Skip to main content
Erschienen in: Drugs & Aging 2/2007

01.02.2007 | Leading Article

Role of Mitochondrial Dysfunction in Parkinson’s Disease

Implications for Treatment

verfasst von: Chenere P. Ramsey, Dr Benoit I. Giasson

Erschienen in: Drugs & Aging | Ausgabe 2/2007

Einloggen, um Zugang zu erhalten

Abstract

The role of mitochondrial dysfunction as a possible cause of parkinsonism became apparent in the mid-1980s with the discovery of a group of individuals with chronic parkinsonism who had been exposed to the chemical l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP) and the subsequent elucidation of the mode of action of this toxin as a mitochondrial complex I inhibitor. Thereafter, a defect in mitochondrial complex I was supported by biochemical studies in patients with sporadic Parkinson’s disease. Recently, striking genetic findings and biological studies have further substantiated that mitochondrial dysfunction is likely an important disease mechanism in a significant percentage, if not the majority, of patients with Parkinson’s disease. These findings have defined novel biochemical pathways that can directly or indirectly affect mitochondrial function and/or integrity. Although various primary insults (genetic or environmental factors) are involved in the aetiology of Parkinson’s disease, emerging evidence supports the notion that attempting to prevent or compensate for mitochondrial dysfunction could have therapeutic benefits for a majority of patients with Parkinson’s disease.
Literatur
1.
Zurück zum Zitat Simuni T, Hurtig HI. Parkinson’s disease: the clinical picture. In: Clark CM, Trojanoswki JQ, editors. Neurodegenerative dementias. New York: McGraw-Hill, 2000: 193–203 Simuni T, Hurtig HI. Parkinson’s disease: the clinical picture. In: Clark CM, Trojanoswki JQ, editors. Neurodegenerative dementias. New York: McGraw-Hill, 2000: 193–203
2.
Zurück zum Zitat Forno LS. Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 1996 Mar; 55(3): 259–72PubMedCrossRef Forno LS. Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 1996 Mar; 55(3): 259–72PubMedCrossRef
3.
Zurück zum Zitat Damier P, Hirsch EC, Agid Y, et al. The substantia nigra of the human brain: II -patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 1999 Aug; 122 (Pt 8): 1437–48PubMedCrossRef Damier P, Hirsch EC, Agid Y, et al. The substantia nigra of the human brain: II -patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 1999 Aug; 122 (Pt 8): 1437–48PubMedCrossRef
4.
Zurück zum Zitat Pakkenberg B, Moller A, Gundersen HJ, et al. The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson’s disease estimated with an unbiased stereological method. J Neurol Neurosurg Psychiatry 1991 Jan; 54(1): 30–3PubMedCrossRef Pakkenberg B, Moller A, Gundersen HJ, et al. The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson’s disease estimated with an unbiased stereological method. J Neurol Neurosurg Psychiatry 1991 Jan; 54(1): 30–3PubMedCrossRef
5.
Zurück zum Zitat Mayeau R, Stern Y, Cote L, et al. Altered serotonin metabolism in depressed patients with Parkinson’s disease. Neurology 1984 May; 34(5): 642–6CrossRef Mayeau R, Stern Y, Cote L, et al. Altered serotonin metabolism in depressed patients with Parkinson’s disease. Neurology 1984 May; 34(5): 642–6CrossRef
6.
Zurück zum Zitat Forman MS, Lee VM, Trojanowski JQ. Nosology of Parkinson’s disease: looking for the way out of a quackmire. Neuron 2005 Aug 18; 47(4): 479–82PubMedCrossRef Forman MS, Lee VM, Trojanowski JQ. Nosology of Parkinson’s disease: looking for the way out of a quackmire. Neuron 2005 Aug 18; 47(4): 479–82PubMedCrossRef
7.
Zurück zum Zitat Moore DJ, West AB, Dawson VL, et al. Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci 2005; 28: 57–87PubMedCrossRef Moore DJ, West AB, Dawson VL, et al. Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci 2005; 28: 57–87PubMedCrossRef
8.
Zurück zum Zitat Braak H, Del Tredici K, Rub U, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003 Mar; 24(2): 197–211PubMedCrossRef Braak H, Del Tredici K, Rub U, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003 Mar; 24(2): 197–211PubMedCrossRef
9.
