Skip to main content
Erschienen in: Clinical Research in Cardiology 10/2009

Open Access 01.10.2009 | Original Paper

Renal dysfunction is associated with shorter telomere length in heart failure

verfasst von: Liza S. M. Wong, Pim van der Harst, Rudolf A. de Boer, Veryan Codd, Jardi Huzen, Nilesh J. Samani, Hans L. Hillege, Adriaan A. Voors, Wiek H. van Gilst, Tiny Jaarsma, Dirk J. van Veldhuisen

Erschienen in: Clinical Research in Cardiology | Ausgabe 10/2009

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Background

Renal dysfunction is a frequent comorbidity associated with high mortality in patients with chronic heart failure (CHF). The intrinsic biological age might affect the ability of the kidney to cope with the challenging environment caused by CHF. We explored the association between leukocyte telomere length, a marker for biological age, and renal function in patients with CHF.

Methods and results

Telomere length was determined by a real-time quantitative polymerase chain reaction in 866 CHF patients. Renal function was estimated with the simplified Modification of Diet in Renal Disease equation. The median age was 74 (interquartile range 64–79) years, 61% male, left ventricular ejection fraction of 30 (23–44)%, and the estimated glomerular filtration rate was 53 (40–68) ml/min/1.73 m2. Telomere length was associated with renal function (correlation coefficient 0.123, P < 0.001). This relationship remained significant after adjustment for age, gender, age of CHF onset (standardized-beta 0.091, P = 0.007). Also additionally adjusting for the severity of CHF and baseline differences did not change our findings.

Conclusion

The association between shorter leukocyte telomere length and reduced renal function in heart failure suggests that intrinsic biological aging affects the ability of the kidney to cope with the systemic changes evoked by heart failure.

Introduction

Chronic heart failure (CHF) is an age-associated disease with a high prevalence and incidence in Western Society [8, 24]. Risk factors associated with increased mortality in patients with CHF include, hypotension, anaemia, increased BNP levels, activation of the renin-angiotensin system, and decreased renal function [2, 7, 9, 10, 13, 18, 22, 27]. The precise nature of renal dysfunction in CHF patients remains to be elucidated. It has been suggested that the decreased cardiac output, increased inflammation and oxidative stress may challenge the function and integrity of the kidney in patients with CHF [4, 17]. At some point, a glomerulus may be irreversibly damaged, leading to “nephron dropout” and accumulating into a progressive decline of renal function. Recently, we provided preliminary data suggesting a possible association between shorter telomere length and reduced renal function in a retrospective study [23]. We hypothesized that a more advanced intrinsic biological age, reflected by telomere length, increases the susceptibility of the kidney to lose function in the challenged physiological environment evoked by CHF.
Telomeres are considered indicators of biological age and are heritable structures located at the extreme ends of chromosomes. Telomeres consist of specific nucleotide repeats, in humans TTAGGG [3, 5, 16]. In conjunction with several telomere-binding proteins, telomeres protect chromosomes from recognition and degradation by DNA damage signalling pathways [6]. When telomeres become critically short, they lose their protective function and cells become genetically instable, causing senescence or apoptosis [3]. Telomeres are incompletely replicated by DNA polymerase, causing cumulative attrition of length after each cell division and marking replicative history [16]. Additional telomere attrition can be caused by damaging external factors (e.g., oxidative stress, activation of the renin-angiotensin system) [25, 26]. The aim of our study is to explore whether systemic leukocyte telomere length is associated with renal function in patients with CHF.

Methods

This study was a sub-study of the Coordinating Study Evaluating Outcomes of Advising and Counseling in Heart Failure (COACH) of which the main findings have been published [11, 12]. The COACH-study assessed the value of additional support by a specialized heart failure nurse in the treatment of CHF. Eligible patients were aged 18 years or older, had typical signs and symptoms, and evidence for structural heart disease confirmed by cardiovascular imaging. Patients did not necessarily have to have impaired left ventricular ejection fraction (LVEF). At hospital discharge, patients were stable and on oral heart failure medication. In total, 157 (15%) of the 1,023 patients who participated in the COACH were not included in this sub-study, mainly because of no available DNA (n = 133) or missing serum creatinine values (n = 18). This study has been approved by the local Medical Ethics Committee. All patients gave written informed consent.

