the outcome of cardiac arrest/CPR in a clinically relevant manner, we developed and thoroughly characterized a murine model of cardiac arrest/CPR, in which mice exhibit poor neurological outcomes and survival rates after successful resuscitation from cardiac arrest [30], [4648]. Briefly, after instrumentation under general anesthesia, cardiac arrest was induced by an intravenous injection of potassium chloride (KCl). After 7.5 min of arrest time, chest compressions were delivered with a finger at a rate of 300-350 per minute with resumption of mechanical ventilation (FiO2 = 1.0) and continuous intravenous infusion of epinephrine. Mice were weaned from mechanical ventilation and extubated at 1 h after CPR. Mice were then randomized to breath air with or without 40 ppm NO for 23 h in custom-made chambers. Whereas only 4 out of 13 mice that breathed air alone survived 10 days after CPR, 11 out of 13 mice that breathed air combined with NO survived for 10 days (p = 0.003, Figure 1).
It is increasingly recognized that post-cardiac arrest care after ROSC can improve the likelihood of patient survival with good neurological function. Clinical trials showed that therapeutic hypothermia conferred neuroprotective effects when it was applied for 12-24 h starting minutes to hours after successful CPR from cardiac arrest due to ventricular fibrillation [2], [3]. The apparent presence of a temporal therapeutic window after successful CPR is consistent with the observations that many of the pathogenetic mechanisms responsible for post-cardiac arrest brain injury are executed over hours to days following ROSC [1821]. The protective effects of breathing NO for 23 h beginning 1 h after successful CPR further support the notion that outcomes from sudden cardiac arrest can be improved by implementing innovative therapies in the post-cardiac arrest 'golden hours' after successful CPR.
Mice that breathed air alone exhibited a marked abnormality in water diffusion in the hippocampus, caudoputamen, and cortex 24 h after CPR (Figure 2). The presence of abnormal diffusion-weighted imaging (DWI) signals in the vulnerable regions of the brain 24 h after cardiac arrest/CPR correlated with worse neurological function and increased apoptosis of hippocampal neurons 4 days after CPR, as well as a poor survival rate. In contrast, NO breathing markedly attenuated the development of abnormality in water diffusion in the brain and improved neurological outcomes and survival rate. These observations are consistent with a recent clinical study that showed that diffuse cortical abnor¬malities in DWI were associated with poor outcomes in patients resuscitated from cardiac arrest [49]. Hyper¬intense DWI signals indicate the presence of brain edema, presumably due to disruption of ion pump function and membrane failure. Therefore, these obser¬vations suggest that NO inhalation after successful CPR can preserve ion pump homeostasis and membrane integrity early after cardiac arrest/CPR.
Neuroinflammation induced by the whole body I/R injury associated with cardiac arrest/CPR hinders the neurological recovery from cardiac arrest. We observed that cardiac arrest/CPR markedly upregulated the expression of genes encoding inflammatory cytokines and NADPH oxidase in the brain of mice that breathed air alone, but not in mice that breathed air combined with NO. These observations suggest that NO inhalation prevents neuroinflammation after cardiac arrest/CPR. Furthermore, these results demonstrate a correlation between neuroinflammation, neurological dysfunction, and mortality after resuscitation.
NO elicits biological effects via sGC-dependent and/or independent mechanisms. To examine the role of sGC in the beneficial effects of inhaled NO on outcomes after resuscitation, sGCα1-/- mice were subjected to cardiac arrest/CPR. We observed that sGCαl-deficiency abolished the ability of inhaled NO to prevent induction of inflammatory cytokines in the brain and to improve neurological function and 10-day survival rate after resuscitation [48]. These observations suggest that bene¬ficial effects of inhaled NO on outcomes after cardiac arrest/CPR are largely mediated via sGC-dependent mechanisms.
Inhaled NO may exert systemic effects via interaction with circulating bone marrow-derived cells (e. g., leuko¬cytes) as they transit lungs. We previously reported that neutrophils are required for inhaled NO to reduce MI size in wild-type (WT) mice subjected to transient left coronary artery occlusion [40]. Along these lines, we recently observed that NO breathing markedly decreased MI size in WT but not in sGCα1-/- mice [50]. Furthermore, breathing NO decreased MI size in chimeric sGCα1-/- mice carrying WT bone marrow generated by bone marrow transplantation. These results raise the possibility that the neuroprotective effects of inhaled NO after cardiac arrest/CPR may be mediated by bone marrow-derived cells in a sGC-dependent manner.
From the viewpoint of translating our results into clinical benefit, it is of particular importance that NO inhalation started 1 h after CPR can improve neurological and myocardial function and survival rate after cardiac arrest and CPR. Although the therapeutic window in humans remains to be determined, our observations suggest that inhaled NO can be started after patients are transported to the hospital, and informed consent is obtained. To date, therapeutic hypothermia is the only therapeutic approach that has been proved to improve outcomes after cardiac arrest/CPR when applied hours after successful CPR [2], [3]. Since the body temperature of the mice was allowed to decrease to ~ 30 °C in the early period after CPR in our recent study, these obser¬vations raise the possibility that inhaled NO may confer additional protective effects in the setting of mild hypothermia. Nonetheless, whether inhaled NO com¬bined with therapeutic hypothermia further improves outcomes after cardiac arrest/CPR compared to mice treated with therapeutic hypothermia alone remains to be formally determined in future studies.