Zurück zum Zitat Norris EH, Giasson BI, Lee VM. Alpha-synuclein: normal function and role in neurodegenerative diseases. Curr Top Dev Biol 2004; 60: 17–54PubMedCrossRef Norris EH, Giasson BI, Lee VM. Alpha-synuclein: normal function and role in neurodegenerative diseases. Curr Top Dev Biol 2004; 60: 17–54PubMedCrossRef
10.
Zurück zum Zitat George JM. The synucleins. Genome Biol 2002; 3(1): REVIEWS3002 George JM. The synucleins. Genome Biol 2002; 3(1): REVIEWS3002
11.
Zurück zum Zitat Duda JE, Lee VMY, Trojanowski JQ. Neuropathology of synuclein aggregates. J Neurosci Res 2000 Jul 15; 61(2): 121–7PubMedCrossRef Duda JE, Lee VMY, Trojanowski JQ. Neuropathology of synuclein aggregates. J Neurosci Res 2000 Jul 15; 61(2): 121–7PubMedCrossRef
12.
Zurück zum Zitat George JM, Jin H, Woods WS, et al. Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 1995 Aug; 15(2): 361–72PubMedCrossRef George JM, Jin H, Woods WS, et al. Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 1995 Aug; 15(2): 361–72PubMedCrossRef
13.
Zurück zum Zitat Iwai A, Masliah E, Yoshimoto M, et al. The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 1995 Feb; 14(2): 467–75PubMedCrossRef Iwai A, Masliah E, Yoshimoto M, et al. The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 1995 Feb; 14(2): 467–75PubMedCrossRef
14.
Zurück zum Zitat Withers GS, George JM, Banker GA, et al. Delayed localization of synelfin (synuclein, NACP) to presynaptic terminals in cultured rat hippocampal neurons. Brain Res Dev Brain Res 1997 Mar 17; 99(1): 87–94PubMedCrossRef Withers GS, George JM, Banker GA, et al. Delayed localization of synelfin (synuclein, NACP) to presynaptic terminals in cultured rat hippocampal neurons. Brain Res Dev Brain Res 1997 Mar 17; 99(1): 87–94PubMedCrossRef
15.
Zurück zum Zitat Abeliovich A, Schmitz Y, Farinas I, et al. Mice lacking alphasynuclein display functional deficits in the nigrostriatal dopamine system. Neuron 2000 Jan; 25(1): 239–52PubMedCrossRef Abeliovich A, Schmitz Y, Farinas I, et al. Mice lacking alphasynuclein display functional deficits in the nigrostriatal dopamine system. Neuron 2000 Jan; 25(1): 239–52PubMedCrossRef
16.
Zurück zum Zitat Chandra S, Fornai F, Kwon HB, et al. Double-knockout mice for alpha- and beta-synucleins: effect on synaptic functions. Proc Natl Acad Sci U S A 2004 Oct 12; 101(41): 14966–71PubMedCrossRef Chandra S, Fornai F, Kwon HB, et al. Double-knockout mice for alpha- and beta-synucleins: effect on synaptic functions. Proc Natl Acad Sci U S A 2004 Oct 12; 101(41): 14966–71PubMedCrossRef
17.
Zurück zum Zitat Chandra S, Gallardo G, Fernández-Chacón R, et al. Alphasynuclein cooperates with CSP alpha in preventing neurodegeneration. Cell 2005 Nov 4; 123(3): 383–96PubMedCrossRef Chandra S, Gallardo G, Fernández-Chacón R, et al. Alphasynuclein cooperates with CSP alpha in preventing neurodegeneration. Cell 2005 Nov 4; 123(3): 383–96PubMedCrossRef
18.
Zurück zum Zitat Fernandez-Chacon R, Wolfel M, Nishimune H, et al. The synaptic vesicle protein CSP alpha prevents presynaptic degeneration. Neuron 2004 Apr 22; 42(2): 237–51PubMedCrossRef Fernandez-Chacon R, Wolfel M, Nishimune H, et al. The synaptic vesicle protein CSP alpha prevents presynaptic degeneration. Neuron 2004 Apr 22; 42(2): 237–51PubMedCrossRef
19.
Zurück zum Zitat Ungar D, Hughson FM. SNARE protein structure and function. Annu Rev Cell Dev Biol 2003; 19: 493–517PubMedCrossRef Ungar D, Hughson FM. SNARE protein structure and function. Annu Rev Cell Dev Biol 2003; 19: 493–517PubMedCrossRef
20.