Renal function and telomere length

Glomerular filtration rate (GFR) was estimated at enrollment with the simplified Modification of Diet in Renal Diseases equation [186.3 × (serum creatinine/88.4)−1.154 × age−0.203, in women multiplied by 0.742], which is one of the most precise and accurate formulas for calculating GFR [19]. A venous blood sample was taken from the patients during the first outpatient visit and DNA isolated from it according to standard protocols (Qiagen, subsidiary Benelux B.V. Venlo, The Netherlands; QIAmp 96 DNA Blood kit, catalog no. 51162). Mean leukocyte telomere length was measured by quantitative polymerase chain reaction (PCR) in leukocytes, as previously described in detail [21]. Telomere length is expressed as T/S ratio, which is the relative ratio of telomere repeat copy number “T” to a single-gene copy number “S” (36B4). All samples were assayed in triplicates on separate PCR plates, but in same well positions. The mean ± SD coefficient of variation was 7 ± 5% for the T-assay, and 6 ± 4% for S assay.

Statistical analysis

Telomere length ratio was natural log transformed to obtain a normal distribution. Baseline characteristics were compared among quartiles of estimated glomerular filtration rate (eGFR) by one-way analysis of variance, Kruskal–Wallis test, or Chi-square when appropriate. Pearson correlation coefficient was used to assess the association between leukocyte telomere length and renal function. Standard linear regression techniques were used to adjust for age and gender in a second model and additionally for age of CHF onset in a third model. This third basic model was used to subsequently adjust for baseline differences. Because renal function cannot be assumed to be linearly related to leukocyte telomere length, it was also modeled as a fractional polynomial function. A two-sided P value of <0.05 was considered to indicate statistical significance. All statistical analyses were performed with use of STATA version 10.0 for Windows software (StataCorp LP, College Station, TX, USA).