Conclusions

Although mounting evidence suggests that NO¬dependent signaling exerts multi-faceted protection against I/R injury, the vasodilating effects of systemically- administered NO-donor compounds preclude their use in post-cardiac arrest patients with unstable blood pressure. Based upon our prior studies of the beneficial effects of breathing NO on cardiac I/R injury, which were not associated with systemic hypotension [40], we tested the hypothesis that breathing NO could improve outcomes after cardiac arrest/CPR. We observed that breathing NO beginning 1 h after ROSC markedly improved neurological and myocardial function, as well as survival at 10 days without causing hypotension. Of note, the protective effects of inhaled NO in I/R injury of remote organs were first demonstrated in small animals [38], [39] and then later confirmed in patients [4345], suggesting that the beneficial effects of inhaled NO in mice subjected to cardiac arrest/CPR are likely to be readily translated to benefit patients. Moreover, the established safety profile of NO inhalation (including FDA approval in 1999 for babies with hypoxic respiratory failure and pulmonary hypertension) further enhances the probability that observations in animal models will be rapidly translatable to patients with post-cardiac arrest syndrome.

Declarations

Publication of this work was supported by postdoctoral fellowships from the American Heart Association's Founders Affiliate and from the Massachusetts General Hospital Tosteson Fund for Medical Discovery to KK, R01 grants from the NHLBI (HL101930 and HL110378 to FI), and a sponsored research agreement from IKARIA Inc. to FI.