Zurück zum Zitat Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 1997 Jun 27; 276(5321): 2045–7PubMedCrossRef Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 1997 Jun 27; 276(5321): 2045–7PubMedCrossRef
21.
Zurück zum Zitat Markopoulou K, Wszolek ZK, Pfeiffer RF, et al. Reduced expression of the G209A alpha-synuclein allele in familial Parkinsonism. Ann Neurol 1999 Sep; 46(3): 374–81PubMedCrossRef Markopoulou K, Wszolek ZK, Pfeiffer RF, et al. Reduced expression of the G209A alpha-synuclein allele in familial Parkinsonism. Ann Neurol 1999 Sep; 46(3): 374–81PubMedCrossRef
22.
Zurück zum Zitat Athanassiadou A, Voutsinas G, Psiouri L, et al. Genetic analysis of families with Parkinson disease that carry the Ala53Thr mutation in the gene encoding alpha-synuclein. Am J Hum Genet 1999 Aug; 65(2): 555–8PubMedCrossRef Athanassiadou A, Voutsinas G, Psiouri L, et al. Genetic analysis of families with Parkinson disease that carry the Ala53Thr mutation in the gene encoding alpha-synuclein. Am J Hum Genet 1999 Aug; 65(2): 555–8PubMedCrossRef
23.
Zurück zum Zitat Papadimitriou A, Veletza V, Hadjigeorgiou GM, et al. Mutated alpha-synuclein gene in two Greek kindreds with familial PD: incomplete penetrance? Neurology 1999 Feb; 52(3): 651–4PubMedCrossRef Papadimitriou A, Veletza V, Hadjigeorgiou GM, et al. Mutated alpha-synuclein gene in two Greek kindreds with familial PD: incomplete penetrance? Neurology 1999 Feb; 52(3): 651–4PubMedCrossRef
24.
Zurück zum Zitat Spira PJ, Sharpe DM, Halliday G, et al. Clinical and pathological features of a Parkinsonian syndrome in a family with an Ala53Thr alpha-synuclein mutation. Ann Neurol 2001 Mar; 49(3): 313–9PubMedCrossRef Spira PJ, Sharpe DM, Halliday G, et al. Clinical and pathological features of a Parkinsonian syndrome in a family with an Ala53Thr alpha-synuclein mutation. Ann Neurol 2001 Mar; 49(3): 313–9PubMedCrossRef
25.
Zurück zum Zitat Kruger R, Kuhn W, Muller T, et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 1998 Feb; 18(2): 106–8PubMedCrossRef Kruger R, Kuhn W, Muller T, et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 1998 Feb; 18(2): 106–8PubMedCrossRef
26.
Zurück zum Zitat Zarranz JJ, Alegre J, Gomez-Esteban JC, et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 2004 Feb; 55(2): 164–73PubMedCrossRef Zarranz JJ, Alegre J, Gomez-Esteban JC, et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 2004 Feb; 55(2): 164–73PubMedCrossRef
27.
Zurück zum Zitat Singleton AB, Farrer M, Johnson J, et al. Alpha-synuclein locus triplication causes Parkinson’s disease. Science 2003 Oct 31; 302(5646): 841PubMedCrossRef Singleton AB, Farrer M, Johnson J, et al. Alpha-synuclein locus triplication causes Parkinson’s disease. Science 2003 Oct 31; 302(5646): 841PubMedCrossRef
28.
Zurück zum Zitat Farrer M, Kachergus J, Forno L, et al. Comparison of kindreds with parkinsonism and alpha-synuclein genomic multiplications. Ann Neurol 2004 Feb; 55(2): 174–9PubMedCrossRef Farrer M, Kachergus J, Forno L, et al. Comparison of kindreds with parkinsonism and alpha-synuclein genomic multiplications. Ann Neurol 2004 Feb; 55(2): 174–9PubMedCrossRef
29.
Zurück zum Zitat Chartier-Harlin MC, Kachergus J, Roumier C, et al. Alphasynuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 2004 Sep 25; 364(9440): 1167–9PubMedCrossRef Chartier-Harlin MC, Kachergus J, Roumier C, et al. Alphasynuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 2004 Sep 25; 364(9440): 1167–9PubMedCrossRef
30.