Results

Baseline characteristics according to quartiles of eGFR are presented in Table 1. The study population consisted of 61% men, median age was 74 years, median LVEF was 30%, with most patients in NYHA class II and III (together 97%). Patients with decreased renal function were less likely to be men, and more likely to be older of age, to have higher NYHA class, hypertension, diabetes, atrial fibrillation or flutter, lower hemoglobin levels, and a previous admission for CHF (Table 1).
Table 1
Baseline characteristics
Patient characteristics
Quartiles of estimated GFR (eGFR)
Total, n = 866
P value
1, n = 216
2, n = 217
3, n = 216
4, n = 217
eGFR (ml/min/1.73 m2)
79 (73–88)
61 (57–65)
46 (43–49)
31 (26–36)
53 (40–68)
Defining criterion
Creatinine (μmol/l)
83 (71–91)
104 (90–113)
131 (113–141)
174 (153–205)
113 (91–144)
<0.001
Telomere length (T/S ratio)
0.72 (0.61–0.88)
0.71 (0.60–0.85)
0.67 (0.58–0.83)
0.67 (0.57–0.82)
0.69 (0.59–0.85)
0.031
Natural log T/S ratio
−0.37 ± 0.28
−0.34 ± 0.28
−0.32 ± 0.27
−0.31 ± 0.28
−0.34 ± 0.28
0.031
Age
66 (57–74)
73 (64–79)
75 (67–81)
78 (71–81)
74 (64–79)
<0.001
Male gender, n (%)
148 (69)
140 (65)
134 (62)
107 (49)
529 (61)
<0.001
NYHA class, n (%)
 II
135 (63)
112 (53)
99 (46)
87 (41)
433 (51)
0.001
 III
78 (36)
93 (44)
109 (51)
115 (54)
395 (46)
 IV
3 (1)
7 (3)
6 (3)
10 (5)
26 (3)
Age of onset CHF (year)
64 (54–73)
71 (62–76)
71 (63–78)
74 (68–79)
71 (61–78)
0.001
LVEF (%)
30 (22–40)
30 (21–44)
30 (23–45)
33 (25–43)
30 (23–44)
0.44
Body mass index (kg/m2)
26.0 (23.5–29.4)
26.3 (23.9–29.7)
26.2 (23.7–29.7)
26.1 (23.0–29.4)
26.1 (23.5–29.6)
0.71
Blood pressure (mmHg)
 Systolic blood pressure
110 (100–125)
120 (105–130)
115 (105–130)
120 (100–137)
115 (101–130)
0.002
 Diastolic blood pressure
65 (60–76)
70 (60–80)
65 (60–70)
65 (60–75)
69 (60–75)
<0.001
Heart rate (beats/min)
76 (66–86)
72 (66–80)
72 (64–80)
72 (64–80)
72 (64–82)
0.03
Medical history, n (%)
 Diabetes
52 (24)
52 (24)
60 (28)
81 (37)
245 (28)
0.005
 Hypertension
81 (38)
77 (35)
93 (43)
113 (52)
364 (42)
0.002
 Myocardial infarction
77 (36)
85 (39)
97 (45)
103 (47)
362 (42)
0.05
 Atrial fibrillation/flutter
76 (44)
91 (42)
107 (50)
110 (51)
384 (44)
0.003
 Stroke
18 (8)
17 (8)
26 (12)
26 (12)
87 (10)
0.29
Laboratory measurements
 NT-pro-BNP (pg/ml)
2,027 (1,259–4,242)
1,983 (1,130–3,624)
3,016 (1,202–4,742)
4,572 (1,506–10,664)
2,530 (1,259–5,548)
<0.001
 Hemoglobin (mmol/l)
8.7 (8.0–9.3)
8.8 (7.9–9.3)
8.3 (7.6–9.1)
7.8 (7.1–8.6)
8.4 (7.6–9.2)
<0.001
Previous admission, n (%)
48 (22)
56 (26)
69 (32)
102 (47)
275 (32)
<0.001
Current medication, n (%)
 RAS-inhibitors
189 (88)
189 (87)
182 (84)
155 (71)
715 (83)
<0.001
 Beta-blockers
145 (67)
149 (69)
141 (65)
135 (62)
570 (66)
0.52
 Diuretics
205 (95)
212 (98)
205 (95)
206 (95)
828 (96)
0.39
 Digoxin
77 (36)
63 (29)
74 (34)
52 (24)
266 (31)
0.034
 Statins
78 (36)
91 (42)
85 (39)
79 (36)
333 (38)
0.56
Normally distributed data is presented as mean ± SD, skewed distributed data as median (interquartile range). The body-mass index is the weight in kilograms divided by the square of the height in meters. Diuretics include loop diuretics, thiazides, and aldosterone antagonists
eGFR estimated glomerular filtration rate, NYHA New York Heart Association functional class, CHF chronic heart failure, LVEF left ventricular ejection fraction, NT-pro-BNP N-terminal pro-B-type natriuretic peptide, RAS-inhibitors renin-angiotensin-system inhibitors (angiotensin-converting enzyme inhibitor and/or angiotensin-receptor blocker)
Estimated GFR decreased with age at a yearly rate of 0.70 ± 0.058 ml/min/1.73 m2 (P < 0.001). Telomere length ratio decreased steadily at a mean rate of 0.0035 ± 0.00064 per year of increase of age (P < 0.001).
Telomere length was 0.719 (interquartile range 0.609–0.881) in the quartile with the highest eGFR, 0.710 (0.604–0.855) in quartile 2, 0.673 (0.582–0.834) in quartile 3, and 0.667 (0.571–0.825) in the quartile with the lowest eGFR (P = 0.031). When leukocyte telomere length was modeled as a continuous predictor, renal function decreased gradually with shorter telomere length. Pearson correlation coefficient for the association between telomere length and eGFR was 0.123 (P < 0.001). The relationship between renal function and telomere length remained significant after adjustment for gender and age (standardized-beta 0.090; Table 2). In the third basic model we also adjusted for the age of CHF onset (Fig. 1). Our findings did not change after additionally adjusting for baseline differences (diabetes, hypertension, history of myocardial infarction, NYHA class, systolic blood pressure, diastolic blood pressure, heart rate, atrial fibrillation, NT-pro-BNP, hemoglobin levels, use of renin-angiotensin system inhibitors, and digoxin; Table 2).
Table 2
Univariate and adjusted standardized beta for association between renal function and telomere length
 