Competing interests

Dr Ichinose has received a sponsored research agreement from Ikaria, Inc that makets inhaled NO (INOMAX) in the US.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Field JM, Hazinski MF, Sayre MR, Chameides L, Schexnayder SM, Hemphill R, Samson RA, Kattwinkel J, Berg RA, Bhanji F, Cave DM, Jauch EC, Kudenchuk PJ, Neumar RW, Peberdy MA, Perlman JM, Sinz E, Travers AH, Berg MD, Billi JE, Eigel B, Hickey RW, Kleinman ME, Link MS, Morrison LJ, O-Connor RE, Shuster M, Callaway CW, Cucchiara B, Ferguson JD, Rea TD, Vanden Hoek TL: Part 1: Executive Summary: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010, 122: S640-S656. 10.1161/CIRCULATIONAHA.110.970889CrossRefPubMed Field JM, Hazinski MF, Sayre MR, Chameides L, Schexnayder SM, Hemphill R, Samson RA, Kattwinkel J, Berg RA, Bhanji F, Cave DM, Jauch EC, Kudenchuk PJ, Neumar RW, Peberdy MA, Perlman JM, Sinz E, Travers AH, Berg MD, Billi JE, Eigel B, Hickey RW, Kleinman ME, Link MS, Morrison LJ, O-Connor RE, Shuster M, Callaway CW, Cucchiara B, Ferguson JD, Rea TD, Vanden Hoek TL: Part 1: Executive Summary: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010, 122: S640-S656. 10.1161/CIRCULATIONAHA.110.970889CrossRefPubMed
2.
Zurück zum Zitat Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K: Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 2002, 346: 557-563. 10.1056/NEJMoa003289CrossRefPubMed Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K: Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 2002, 346: 557-563. 10.1056/NEJMoa003289CrossRefPubMed
3.
Zurück zum Zitat Hypothermia after Cardiac Arrest Study Group: Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 2002, 346: 549-556.CrossRef Hypothermia after Cardiac Arrest Study Group: Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 2002, 346: 549-556.CrossRef
4.
Zurück zum Zitat Go AS, Mozaffarian D, Roger V, Benjamin EJ, Berry JD, Bodren WBm, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard Vj, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtmar JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB: American Heart Association Statistics Committee and Stroke Statistics Subcommittee: Heart Disease and Stroke Statistics-2013 Update: A report from the American Heart Association. Circulation 2013, 127: e6-e245. 10.1161/CIR.0b013e31828124adCrossRefPubMed Go AS, Mozaffarian D, Roger V, Benjamin EJ, Berry JD, Bodren WBm, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard Vj, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtmar JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB: American Heart Association Statistics Committee and Stroke Statistics Subcommittee: Heart Disease and Stroke Statistics-2013 Update: A report from the American Heart Association. Circulation 2013, 127: e6-e245. 10.1161/CIR.0b013e31828124adCrossRefPubMed
5.
Zurück zum Zitat Roine RO, Kajaste S, Kaste M: Neuropsychological sequelae of cardiac arrest. JAMA 1993, 269: 237-242. 10.1001/jama.1993.03500020071034CrossRefPubMed Roine RO, Kajaste S, Kaste M: Neuropsychological sequelae of cardiac arrest. JAMA 1993, 269: 237-242. 10.1001/jama.1993.03500020071034CrossRefPubMed
6.
Zurück zum Zitat Peberdy MA, Callaway CW, Neumar RW, Geocardin RG, Zimmerman JL, Donníno M, Gabrielli A, Silvers SM, Zaritsky AL, Merchant R, Vanden Hoek TL, Kronick SL, American Heart Association: Part 9: Post-Cardiac Arrest Care: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010, 122: S768-S786. 10.1161/CIRCULATIONAHA.110.971002CrossRefPubMed Peberdy MA, Callaway CW, Neumar RW, Geocardin RG, Zimmerman JL, Donníno M, Gabrielli A, Silvers SM, Zaritsky AL, Merchant R, Vanden Hoek TL, Kronick SL, American Heart Association: Part 9: Post-Cardiac Arrest Care: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010, 122: S768-S786. 10.1161/CIRCULATIONAHA.110.971002CrossRefPubMed
7.
Zurück zum Zitat Sasson C, Rogers MAM, Dahl J, Kellermann AL: Predictors of survival from out-of-hospital cardiac arrest: A systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes 2010, 3: 63-81. 10.1161/CIRCOUTCOMES.109.889576CrossRefPubMed Sasson C, Rogers MAM, Dahl J, Kellermann AL: Predictors of survival from out-of-hospital cardiac arrest: A systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes 2010, 3: 63-81. 10.1161/CIRCOUTCOMES.109.889576CrossRefPubMed
8.
Zurück zum Zitat Lombardi G, Gallagher J, Gennis P: Outcome of out-of-hospital cardiac arrest in New York City. The Pre-Hospital Arrest Survival Evaluation (PHASE) Study. JAMA 1994, 271: 678-683. 10.1001/jama.1994.03510330056034CrossRefPubMed Lombardi G, Gallagher J, Gennis P: Outcome of out-of-hospital cardiac arrest in New York City. The Pre-Hospital Arrest Survival Evaluation (PHASE) Study. JAMA 1994, 271: 678-683. 10.1001/jama.1994.03510330056034CrossRefPubMed
9.