Zurück zum Zitat Spillantini MG, Schmidt ML, Lee VMY, et al. Alpha-synuclein in Lewy bodies. Nature 1997 Aug 28; 388(6645): 839–40PubMedCrossRef Spillantini MG, Schmidt ML, Lee VMY, et al. Alpha-synuclein in Lewy bodies. Nature 1997 Aug 28; 388(6645): 839–40PubMedCrossRef
31.
Zurück zum Zitat Spillantini MG, Crowther RA, Jakes R, et al. Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci U S A 1998 May 26; 95(11): 6469–73PubMedCrossRef Spillantini MG, Crowther RA, Jakes R, et al. Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci U S A 1998 May 26; 95(11): 6469–73PubMedCrossRef
32.
Zurück zum Zitat Spillantini MG, Crowther RA, Jakes R, et al. Filamentous alphasynuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett 1998 Jul 31; 251(3): 205–8PubMedCrossRef Spillantini MG, Crowther RA, Jakes R, et al. Filamentous alphasynuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett 1998 Jul 31; 251(3): 205–8PubMedCrossRef
33.
Zurück zum Zitat Tu PH, Galvin JE, Baba M, et al. Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble alpha-synuclein. Ann Neurol 1998 Sep; 44(3): 415–22PubMedCrossRef Tu PH, Galvin JE, Baba M, et al. Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble alpha-synuclein. Ann Neurol 1998 Sep; 44(3): 415–22PubMedCrossRef
34.
Zurück zum Zitat Takeda A, Mallory M, Sundsmo M, et al. Abnormal accumulation of NACP/alpha-synuclein in neurodegenerative disorders. Am J Pathol 1998 Feb; 152(2): 367–72PubMed Takeda A, Mallory M, Sundsmo M, et al. Abnormal accumulation of NACP/alpha-synuclein in neurodegenerative disorders. Am J Pathol 1998 Feb; 152(2): 367–72PubMed
35.
Zurück zum Zitat Irizarry MC, Growdon W, Gomez-Isla T, et al. Nigral and cortical Lewy bodies and dystrophic nigral neurites in Parkinson’s disease and cortical Lewy body disease contain alphasynuclein immunoreactivity. J Neuropathol Exp Neurol 1998 Apr; 57(4): 334–7PubMedCrossRef Irizarry MC, Growdon W, Gomez-Isla T, et al. Nigral and cortical Lewy bodies and dystrophic nigral neurites in Parkinson’s disease and cortical Lewy body disease contain alphasynuclein immunoreactivity. J Neuropathol Exp Neurol 1998 Apr; 57(4): 334–7PubMedCrossRef
36.
Zurück zum Zitat Giasson BI, Uryu K, Trojanowski JQ, et al. Mutant and wild type human alpha-synucleins assemble into elongated filaments with distinct morphologies in vitro. J Biol Chem 1999 Mar 19; 274(12): 7619–22PubMedCrossRef Giasson BI, Uryu K, Trojanowski JQ, et al. Mutant and wild type human alpha-synucleins assemble into elongated filaments with distinct morphologies in vitro. J Biol Chem 1999 Mar 19; 274(12): 7619–22PubMedCrossRef
37.
Zurück zum Zitat Conway KA, Harper JD, Lansbury PT. Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to earlyonset Parkinson disease. Nat Med 1998 Nov; 4(11): 1318–20PubMedCrossRef Conway KA, Harper JD, Lansbury PT. Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to earlyonset Parkinson disease. Nat Med 1998 Nov; 4(11): 1318–20PubMedCrossRef
38.
Zurück zum Zitat Hashimoto M, Hsu LJ, Sisk A, et al. Human recombinant NACP/alpha-synuclein is aggregated and fibrillated in vitro: relevance for Lewy body disease. Brain Res 1998 Jul 20; 799(2): 301–6PubMedCrossRef Hashimoto M, Hsu LJ, Sisk A, et al. Human recombinant NACP/alpha-synuclein is aggregated and fibrillated in vitro: relevance for Lewy body disease. Brain Res 1998 Jul 20; 799(2): 301–6PubMedCrossRef
39.