Standardized-beta
95%CI
P value
Model 1
0.123
0.057–0.189
<0.001
Model 2
0.090
0.023–0.157
0.008
Model 3
0.091
0.024–0.158
0.007
Model 3
 + Diabetes
0.090
0.023–0.157
0.008
 + Hypertension
0.091
0.024–0.159
0.008
 + Previous myocardial infarction
0.092
0.024–0.158
0.007
 + NYHA class
0.085
0.018–0.153
0.013
 + Systolic blood pressure
0.088
0.021–0.155
0.010
 + Diastolic blood pressure
0.090
0.023–0.157
0.009
 + Heart rate
0.090
0.023–0.157
0.009
 + Atrial fibrillation/flutter
0.091
0.024–0.157
0.008
 + NT-pro-BNP
0.103
0.011–0.194
0.028
 + Hemoglobin
0.100
0.010–0.187
0.029
 + RAS-inhibitors
0.074
0.007–0.142
0.031
 + Digoxin
0.094
0.027–0.161
0.006
Model 1: univariate; Model 2: adjusted for age and gender; Model 3; adjusted for age, age of heart failure onset, and gender
NYHA New York Heart Association functional class, NT-pro-BNP N-terminal pro-B-type natriuretic peptide, RAS-inhibitors renin-angiotensin-system inhibitors (angiotensin-converting enzyme and/or angiotensin-receptor blocker)

Discussion

A frequent co-morbidity factor and powerful predictor of mortality in CHF is decreased renal function [7, 10, 13]. The main finding of this study is that reduced leukocyte telomere length, as a marker for advanced intrinsic biological age, is associated with decreased renal function in patients with CHF. This observation remained significant after adjustment for several confounders, including age, age of CHF onset, and severity of CHF.
Telomere length is associated with CHF. We recently demonstrated telomere length to be shorter in 620 patients with CHF compared to healthy controls [21]. This was also observed by others [15]. In addition, levels of TRF2—one of the telomere-stabilizing proteins—in the myocardium of heart failure patients was found to be down-regulated by approximately 50% compared to healthy controls [15]. Interestingly, Werner et al. found that physical exercise in mice up-regulated TRF2, and protected the myocardium from doxorubicin-induced apoptosis [28]. Thus, telomere biology is not only associated with CHF, but seems to be a modifiable factor in heart failure. Possibly, telomeres are a new therapeutic target in heart failure.
A retrospective analysis of the cohort of 620 CHF patients suggested a potential association between telomere length and renal function [23]. Obviously, retrospective analysis is susceptible to type-1 errors. The current prospective study, however, provides important independent confirmation of these preliminary findings. Reduced renal function might be associated with shorter telomere length in patients with CHF for several reasons. First, the processes biological aging and renal senescence associated with renal function decline includes a decreased ability of aged nephrons to cope with diseased states. CHF elicits systemic changes, including decreased cardiac output, inflammation, oxidative stress, and activation of the renin-angiotensin system [4, 22]. Nephrons with shorter telomeres might be less resistant to these challenges and more likely to enter a senescence state, become dysfunctional or even apoptotic. The phenotype of human renal senescence has indeed been described previously as the loss of mass and function, including a loss of GFR [14]. Second, leukocytes telomeres mark replicative history and therefore might mark the cumulative inflammatory burden a patient has been exposed to [1]. Inflammation is a major causal factor of vasculo- and glomerulopathy and consequently might cause a decrease in renal function. Finally, other factors associated with biological aging (e.g., accumulation of advanced glycation endproducts) might cause renal dysfunction and coincide with shorter telomere length [20].
The cross-sectional nature of our study does not allow drawing definite conclusions concerning the nature of the observed association. Although we used multiple statistical adjustments, we cannot exclude possible confounding factors that may have obscured the observed relationship.
In conclusion, decreased renal function was associated with reduced leukocyte telomere length in patients with CHF. This observation support the hypothesis that increased intrinsic biological age affects the kidney in its ability to cope with the systemic changes evoked by CHF and might explain, at least in part, why renal function is closely related to mortality in patients with CHF.