Zurück zum Zitat Becker LB, Ostrander MP, Barrett J, Kondos GT: Outcome of CPR in a large metropolitan area - where are the survivors? Ann Emerg Medicine 1991, 20: 355-361. 10.1016/S0196-0644(05)81654-3CrossRef Becker LB, Ostrander MP, Barrett J, Kondos GT: Outcome of CPR in a large metropolitan area - where are the survivors? Ann Emerg Medicine 1991, 20: 355-361. 10.1016/S0196-0644(05)81654-3CrossRef
10.
Zurück zum Zitat Heidenreich PA, McClellan M: Trends in treatment and outcomes for acute myocardial infarction 1975-1995. Am J Med 2011, 110: 165-174.CrossRef Heidenreich PA, McClellan M: Trends in treatment and outcomes for acute myocardial infarction 1975-1995. Am J Med 2011, 110: 165-174.CrossRef
11.
Zurück zum Zitat Weil MH, Becker L, Budinger T, Kern K, Nichol G, Shechter I, Traystman R, Wiedemann H, Wise R, Weisfeldt M, Sopko G: Workshop Executive Summary Report: Post-Resuscitative and Initial Utility in Life Saving Efforts (PULSE). Circulation 2001, 103: 1182-1184. 10.1161/01.CIR.103.9.1182CrossRefPubMed Weil MH, Becker L, Budinger T, Kern K, Nichol G, Shechter I, Traystman R, Wiedemann H, Wise R, Weisfeldt M, Sopko G: Workshop Executive Summary Report: Post-Resuscitative and Initial Utility in Life Saving Efforts (PULSE). Circulation 2001, 103: 1182-1184. 10.1161/01.CIR.103.9.1182CrossRefPubMed
12.
Zurück zum Zitat Cobb LA, Fahrenbruch CE, Walsh TR: Influence of cardiopulmonary resuscitation prior to defibrillation in patients with out-of-hospital ventricular fibrillation. JAMA 1999, 281: 1182-1188. 10.1001/jama.281.13.1182CrossRefPubMed Cobb LA, Fahrenbruch CE, Walsh TR: Influence of cardiopulmonary resuscitation prior to defibrillation in patients with out-of-hospital ventricular fibrillation. JAMA 1999, 281: 1182-1188. 10.1001/jama.281.13.1182CrossRefPubMed
13.
Zurück zum Zitat Hallstrom AP, Ornato JP, Weisfeldt M, Travers A, Christenson J, McBurnie MA, Zalenski R, Becker LB, Schron EB, Proschan M, Public Access Defibrillation Trial Investigators: Public-access defibrillation and survival after out-of-hospital cardiac arrest. N Engl J Med 2004, 351: 637-646.CrossRefPubMed Hallstrom AP, Ornato JP, Weisfeldt M, Travers A, Christenson J, McBurnie MA, Zalenski R, Becker LB, Schron EB, Proschan M, Public Access Defibrillation Trial Investigators: Public-access defibrillation and survival after out-of-hospital cardiac arrest. N Engl J Med 2004, 351: 637-646.CrossRefPubMed
14.
Zurück zum Zitat Bobrow BJ, Clark LL, Ewy GA: Minimally interrupted cardiac resuscitation by emergency medical services for out-of-hospital cardiac arrest. JAMA. 2008, 299: 1158-1165. 10.1001/jama.299.10.1158CrossRefPubMed Bobrow BJ, Clark LL, Ewy GA: Minimally interrupted cardiac resuscitation by emergency medical services for out-of-hospital cardiac arrest. JAMA. 2008, 299: 1158-1165. 10.1001/jama.299.10.1158CrossRefPubMed
15.
Zurück zum Zitat Nichol G, Thomas E, Callaway CW: Regional variation in out-of-hospital cardiac arrest incidence and outcome. JAMA 2008, 300: 1423-1431. 10.1001/jama.300.12.1423CrossRefPubMedPubMedCentral Nichol G, Thomas E, Callaway CW: Regional variation in out-of-hospital cardiac arrest incidence and outcome. JAMA 2008, 300: 1423-1431. 10.1001/jama.300.12.1423CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Merchant RM, Becker LB, Abella BS, Asch DA, Groeneveld PW: Cost- effectiveness of therapeutic hypothermia after cardiac arrest. Circ Cardiovasc Qual Outcomes 2009, 2: 421-428. 10.1161/CIRCOUTCOMES.108.839605CrossRefPubMed Merchant RM, Becker LB, Abella BS, Asch DA, Groeneveld PW: Cost- effectiveness of therapeutic hypothermia after cardiac arrest. Circ Cardiovasc Qual Outcomes 2009, 2: 421-428. 10.1161/CIRCOUTCOMES.108.839605CrossRefPubMed
17.
Zurück zum Zitat Laver S, Farrow C, Turner D, Nolan J: Mode of death after admission to an intensive care unit following cardiac arrest. Intensive Care Med 2004, 30: 2126-2128. 10.1007/s00134-004-2425-zCrossRefPubMed Laver S, Farrow C, Turner D, Nolan J: Mode of death after admission to an intensive care unit following cardiac arrest. Intensive Care Med 2004, 30: 2126-2128. 10.1007/s00134-004-2425-zCrossRefPubMed
18.
Zurück zum Zitat Neumar RW: Molecular mechanisms of ischemic neuronal injury. Ann Emerg Med 2000, 36: 483-506.CrossRefPubMed Neumar RW: Molecular mechanisms of ischemic neuronal injury. Ann Emerg Med 2000, 36: 483-506.CrossRefPubMed
19.