Zurück zum Zitat Narhi L, Wood SJ, Steavenson S, et al. Both familial Parkinson’s disease mutations accelerate alpha-synuclein aggregation. J Biol Chem 1999 Apr 2; 274(14): 9843–6PubMedCrossRef Narhi L, Wood SJ, Steavenson S, et al. Both familial Parkinson’s disease mutations accelerate alpha-synuclein aggregation. J Biol Chem 1999 Apr 2; 274(14): 9843–6PubMedCrossRef
40.
Zurück zum Zitat Goedert M. Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci 2001; 2: 492–501PubMedCrossRef Goedert M. Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci 2001; 2: 492–501PubMedCrossRef
41.
Zurück zum Zitat Greenbaum EA, Graves CL, Mishizen-Eberz AJ, et al. The E46K mutation in alpha-synuclein increases amyloid fibril formation. J Biol Chem 2005 Mar 4; 280(9): 7800–7PubMedCrossRef Greenbaum EA, Graves CL, Mishizen-Eberz AJ, et al. The E46K mutation in alpha-synuclein increases amyloid fibril formation. J Biol Chem 2005 Mar 4; 280(9): 7800–7PubMedCrossRef
42.
Zurück zum Zitat Giasson BI, Duda JE, Quinn SM, et al. Neuronal a-synucleinopathy with severe movement disorder in mice expressing A53T human α-synuclein. Neuron 2002 May 16; 34(4): 521–33PubMedCrossRef Giasson BI, Duda JE, Quinn SM, et al. Neuronal a-synucleinopathy with severe movement disorder in mice expressing A53T human α-synuclein. Neuron 2002 May 16; 34(4): 521–33PubMedCrossRef
43.
Zurück zum Zitat Lee MK, Stirling W, Xu Y, et al. Human alpha-synucleinharboring familial Parkinson’s disease-linked Ala-53 —> Thr mutation causes neurodegenerative disease with alphasynuclein aggregation in transgenic mice. Proc Natl Acad Sci USA 2002 Jun 25; 99(13): 8968–73PubMedCrossRef Lee MK, Stirling W, Xu Y, et al. Human alpha-synucleinharboring familial Parkinson’s disease-linked Ala-53 —> Thr mutation causes neurodegenerative disease with alphasynuclein aggregation in transgenic mice. Proc Natl Acad Sci USA 2002 Jun 25; 99(13): 8968–73PubMedCrossRef
44.
Zurück zum Zitat Goldberg MS, Lansbury PT. Is there a cause-and-effect relationship between alpha-synuclein fibrillization and Parkinson’s disease? Nat Cell Biol 2000 Jul; 2(7): E115–9PubMedCrossRef Goldberg MS, Lansbury PT. Is there a cause-and-effect relationship between alpha-synuclein fibrillization and Parkinson’s disease? Nat Cell Biol 2000 Jul; 2(7): E115–9PubMedCrossRef
45.
Zurück zum Zitat Langsten JW, Ballard P, Tetrad JW, et al. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983 Feb 25; 219(4587): 979–80CrossRef Langsten JW, Ballard P, Tetrad JW, et al. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983 Feb 25; 219(4587): 979–80CrossRef
46.
Zurück zum Zitat Javitch JA, D’Amato RJ, Strittmatter SM, et al. Parkinsonisminducing neurotoxin, N-methyl-4-phenyl-l,2,3,6-tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci U S A 1985 Apr; 82(7): 2173–7PubMedCrossRef Javitch JA, D’Amato RJ, Strittmatter SM, et al. Parkinsonisminducing neurotoxin, N-methyl-4-phenyl-l,2,3,6-tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci U S A 1985 Apr; 82(7): 2173–7PubMedCrossRef
47.
Zurück zum Zitat Przedborski S, Jackson-Lewis V. Mechanisms of MPTP toxicity. Mov Disord 1998; 13Suppl. 1: 35–8PubMed Przedborski S, Jackson-Lewis V. Mechanisms of MPTP toxicity. Mov Disord 1998; 13Suppl. 1: 35–8PubMed
48.
Zurück zum Zitat Nicklas WJ, Vyas I, Heikkila RE. Inhibition of NADH-linked oxidation in brain mitochondria by l-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, l-methyl-4-phenyl1,2,5,6-tetrahydropyridine. Life Sci 1985; 36(26): 2503–8PubMedCrossRef Nicklas WJ, Vyas I, Heikkila RE. Inhibition of NADH-linked oxidation in brain mitochondria by l-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, l-methyl-4-phenyl1,2,5,6-tetrahydropyridine. Life Sci 1985; 36(26): 2503–8PubMedCrossRef
49.