Acknowledgments

We like to thank all the patients, investigators, heart failure nurses, and the committees of the COACH-study (for names see Ref. [11]). We are indebted to Germaine Benus for her excellent technical support. The COACH-study was supported by Netherlands Heart Foundation (Grant 2000Z003). Telomere research is supported by the Innovational Research Incentives Scheme program of the Netherlands Organisation for Scientific Research (NWO VENI, grant 916.76.170 to P. van der Harst), the Interuniversitair Cardiologisch Instituut Nederland (ICIN), and the Netherlands Heart Foundation (grant 2006B140). L.S.M. Wong, P. van der Harst and R.A. de Boer are research fellows of the Netherlands Heart Foundation (grant 2008T028, 2006T003, and 2004T004, respectively). N.J. Samani holds a British Heart Foundation Chair. D.J. van Veldhuisen and A.A. Voors are Established Investigators of the Netherlands Heart Foundation (grant D97-017 and 2006T037 respectively). None of the funders had a role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://​creativecommons.​org/​licenses/​by-nc/​2.​0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Unsere Produktempfehlungen

Neuer Inhalt

Print-Titel

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Literatur
1.
Zurück zum Zitat Aviv A (2006) Telomeres and human somatic fitness. J Gerontol A Biol Sci Med Sci 61:871–873PubMed Aviv A (2006) Telomeres and human somatic fitness. J Gerontol A Biol Sci Med Sci 61:871–873PubMed
2.
Zurück zum Zitat Best PJ, Holmes DR Jr (2003) Chronic kidney disease as a cardiovascular risk factor. Am Heart J 145:383–386PubMedCrossRef Best PJ, Holmes DR Jr (2003) Chronic kidney disease as a cardiovascular risk factor. Am Heart J 145:383–386PubMedCrossRef
3.
Zurück zum Zitat Blasco MA (2005) Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 6:611–622PubMedCrossRef Blasco MA (2005) Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 6:611–622PubMedCrossRef
4.
Zurück zum Zitat Bongartz LG, Cramer MJ, Doevendans PA, Joles JA, Braam B (2005) The severe cardiorenal syndrome: ‘Guyton revisited’. Eur Heart J 26:11–17PubMedCrossRef Bongartz LG, Cramer MJ, Doevendans PA, Joles JA, Braam B (2005) The severe cardiorenal syndrome: ‘Guyton revisited’. Eur Heart J 26:11–17PubMedCrossRef
5.
Zurück zum Zitat Brouilette SW, Whittaker A, Stevens SE, van der Harst P, Goodall AH, Samani NJ (2008) Telomere length is shorter in healthy offspring of subjects with coronary artery disease: support for the telomere hypothesis. Heart 94:422–425PubMedCrossRef Brouilette SW, Whittaker A, Stevens SE, van der Harst P, Goodall AH, Samani NJ (2008) Telomere length is shorter in healthy offspring of subjects with coronary artery disease: support for the telomere hypothesis. Heart 94:422–425PubMedCrossRef
6.
Zurück zum Zitat Chan SR, Blackburn EH (2004) Telomeres and telomerase. Philos Trans R Soc Lond B Biol Sci 359:109–121PubMedCrossRef Chan SR, Blackburn EH (2004) Telomeres and telomerase. Philos Trans R Soc Lond B Biol Sci 359:109–121PubMedCrossRef
7.
Zurück zum Zitat Damman K, Navis G, Voors AA, Asselbergs FW, Smilde TD, Cleland JG, van Veldhuisen DJ, Hillege HL (2007) Worsening renal function and prognosis in heart failure: systematic review and meta-analysis. J Card Fail 13:599–608PubMedCrossRef Damman K, Navis G, Voors AA, Asselbergs FW, Smilde TD, Cleland JG, van Veldhuisen DJ, Hillege HL (2007) Worsening renal function and prognosis in heart failure: systematic review and meta-analysis. J Card Fail 13:599–608PubMedCrossRef
8.