Zurück zum Zitat Neumar RW, Nolan JP, Adrie C, Aibiki M, Berg RA, Bottiger BW, Callaway C, Clark RS, Geocadin RG, Jauch EC, Kern KB, Laurent I, Longstreth WT Jr, Merchant RM, Morley P, Morrison LJ, Nadkarni V, Peberdy MA, Rivers EP, Rodriguez-Nunez A, Sellke FW, Spaulding C, Sunde K, Vanden Hoek T: Post¬cardiac arrest syndrome: Epidemiology, pathophysiology, treatment and prognostication. A Consensus Statement From the International Liaison Committee on Resuscitation (American Heart Association, Australian and New Zealand Council on ResuscitationEuropean Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Asia and the Resuscitation Council of Southern Africa); the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative and Critical Care; the Council on Clinical Cardiology; and the Stroke Council. Circulation 2008, 118: 2452-2483. 10.1161/CIRCULATIONAHA.108.190652CrossRefPubMed Neumar RW, Nolan JP, Adrie C, Aibiki M, Berg RA, Bottiger BW, Callaway C, Clark RS, Geocadin RG, Jauch EC, Kern KB, Laurent I, Longstreth WT Jr, Merchant RM, Morley P, Morrison LJ, Nadkarni V, Peberdy MA, Rivers EP, Rodriguez-Nunez A, Sellke FW, Spaulding C, Sunde K, Vanden Hoek T: Post¬cardiac arrest syndrome: Epidemiology, pathophysiology, treatment and prognostication. A Consensus Statement From the International Liaison Committee on Resuscitation (American Heart Association, Australian and New Zealand Council on ResuscitationEuropean Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Asia and the Resuscitation Council of Southern Africa); the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative and Critical Care; the Council on Clinical Cardiology; and the Stroke Council. Circulation 2008, 118: 2452-2483. 10.1161/CIRCULATIONAHA.108.190652CrossRefPubMed
20.
Zurück zum Zitat Sharma H, Miclescu A, Wiklund L: Cardiac arrest-induced regional blood- brain barrier breakdown, edema formation and brain pathology: a light and electron microscopic study on a new model for neurodegeneration and neuroprotection in porcine brain. J Neural Transm 2011, 118: 87-114. 10.1007/s00702-010-0486-4CrossRefPubMed Sharma H, Miclescu A, Wiklund L: Cardiac arrest-induced regional blood- brain barrier breakdown, edema formation and brain pathology: a light and electron microscopic study on a new model for neurodegeneration and neuroprotection in porcine brain. J Neural Transm 2011, 118: 87-114. 10.1007/s00702-010-0486-4CrossRefPubMed
21.
Zurück zum Zitat Fujioka M, Taoka T, Matsuo Y, Mishima K, Ogoshi K, Kondo Y, Tsuda M, Fujiwara M, Asano T, Sakaki T, Miyasaki A, Park D, Siesjo BK: Magnetic resonance imaging shows delayed ischemic striatal neurodegeneration. Ann Neurol 2003, 54: 732-747. 10.1002/ana.10751CrossRefPubMed Fujioka M, Taoka T, Matsuo Y, Mishima K, Ogoshi K, Kondo Y, Tsuda M, Fujiwara M, Asano T, Sakaki T, Miyasaki A, Park D, Siesjo BK: Magnetic resonance imaging shows delayed ischemic striatal neurodegeneration. Ann Neurol 2003, 54: 732-747. 10.1002/ana.10751CrossRefPubMed
22.
Zurück zum Zitat Holzer M, Bernard SA, Hachimi-Idrissi S, Roine RO, Sterz F, Müllner M, Collaborative Group on Induced Hypothermia for Neuroprotection After Cardiac Arrest: Hypothermia for neuroprotection after cardiac arrest: Systematic review and individual patient data meta-analysis. Crit Care Med 2005, 33: 414-418. 10.1097/01.CCM.0000153410.87750.53CrossRefPubMed Holzer M, Bernard SA, Hachimi-Idrissi S, Roine RO, Sterz F, Müllner M, Collaborative Group on Induced Hypothermia for Neuroprotection After Cardiac Arrest: Hypothermia for neuroprotection after cardiac arrest: Systematic review and individual patient data meta-analysis. Crit Care Med 2005, 33: 414-418. 10.1097/01.CCM.0000153410.87750.53CrossRefPubMed
23.
Zurück zum Zitat Bouwes A, Binnekade JM, Zandstra DF, Koelman JH, van Schaik IN, Hijdra A, Horn J: Somatosensory evoked potentials during mild hypothermia after cardiopulmonary resuscitation. Neurology 2009, 73: 1457-1461. 10.1212/WNL.0b013e3181bf98f4CrossRefPubMed Bouwes A, Binnekade JM, Zandstra DF, Koelman JH, van Schaik IN, Hijdra A, Horn J: Somatosensory evoked potentials during mild hypothermia after cardiopulmonary resuscitation. Neurology 2009, 73: 1457-1461. 10.1212/WNL.0b013e3181bf98f4CrossRefPubMed
24.
Zurück zum Zitat Friebe A, Koesling D: Regulation of nitric oxide-sensitive guanylyl cyclase. CircRes 2003, 93: 96-105. Friebe A, Koesling D: Regulation of nitric oxide-sensitive guanylyl cyclase. CircRes 2003, 93: 96-105.
25.
Zurück zum Zitat Lima B, Forrester MT, Hess DT, Stamler JS: S-nitrosylation in cardiovascular signaling. Circ Res 2010, 106: 633-646. 10.1161/CIRCRESAHA.109.207381CrossRefPubMedPubMedCentral Lima B, Forrester MT, Hess DT, Stamler JS: S-nitrosylation in cardiovascular signaling. Circ Res 2010, 106: 633-646. 10.1161/CIRCRESAHA.109.207381CrossRefPubMedPubMedCentral
26.
27.
Zurück zum Zitat Kubes P, Suzuki M, Granger DN: Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 1991, 88: 4651-4655. 10.1073/pnas.88.11.4651CrossRefPubMedPubMedCentral Kubes P, Suzuki M, Granger DN: Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 1991, 88: 4651-4655. 10.1073/pnas.88.11.4651CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Jones SP, Girod WG, Palazzo AJ, Granger DN, Grisham MB, Jourd'Heuil D, Huang PL, Lefer DJ: Myocardial ischemia-reperfusion injury is exacerbated in absence of endothelial cell nitric oxide synthase. Am J Physiol 1999, 276: H1567-H1573.PubMed Jones SP, Girod WG, Palazzo AJ, Granger DN, Grisham MB, Jourd'Heuil D, Huang PL, Lefer DJ: Myocardial ischemia-reperfusion injury is exacerbated in absence of endothelial cell nitric oxide synthase. Am J Physiol 1999, 276: H1567-H1573.PubMed