Zurück zum Zitat Langsten JW, Fomo LS, Tetrad J, et al. Evidence of active nerve cell degeneration in the substantia nigra of humans years after l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine exposure. Ann Neurol 1999 Oct; 46(4): 598–605CrossRef Langsten JW, Fomo LS, Tetrad J, et al. Evidence of active nerve cell degeneration in the substantia nigra of humans years after l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine exposure. Ann Neurol 1999 Oct; 46(4): 598–605CrossRef
50.
Zurück zum Zitat Ballard PA, Tetrad JW, Langsten JW. Permanent human parkinsonism due to l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP): seven cases. Neurology 1985 Jul; 35(7): 949–56PubMedCrossRef Ballard PA, Tetrad JW, Langsten JW. Permanent human parkinsonism due to l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP): seven cases. Neurology 1985 Jul; 35(7): 949–56PubMedCrossRef
51.
Zurück zum Zitat Shimoji M, Zhang L, Mandir AS, et al. Absence of inclusion body formation in the MPTP mouse model of Parkinson’s disease. Brain Res Mol Brain Res 2005 Mar 24; 134(1): 103–8PubMedCrossRef Shimoji M, Zhang L, Mandir AS, et al. Absence of inclusion body formation in the MPTP mouse model of Parkinson’s disease. Brain Res Mol Brain Res 2005 Mar 24; 134(1): 103–8PubMedCrossRef
52.
Zurück zum Zitat Fornai F, Schluter OM, Lenzi P, et al. Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin-proteasome system and alpha-synuclein. Proc Natl Acad Sci U S A 2005 Mar 1; 102(9): 3413–8PubMedCrossRef Fornai F, Schluter OM, Lenzi P, et al. Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin-proteasome system and alpha-synuclein. Proc Natl Acad Sci U S A 2005 Mar 1; 102(9): 3413–8PubMedCrossRef
53.
Zurück zum Zitat Drolet RE, Behrouz B, Lookingland KJ, et al. Mice lacking alpha-synuclein have an attenuated loss of striatal dopamine following prolonged chronic MPTP administration. Neurotoxicology 2004 Sep; 25(5): 761–9PubMedCrossRef Drolet RE, Behrouz B, Lookingland KJ, et al. Mice lacking alpha-synuclein have an attenuated loss of striatal dopamine following prolonged chronic MPTP administration. Neurotoxicology 2004 Sep; 25(5): 761–9PubMedCrossRef
54.
Zurück zum Zitat Schluter OM, Fornai F, Alessandri MG, et al. Role of alphasynuclein in l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice. Neuroscience 2003; 118(4): 985–1002PubMedCrossRef Schluter OM, Fornai F, Alessandri MG, et al. Role of alphasynuclein in l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice. Neuroscience 2003; 118(4): 985–1002PubMedCrossRef
55.
Zurück zum Zitat Dauer W, Kholodilov N, Vila M, et al. Resistance of alphasynuclein null mice to the parkinsonian neurotoxin MPTP. Proc Natl Acad Sci U S A 2002 Oct 29; 99(22): 14524–9PubMedCrossRef Dauer W, Kholodilov N, Vila M, et al. Resistance of alphasynuclein null mice to the parkinsonian neurotoxin MPTP. Proc Natl Acad Sci U S A 2002 Oct 29; 99(22): 14524–9PubMedCrossRef
56.
Zurück zum Zitat Betarbet R, Sherer TB, MacKenzie G, et al. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 2000 Dec; 3(12): 1301–6PubMedCrossRef Betarbet R, Sherer TB, MacKenzie G, et al. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 2000 Dec; 3(12): 1301–6PubMedCrossRef
57.
Zurück zum Zitat Janetzky B, Hauck S, Youdim MB, et al. Unaltered aconitase activity, but decreased complex I activity in substantia nigra pars compacta of patients with Parkinson’s disease. Neurosci Lett 1994 Mar 14; 169(1–2): 126–8PubMedCrossRef Janetzky B, Hauck S, Youdim MB, et al. Unaltered aconitase activity, but decreased complex I activity in substantia nigra pars compacta of patients with Parkinson’s disease. Neurosci Lett 1994 Mar 14; 169(1–2): 126–8PubMedCrossRef
58.