Zurück zum Zitat Gillum RF (1993) Epidemiology of heart failure in the United States. Am Heart J 126:1042–1047PubMedCrossRef Gillum RF (1993) Epidemiology of heart failure in the United States. Am Heart J 126:1042–1047PubMedCrossRef
9.
Zurück zum Zitat Gorelik O, Almoznino-Sarafian D, Shteinshnaider M, Alon I, Tzur I, Sokolsky I, Efrati S, Babakin Z, Modai D, Cohen N (2009) Clinical variables affecting survival in patients with decompensated diastolic versus systolic heart failure. Clin Res Cardiol 98:224–232PubMedCrossRef Gorelik O, Almoznino-Sarafian D, Shteinshnaider M, Alon I, Tzur I, Sokolsky I, Efrati S, Babakin Z, Modai D, Cohen N (2009) Clinical variables affecting survival in patients with decompensated diastolic versus systolic heart failure. Clin Res Cardiol 98:224–232PubMedCrossRef
10.
Zurück zum Zitat Hillege HL, Nitsch D, Pfeffer MA, Swedberg K, McMurray JJ, Yusuf S, Granger CB, Michelson EL, Ostergren J, Cornel JH, de Zeeuw D, Pocock S, van Veldhuisen DJ (2006) Renal function as a predictor of outcome in a broad spectrum of patients with heart failure. Circulation 113:671–678PubMedCrossRef Hillege HL, Nitsch D, Pfeffer MA, Swedberg K, McMurray JJ, Yusuf S, Granger CB, Michelson EL, Ostergren J, Cornel JH, de Zeeuw D, Pocock S, van Veldhuisen DJ (2006) Renal function as a predictor of outcome in a broad spectrum of patients with heart failure. Circulation 113:671–678PubMedCrossRef
11.
Zurück zum Zitat Jaarsma T, van der Wal MH, Hogenhuis J, Lesman I, Luttik ML, Veeger NJ, van Veldhuisen DJ (2004) Design and methodology of the COACH study: a multicenter randomised Coordinating Study Evaluating Outcomes of Advising and Counselling in Heart failure. Eur J Heart Fail 6:227–233PubMedCrossRef Jaarsma T, van der Wal MH, Hogenhuis J, Lesman I, Luttik ML, Veeger NJ, van Veldhuisen DJ (2004) Design and methodology of the COACH study: a multicenter randomised Coordinating Study Evaluating Outcomes of Advising and Counselling in Heart failure. Eur J Heart Fail 6:227–233PubMedCrossRef
12.
Zurück zum Zitat Jaarsma T, van der Wal MH, Lesman-Leegte I, Luttik ML, Hogenhuis J, Veeger NJ, Sanderman R, Hoes AW, van Gilst WH, Lok DJ, Dunselman PH, Tijssen JG, Hillege HL, van Veldhuisen DJ (2008) Effect of moderate or intensive disease management program on outcome in patients with heart failure: Coordinating Study Evaluating Outcomes of Advising and Counseling in Heart Failure (COACH). Arch Intern Med 168:316–324PubMedCrossRef Jaarsma T, van der Wal MH, Lesman-Leegte I, Luttik ML, Hogenhuis J, Veeger NJ, Sanderman R, Hoes AW, van Gilst WH, Lok DJ, Dunselman PH, Tijssen JG, Hillege HL, van Veldhuisen DJ (2008) Effect of moderate or intensive disease management program on outcome in patients with heart failure: Coordinating Study Evaluating Outcomes of Advising and Counseling in Heart Failure (COACH). Arch Intern Med 168:316–324PubMedCrossRef
13.
Zurück zum Zitat McAlister FA, Ezekowitz J, Tonelli M, Armstrong PW (2004) Renal insufficiency and heart failure: prognostic and therapeutic implications from a prospective cohort study. Circulation 109:1004–1009PubMedCrossRef McAlister FA, Ezekowitz J, Tonelli M, Armstrong PW (2004) Renal insufficiency and heart failure: prognostic and therapeutic implications from a prospective cohort study. Circulation 109:1004–1009PubMedCrossRef
14.
Zurück zum Zitat Melk A (2003) Senescence of renal cells: molecular basis and clinical implications. Nephrol Dial Transplant 18:2474–2478PubMedCrossRef Melk A (2003) Senescence of renal cells: molecular basis and clinical implications. Nephrol Dial Transplant 18:2474–2478PubMedCrossRef
15.