29.
Zurück zum Zitat Huang Z, Huang PL, Ma J, Meng W, Ayata C, Fishman MC, Moskowitz MA: Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-l-arginine. J Cereb Blood Flow Metab 1996, 16: 981-987.CrossRefPubMed Huang Z, Huang PL, Ma J, Meng W, Ayata C, Fishman MC, Moskowitz MA: Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-l-arginine. J Cereb Blood Flow Metab 1996, 16: 981-987.CrossRefPubMed
30.
Zurück zum Zitat Nishida T, Yu JD, Minamishima S, Sips PY, Searles RJ, Buys ES, Janssens S, Brouckaert P, Bloch KD, Ichinose F: Protective effects of nitric oxide synthase 3 and soluble guanylate cyclase on the outcome of cardiac arrest and cardiopulmonary resuscitation in mice. Crit Care Med 2009, 37: 256-262. 10.1097/CCM.0b013e318192faceCrossRefPubMedPubMedCentral Nishida T, Yu JD, Minamishima S, Sips PY, Searles RJ, Buys ES, Janssens S, Brouckaert P, Bloch KD, Ichinose F: Protective effects of nitric oxide synthase 3 and soluble guanylate cyclase on the outcome of cardiac arrest and cardiopulmonary resuscitation in mice. Crit Care Med 2009, 37: 256-262. 10.1097/CCM.0b013e318192faceCrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Beiser DG, Orbelyan GA, Inouye BT, Costakis JG, Hamann KJ, McNally EM, Vanden Hoek TL: Genetic deletion of NOS3 increases lethal cardiac dysfunction following mouse cardiac arrest. Resuscitation 2011, 82: 115-121. 10.1016/j.resuscitation.2010.08.038CrossRefPubMedPubMedCentral Beiser DG, Orbelyan GA, Inouye BT, Costakis JG, Hamann KJ, McNally EM, Vanden Hoek TL: Genetic deletion of NOS3 increases lethal cardiac dysfunction following mouse cardiac arrest. Resuscitation 2011, 82: 115-121. 10.1016/j.resuscitation.2010.08.038CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Dezfulian C, Shiva S, Alekseyenko A, Pendyal A, Beiser DG, Munasinghe JP, Anderson SA, Chesley CF, Vanden Hoek TL, Gladwin MT: Nitrite therapy after cardiac arrest reduces reactive oxygen species generationimproves cardiac and neurological functionand enhances survival via reversible inhibition of mitochondrial complex I. Circulation 2009, 120: 897-905. 10.1161/CIRCULATIONAHA.109.853267CrossRefPubMedPubMedCentral Dezfulian C, Shiva S, Alekseyenko A, Pendyal A, Beiser DG, Munasinghe JP, Anderson SA, Chesley CF, Vanden Hoek TL, Gladwin MT: Nitrite therapy after cardiac arrest reduces reactive oxygen species generationimproves cardiac and neurological functionand enhances survival via reversible inhibition of mitochondrial complex I. Circulation 2009, 120: 897-905. 10.1161/CIRCULATIONAHA.109.853267CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Ping P, Zhang J, Cao X, Li RC, Kong D, Tang XL, Qiu Y, Manchikalapudi S, Auchampach JA, Black RG, Bolli R: PKC-dependent activation of p44/p42 MAPKs during myocardial ischemia-reperfusion in conscious rabbits. Am J Physiol 1999, 276: H1468-H1481.PubMed Ping P, Zhang J, Cao X, Li RC, Kong D, Tang XL, Qiu Y, Manchikalapudi S, Auchampach JA, Black RG, Bolli R: PKC-dependent activation of p44/p42 MAPKs during myocardial ischemia-reperfusion in conscious rabbits. Am J Physiol 1999, 276: H1468-H1481.PubMed
34.
Zurück zum Zitat Pifarré P, Prado J, Giralt M, Molinero A, Hidalgo J, Garcia A: Cyclic GMP phosphodiesterase inhibition alters the glial inflammatory responsereduces oxidative stress and cell death and increases angiogenesis following focal brain injury. J Neurochem 2010, 112: 807-817. 10.1111/j.1471-4159.2009.06518.xCrossRefPubMed Pifarré P, Prado J, Giralt M, Molinero A, Hidalgo J, Garcia A: Cyclic GMP phosphodiesterase inhibition alters the glial inflammatory responsereduces oxidative stress and cell death and increases angiogenesis following focal brain injury. J Neurochem 2010, 112: 807-817. 10.1111/j.1471-4159.2009.06518.xCrossRefPubMed
35.
Zurück zum Zitat Ichinose F, Roberts JD Jr, Zapol WM: Inhaled nitric oxide: a selective pulmonary vasodilator: current uses and therapeutic potential. Circulation 2004, 109: 3106-3111. 10.1161/01.CIR.0000134595.80170.62CrossRefPubMed Ichinose F, Roberts JD Jr, Zapol WM: Inhaled nitric oxide: a selective pulmonary vasodilator: current uses and therapeutic potential. Circulation 2004, 109: 3106-3111. 10.1161/01.CIR.0000134595.80170.62CrossRefPubMed
36.
Zurück zum Zitat Griffiths MJ, Evans TW: Inhaled nitric oxide therapy in adults. N Engl J Med 2005, 353: 2683-2695. 10.1056/NEJMra051884CrossRefPubMed Griffiths MJ, Evans TW: Inhaled nitric oxide therapy in adults. N Engl J Med 2005, 353: 2683-2695. 10.1056/NEJMra051884CrossRefPubMed
37.