Zurück zum Zitat Muftuoglu M, Elibol B, Dalmizrak O, et al. Mitochondrial complex I and IV activities in leukocytes from patients with parkin mutations. Mov Disord 2004 May; 19(5): 544–8PubMedCrossRef Muftuoglu M, Elibol B, Dalmizrak O, et al. Mitochondrial complex I and IV activities in leukocytes from patients with parkin mutations. Mov Disord 2004 May; 19(5): 544–8PubMedCrossRef
59.
Zurück zum Zitat Schapira AH, Mann VM, Cooper JM, et al. Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 1990 Dec; 55(6): 2142–5PubMedCrossRef Schapira AH, Mann VM, Cooper JM, et al. Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 1990 Dec; 55(6): 2142–5PubMedCrossRef
60.
Zurück zum Zitat Gu M, Cooper JM, Taanman JW, et al. Mitochondrial DNA transmission of the mitochondrial defect in Parkinson’s disease. Ann Neurol 1998 Aug; 44(2): 177–86PubMedCrossRef Gu M, Cooper JM, Taanman JW, et al. Mitochondrial DNA transmission of the mitochondrial defect in Parkinson’s disease. Ann Neurol 1998 Aug; 44(2): 177–86PubMedCrossRef
61.
Zurück zum Zitat Trimmer PA, Borland MK, Keeney PM, et al. Parkinson’s disease transgenic mitochondrial cybrids generate Lewy inclusion bodies. J Neurochem 2004 Feb; 88(4): 800–12PubMedCrossRef Trimmer PA, Borland MK, Keeney PM, et al. Parkinson’s disease transgenic mitochondrial cybrids generate Lewy inclusion bodies. J Neurochem 2004 Feb; 88(4): 800–12PubMedCrossRef
62.
Zurück zum Zitat Sherer TB, Betarbet R, Stout AK, et al. An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci 2002 Aug 15; 22(16): 7006–15PubMed Sherer TB, Betarbet R, Stout AK, et al. An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci 2002 Aug 15; 22(16): 7006–15PubMed
63.
Zurück zum Zitat Lee HJ, Shin SY, Choi C, et al. Formation and removal of alphasynuclein aggregates in cells exposed to mitochondrial inhibitors. J Biol Chem 2002 Feb 15; 277(7): 5411–7PubMedCrossRef Lee HJ, Shin SY, Choi C, et al. Formation and removal of alphasynuclein aggregates in cells exposed to mitochondrial inhibitors. J Biol Chem 2002 Feb 15; 277(7): 5411–7PubMedCrossRef
64.
Zurück zum Zitat Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998 Apr 9; 392(6676): 605–8PubMedCrossRef Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998 Apr 9; 392(6676): 605–8PubMedCrossRef
65.
Zurück zum Zitat Lucking CB, Durr A, Bonifati V, et al. Association between early-onset Parkinson’s disease and mutations in the parkin gene. N Engl J Med 2000 May 25; 342(21): 1560–7PubMedCrossRef Lucking CB, Durr A, Bonifati V, et al. Association between early-onset Parkinson’s disease and mutations in the parkin gene. N Engl J Med 2000 May 25; 342(21): 1560–7PubMedCrossRef
66.
Zurück zum Zitat Hedrich K, Eskelson C, Wilmot B, et al. Distribution, type, and origin of Parkin mutations: review and case studies. Mov Disord 2004 Oct; 19(10): 1146–57PubMedCrossRef Hedrich K, Eskelson C, Wilmot B, et al. Distribution, type, and origin of Parkin mutations: review and case studies. Mov Disord 2004 Oct; 19(10): 1146–57PubMedCrossRef
67.
Zurück zum Zitat Giasson BI, Lee VM-Y. Are ubiquitination pathways central to Parkinson’s disease? Cell 2003; 114: 1–8PubMedCrossRef Giasson BI, Lee VM-Y. Are ubiquitination pathways central to Parkinson’s disease? Cell 2003; 114: 1–8PubMedCrossRef
68.