Zurück zum Zitat Oh H, Wang SC, Prahash A, Sano M, Moravec CS, Taffet GE, Michael LH, Youker KA, Entman ML, Schneider MD (2003) Telomere attrition and Chk2 activation in human heart failure. Proc Natl Acad Sci USA 100:5378–5383PubMedCrossRef Oh H, Wang SC, Prahash A, Sano M, Moravec CS, Taffet GE, Michael LH, Youker KA, Entman ML, Schneider MD (2003) Telomere attrition and Chk2 activation in human heart failure. Proc Natl Acad Sci USA 100:5378–5383PubMedCrossRef
16.
Zurück zum Zitat Samani NJ, van der Harst P (2008) Biological ageing and cardiovascular disease. Heart 94:537–539PubMedCrossRef Samani NJ, van der Harst P (2008) Biological ageing and cardiovascular disease. Heart 94:537–539PubMedCrossRef
17.
Zurück zum Zitat Smilde TD, Damman K, van der Harst P, Navis G, Daan Westenbrink B, Voors AA, Boomsma F, van Veldhuisen DJ, Hillege HL (2009) Differential associations between renal function and “modifiable” risk factors in patients with chronic heart failure. Clin Res Cardiol 98:121–129PubMedCrossRef Smilde TD, Damman K, van der Harst P, Navis G, Daan Westenbrink B, Voors AA, Boomsma F, van Veldhuisen DJ, Hillege HL (2009) Differential associations between renal function and “modifiable” risk factors in patients with chronic heart failure. Clin Res Cardiol 98:121–129PubMedCrossRef
18.
Zurück zum Zitat Smilde TD, Hillege HL, Navis G, Boomsma F, de Zeeuw D, van Veldhuisen DJ (2004) Impaired renal function in patients with ischemic and nonischemic chronic heart failure: association with neurohormonal activation and survival. Am Heart J 148:165–172PubMedCrossRef Smilde TD, Hillege HL, Navis G, Boomsma F, de Zeeuw D, van Veldhuisen DJ (2004) Impaired renal function in patients with ischemic and nonischemic chronic heart failure: association with neurohormonal activation and survival. Am Heart J 148:165–172PubMedCrossRef
19.
Zurück zum Zitat Smilde TD, van Veldhuisen DJ, Navis G, Voors AA, Hillege HL (2006) Drawbacks and prognostic value of formulas estimating renal function in patients with chronic heart failure and systolic dysfunction. Circulation 114:1572–1580PubMedCrossRef Smilde TD, van Veldhuisen DJ, Navis G, Voors AA, Hillege HL (2006) Drawbacks and prognostic value of formulas estimating renal function in patients with chronic heart failure and systolic dysfunction. Circulation 114:1572–1580PubMedCrossRef
20.
Zurück zum Zitat Smit AJ, Hartog JW, Voors AA, van Veldhuisen DJ (2008) Advanced glycation endproducts in chronic heart failure. Ann NY Acad Sci 1126:225–230PubMedCrossRef Smit AJ, Hartog JW, Voors AA, van Veldhuisen DJ (2008) Advanced glycation endproducts in chronic heart failure. Ann NY Acad Sci 1126:225–230PubMedCrossRef
21.
Zurück zum Zitat van der Harst P, van der Steege G, de Boer RA, Voors AA, Hall AS, Mulder MJ, van Gilst WH, van Veldhuisen DJ (2007) Telomere length of circulating leukocytes is decreased in patients with chronic heart failure. J Am Coll Cardiol 49:1459–1464PubMedCrossRef van der Harst P, van der Steege G, de Boer RA, Voors AA, Hall AS, Mulder MJ, van Gilst WH, van Veldhuisen DJ (2007) Telomere length of circulating leukocytes is decreased in patients with chronic heart failure. J Am Coll Cardiol 49:1459–1464PubMedCrossRef
22.
Zurück zum Zitat van der Harst P, Volbeda M, Voors AA, Buikema H, Wassmann S, Bohm M, Nickenig G, van Gilst WH (2004) Vascular response to angiotensin II predicts long-term prognosis in patients undergoing coronary artery bypass grafting. Hypertension 44:930–934PubMedCrossRef van der Harst P, Volbeda M, Voors AA, Buikema H, Wassmann S, Bohm M, Nickenig G, van Gilst WH (2004) Vascular response to angiotensin II predicts long-term prognosis in patients undergoing coronary artery bypass grafting. Hypertension 44:930–934PubMedCrossRef
23.