Zurück zum Zitat Hogman M, Frostell C, Arnberg H, Hedenstierna G: Bleeding time prolongation and NO inhalation. Lancet 1993, 341: 1664-1665.CrossRefPubMed Hogman M, Frostell C, Arnberg H, Hedenstierna G: Bleeding time prolongation and NO inhalation. Lancet 1993, 341: 1664-1665.CrossRefPubMed
38.
Zurück zum Zitat Fox-Robichaud A, Payne D, Hasan SU, Ostrovsky L, Fairhead T, Reinhardt P, Kubes P: Inhaled NO as a viable antiadhesive therapy for ischemia/reperfusion injury of distal microvascular beds. J Clin Invest 1998, 101: 2497-2505. 10.1172/JCI2736CrossRefPubMedPubMedCentral Fox-Robichaud A, Payne D, Hasan SU, Ostrovsky L, Fairhead T, Reinhardt P, Kubes P: Inhaled NO as a viable antiadhesive therapy for ischemia/reperfusion injury of distal microvascular beds. J Clin Invest 1998, 101: 2497-2505. 10.1172/JCI2736CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Guery B, Neviere R, Viget N, Foucher C, Fialdes P, Wattel F, Beaucaire G: Inhaled NO preadministration modulates local and remote ischemia- reperfusion organ injury in a rat model. J Appl Physiol 1999, 87: 47-53.PubMed Guery B, Neviere R, Viget N, Foucher C, Fialdes P, Wattel F, Beaucaire G: Inhaled NO preadministration modulates local and remote ischemia- reperfusion organ injury in a rat model. J Appl Physiol 1999, 87: 47-53.PubMed
40.
Zurück zum Zitat Hataishi R, Rodrigues AC, Neilan TG, Morgan JG, Buys E, Shiva S, Tambouret R, Jassal DS, Raher MJ, Furutani E, Ichinose F, Gladwin MT, Rosenzweig A, Zapol WM, Picard MH, Bloch KD, Scherrer-Crosbie M: Inhaled nitric oxide decreases infarction size and improves left ventricular function in a murine model of myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2006, 291: H379-H384. 10.1152/ajpheart.01172.2005CrossRefPubMed Hataishi R, Rodrigues AC, Neilan TG, Morgan JG, Buys E, Shiva S, Tambouret R, Jassal DS, Raher MJ, Furutani E, Ichinose F, Gladwin MT, Rosenzweig A, Zapol WM, Picard MH, Bloch KD, Scherrer-Crosbie M: Inhaled nitric oxide decreases infarction size and improves left ventricular function in a murine model of myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2006, 291: H379-H384. 10.1152/ajpheart.01172.2005CrossRefPubMed
41.
Zurück zum Zitat Liu X, Huang Y, Pokreisz P, Vermeersch P, Marsboom G, Swinnen M, Verbeken E, Santos J, Pellens M, Gillijns H, Van de Werf F, Bloch KD, Jannssens S: Nitric oxide inhalation improves microvascular flow and decreases infarction size after myocardial ischemia and reperfusion. J Am Coll Cardiol 2007, 50: 808-817. 10.1016/j.jacc.2007.04.069CrossRefPubMed Liu X, Huang Y, Pokreisz P, Vermeersch P, Marsboom G, Swinnen M, Verbeken E, Santos J, Pellens M, Gillijns H, Van de Werf F, Bloch KD, Jannssens S: Nitric oxide inhalation improves microvascular flow and decreases infarction size after myocardial ischemia and reperfusion. J Am Coll Cardiol 2007, 50: 808-817. 10.1016/j.jacc.2007.04.069CrossRefPubMed
42.
Zurück zum Zitat Nagasaka Y, Fernandez BO, Garcia-Saura MF, Petersen B, Ichinose F, Bloch KD, Feelisch M, Zapol WM: Brief periods of nitric oxide inhalation protect against myocardial ischemia-reperfusion injury. Anesthesiology 2008, 109: 675-682. 10.1097/ALN.0b013e318186316eCrossRefPubMedPubMedCentral Nagasaka Y, Fernandez BO, Garcia-Saura MF, Petersen B, Ichinose F, Bloch KD, Feelisch M, Zapol WM: Brief periods of nitric oxide inhalation protect against myocardial ischemia-reperfusion injury. Anesthesiology 2008, 109: 675-682. 10.1097/ALN.0b013e318186316eCrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Lang JD Jr, Chumley P, Teng X, Chumley P, Crawford JH, Isbell TS, Chacko BK, Liu Y, Jhala N, Crowe DR, Smith AB, Cross RC, Frenette L, Kelley EE, Wilhite DW, Hall CR, Page GP, Fallon MB, Bynon JS, Eckhoff DE, Patel RP: Inhaled NO accelerates restoration of liver function in adults following orthotopic liver transplantation. J Clin Invest 2007, 117: 2583-2591. 10.1172/JCI31892CrossRefPubMedPubMedCentral Lang JD Jr, Chumley P, Teng X, Chumley P, Crawford JH, Isbell TS, Chacko BK, Liu Y, Jhala N, Crowe DR, Smith AB, Cross RC, Frenette L, Kelley EE, Wilhite DW, Hall CR, Page GP, Fallon MB, Bynon JS, Eckhoff DE, Patel RP: Inhaled NO accelerates restoration of liver function in adults following orthotopic liver transplantation. J Clin Invest 2007, 117: 2583-2591. 10.1172/JCI31892CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Gianetti J, Del Sarto P, Bevilacqua S, Vassalle C, De Filippis R, Kacila M, Farneti PA, Clerico A, Glauber M, Biagini A: Supplemental nitric oxide and its effect on myocardial injury and function in patients undergoing cardiac surgery with extracorporeal circulation. J Thorac Cardiovasc Surg 2004, 127: 44-50. 10.1016/j.jtcvs.2002.08.001CrossRefPubMed Gianetti J, Del Sarto P, Bevilacqua S, Vassalle C, De Filippis R, Kacila M, Farneti PA, Clerico A, Glauber M, Biagini A: Supplemental nitric oxide and its effect on myocardial injury and function in patients undergoing cardiac surgery with extracorporeal circulation. J Thorac Cardiovasc Surg 2004, 127: 44-50. 10.1016/j.jtcvs.2002.08.001CrossRefPubMed
45.
Zurück zum Zitat Mathru M, Huda R, Solanki DR, Hays S, Lang JD: Inhaled nitric oxide attenuates reperfusion inflammatory responses in humans. Anesthesiology 2007, 106: 275-282. 10.1097/00000542-200702000-00015CrossRefPubMed Mathru M, Huda R, Solanki DR, Hays S, Lang JD: Inhaled nitric oxide attenuates reperfusion inflammatory responses in humans. Anesthesiology 2007, 106: 275-282. 10.1097/00000542-200702000-00015CrossRefPubMed
46.
Zurück zum Zitat Kida K, Minamishima S, Wang H, Ren J, Yigitkanil K, Nozari A, Mandeville JB, Liu PK, Liu CH, Ichinose F: Sodium sulfide prevents water diffusion abnormality in the brain and improves long term outcome after cardiac arrest in mice. Resuscitation 2012, 83: 1292-1297. 10.1016/j.resuscitation.2012.02.020CrossRefPubMedPubMedCentral Kida K, Minamishima S, Wang H, Ren J, Yigitkanil K, Nozari A, Mandeville JB, Liu PK, Liu CH, Ichinose F: Sodium sulfide prevents water diffusion abnormality in the brain and improves long term outcome after cardiac arrest in mice. Resuscitation 2012, 83: 1292-1297. 10.1016/j.resuscitation.2012.02.020CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Minamishima S, Bougaki M, Sips PY, Yu JD, Minamishima YA, Elrod JW, Lefer DJ, Bloch KD, Ichinose F: Hydrogen sulfide improves survival after cardiac arrest and cardiopulmonary resuscitation via a nitric oxide synthase 3-dependent mechanism in mice. Circulation 2009, 120: 888-896. 10.1161/CIRCULATIONAHA.108.833491CrossRefPubMedPubMedCentral Minamishima S, Bougaki M, Sips PY, Yu JD, Minamishima YA, Elrod JW, Lefer DJ, Bloch KD, Ichinose F: Hydrogen sulfide improves survival after cardiac arrest and cardiopulmonary resuscitation via a nitric oxide synthase 3-dependent mechanism in mice. Circulation 2009, 120: 888-896. 10.1161/CIRCULATIONAHA.108.833491CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Minamishima S, Kida K, Tokuda K, Wang H, Sips PY, Kosugi S, Mandeville JB, Buys ES, Brouckaert P, Liu PK, Liu CH, Bloch KD, Ichinose F: Inhaled nitric oxide improves outcomes after successful cardiopulmonary resuscitation in mice. Circulation 2011, 124: 1645-1653. 10.1161/CIRCULATIONAHA.111.025395CrossRefPubMedPubMedCentral Minamishima S, Kida K, Tokuda K, Wang H, Sips PY, Kosugi S, Mandeville JB, Buys ES, Brouckaert P, Liu PK, Liu CH, Bloch KD, Ichinose F: Inhaled nitric oxide improves outcomes after successful cardiopulmonary resuscitation in mice. Circulation 2011, 124: 1645-1653. 10.1161/CIRCULATIONAHA.111.025395CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Wijman cardiac arrest, Mlynash M, Caulfield AF, Hsia AW, Eyngorn I, Bammer R, Rischbein N, Albers GW, Moseley M: Prognostic value of brain diffusion- weighted imaging after cardiac arrest. Ann Neurol 2009, 65: 394-402. 10.1002/ana.21632CrossRef Wijman cardiac arrest, Mlynash M, Caulfield AF, Hsia AW, Eyngorn I, Bammer R, Rischbein N, Albers GW, Moseley M: Prognostic value of brain diffusion- weighted imaging after cardiac arrest. Ann Neurol 2009, 65: 394-402. 10.1002/ana.21632CrossRef
50.
Zurück zum Zitat Nagasaka Y, Buys E, Spagnolli E, Steinbecker AU, Hayton SR, Rauwerdink KM, Brouckaert P, Zapol WM, Bloch KD: Soluble guanylate cyclase-α1 is required for the cardioprotective effects of inhaled nitric oxide. Am J Physiol Heart Circ Physiol 2011, 300: H1477-H1483. 10.1152/ajpheart.00948.2010CrossRefPubMedPubMedCentral Nagasaka Y, Buys E, Spagnolli E, Steinbecker AU, Hayton SR, Rauwerdink KM, Brouckaert P, Zapol WM, Bloch KD: Soluble guanylate cyclase-α1 is required for the cardioprotective effects of inhaled nitric oxide. Am J Physiol Heart Circ Physiol 2011, 300: H1477-H1483. 10.1152/ajpheart.00948.2010CrossRefPubMedPubMedCentral
Metadaten
Titel
Preventing ischemic brain injury after sudden cardiac arrest using NO inhalation
verfasst von
Kotaro Kida
Fumito Ichinose
Publikationsdatum
01.04.2014
Verlag
BioMed Central
Erschienen in
Critical Care / Ausgabe 2/2014
Elektronische ISSN: 1364-8535
DOI
https://doi.org/10.1186/cc13779

Weitere Artikel der Ausgabe 2/2014

Critical Care 2/2014 Zur Ausgabe

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Hinter dieser Appendizitis steckte ein Erreger

23.04.2024 Appendizitis Nachrichten

Schmerzen im Unterbauch, aber sonst nicht viel, was auf eine Appendizitis hindeutete: Ein junger Mann hatte Glück, dass trotzdem eine Laparoskopie mit Appendektomie durchgeführt und der Wurmfortsatz histologisch untersucht wurde.

Ärztliche Empathie hilft gegen Rückenschmerzen

23.04.2024 Leitsymptom Rückenschmerzen Nachrichten

Personen mit chronischen Rückenschmerzen, die von einfühlsamen Ärzten und Ärztinnen betreut werden, berichten über weniger Beschwerden und eine bessere Lebensqualität.

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.