Zurück zum Zitat van der Harst P, Wong LS, de Boer RA, Brouilette SW, van der SG, Voors AA, Hall AS, Samani NJ, Wikstrand J, van Gilst WH, van Veldhuisen DJ (2008) Possible association between telomere length and renal dysfunction in patients with chronic heart failure. Am J Cardiol 102:207–210 van der Harst P, Wong LS, de Boer RA, Brouilette SW, van der SG, Voors AA, Hall AS, Samani NJ, Wikstrand J, van Gilst WH, van Veldhuisen DJ (2008) Possible association between telomere length and renal dysfunction in patients with chronic heart failure. Am J Cardiol 102:207–210
24.
Zurück zum Zitat van Jaarsveld CH, Ranchor AV, Kempen GI, Coyne JC, van Veldhuisen DJ, Sanderman R (2006) Epidemiology of heart failure in a community-based study of subjects aged > or = 57 years: incidence and long-term survival. Eur J Heart Fail 8:23–30PubMedCrossRef van Jaarsveld CH, Ranchor AV, Kempen GI, Coyne JC, van Veldhuisen DJ, Sanderman R (2006) Epidemiology of heart failure in a community-based study of subjects aged > or = 57 years: incidence and long-term survival. Eur J Heart Fail 8:23–30PubMedCrossRef
25.
Zurück zum Zitat Vasan RS, Demissie S, Kimura M, Cupples LA, Rifai N, White C, Wang TJ, Gardner JP, Cao X, Benjamin EJ, Levy D, Aviv A (2008) Association of leukocyte telomere length with circulating biomarkers of the renin-angiotensin-aldosterone system. The Framingham Heart Study. Circulation 117:1138–1144PubMedCrossRef Vasan RS, Demissie S, Kimura M, Cupples LA, Rifai N, White C, Wang TJ, Gardner JP, Cao X, Benjamin EJ, Levy D, Aviv A (2008) Association of leukocyte telomere length with circulating biomarkers of the renin-angiotensin-aldosterone system. The Framingham Heart Study. Circulation 117:1138–1144PubMedCrossRef
26.
Zurück zum Zitat von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27:339–344CrossRef von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27:339–344CrossRef
27.
Zurück zum Zitat Werner C, Baumhakel M, Teo KK, Schmieder R, Mann J, Unger T, Yusuf S, Bohm M (2008) RAS blockade with ARB and ACE inhibitors: current perspective on rationale and patient selection. Clin Res Cardiol 97:418–431PubMedCrossRef Werner C, Baumhakel M, Teo KK, Schmieder R, Mann J, Unger T, Yusuf S, Bohm M (2008) RAS blockade with ARB and ACE inhibitors: current perspective on rationale and patient selection. Clin Res Cardiol 97:418–431PubMedCrossRef
28.
Zurück zum Zitat Werner C, Hanhoun M, Widmann T, Kazakov A, Semenov A, Poss J, Bauersachs J, Thum T, Pfreundschuh M, Muller P, Haendeler J, Bohm M, Laufs U (2008) Effects of physical exercise on myocardial telomere-regulating proteins, survival pathways, and apoptosis. J Am Coll Cardiol 52:470–482PubMedCrossRef Werner C, Hanhoun M, Widmann T, Kazakov A, Semenov A, Poss J, Bauersachs J, Thum T, Pfreundschuh M, Muller P, Haendeler J, Bohm M, Laufs U (2008) Effects of physical exercise on myocardial telomere-regulating proteins, survival pathways, and apoptosis. J Am Coll Cardiol 52:470–482PubMedCrossRef
Metadaten
Titel
Renal dysfunction is associated with shorter telomere length in heart failure
verfasst von
Liza S. M. Wong
Pim van der Harst
Rudolf A. de Boer
Veryan Codd
Jardi Huzen
Nilesh J. Samani
Hans L. Hillege
Adriaan A. Voors
Wiek H. van Gilst
Tiny Jaarsma
Dirk J. van Veldhuisen
Publikationsdatum
01.10.2009
Verlag
D. Steinkopff-Verlag
Erschienen in
Clinical Research in Cardiology / Ausgabe 10/2009
Print ISSN: 1861-0684
Elektronische ISSN: 1861-0692
DOI
https://doi.org/10.1007/s00392-009-0048-7

Weitere Artikel der Ausgabe 10/2009

Clinical Research in Cardiology 10/2009 Zur Ausgabe

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.