Zurück zum Zitat Mori H, Kondo T, Yokochi M, et al. Pathologic and biochemical studies of juvenile parkinsonism linked to chromosome 6q. Neurology 1998 Sep; 51(3): 890–2PubMedCrossRef Mori H, Kondo T, Yokochi M, et al. Pathologic and biochemical studies of juvenile parkinsonism linked to chromosome 6q. Neurology 1998 Sep; 51(3): 890–2PubMedCrossRef
69.
Zurück zum Zitat Hayashi S, Wakabayashi K, Ishikawa A, et al. An autopsy case of autosomal-recessive juvenile parkinsonism with a homozygous exon 4 deletion in the parkin gene. Mov Disord 2000 Sep; 15(5): 884–8PubMedCrossRef Hayashi S, Wakabayashi K, Ishikawa A, et al. An autopsy case of autosomal-recessive juvenile parkinsonism with a homozygous exon 4 deletion in the parkin gene. Mov Disord 2000 Sep; 15(5): 884–8PubMedCrossRef
70.
Zurück zum Zitat van de Warrenburg BP, Lammens M, Lucking CB, et al. Clinical and pathologic abnormalities in a family with parkinsonism and parkin gene mutations. Neurology 2001 Feb 27; 56(4): 555–7PubMedCrossRef van de Warrenburg BP, Lammens M, Lucking CB, et al. Clinical and pathologic abnormalities in a family with parkinsonism and parkin gene mutations. Neurology 2001 Feb 27; 56(4): 555–7PubMedCrossRef
71.
Zurück zum Zitat Farrer M, Chan P, Chen R, et al. Lewy bodies and parkinsonism in families with parkin mutations. Ann Neurol 2001 Sep; 50(3): 293–300PubMedCrossRef Farrer M, Chan P, Chen R, et al. Lewy bodies and parkinsonism in families with parkin mutations. Ann Neurol 2001 Sep; 50(3): 293–300PubMedCrossRef
72.
Zurück zum Zitat Pramstaller PP, Schlossmacher MG, Jacques TS, et al. Lewy body Parkinson’s disease in a large pedigree with 77 Parkin mutation carriers. Ann Neurol 2005 Sep; 58(3): 411–22PubMedCrossRef Pramstaller PP, Schlossmacher MG, Jacques TS, et al. Lewy body Parkinson’s disease in a large pedigree with 77 Parkin mutation carriers. Ann Neurol 2005 Sep; 58(3): 411–22PubMedCrossRef
73.
Zurück zum Zitat Zhang Y, Gao J, Chung KK, et al. Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci U S A 2000 Nov 21; 97(24): 13354–9PubMedCrossRef Zhang Y, Gao J, Chung KK, et al. Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci U S A 2000 Nov 21; 97(24): 13354–9PubMedCrossRef
74.
Zurück zum Zitat Shimura H, Hattori N, Kubo S, et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 2000 Jul; 25(3): 302–5PubMedCrossRef Shimura H, Hattori N, Kubo S, et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 2000 Jul; 25(3): 302–5PubMedCrossRef
75.
Zurück zum Zitat Ko HS, von Coelln R, Sriram SR, et al. Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, p38/JTV-l, leads to catecholaminergic cell death. J Neurosci 2005 Aug 31; 25(35): 7968–78PubMedCrossRef Ko HS, von Coelln R, Sriram SR, et al. Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, p38/JTV-l, leads to catecholaminergic cell death. J Neurosci 2005 Aug 31; 25(35): 7968–78PubMedCrossRef
76.
Zurück zum Zitat Giasson BI, Lee VM-Y. Parkin and the molecular pathways of Parkinson’s disease. Neuron 2001 Sep 27; 31(6): 885–8PubMedCrossRef Giasson BI, Lee VM-Y. Parkin and the molecular pathways of Parkinson’s disease. Neuron 2001 Sep 27; 31(6): 885–8PubMedCrossRef
77.
Zurück zum Zitat Kim YS, Patel S, Lee SJ. Lack of direct role of parkin in the steady-state level and aggregation of alpha-synuclein and the clearance of pre-formed aggregates. Exp Neurol 2006 Feb; 197(2): 538–41PubMedCrossRef Kim YS, Patel S, Lee SJ. Lack of direct role of parkin in the steady-state level and aggregation of alpha-synuclein and the clearance of pre-formed aggregates. Exp Neurol 2006 Feb; 197(2): 538–41PubMedCrossRef
78.
Zurück zum Zitat Miller DW, Crawley A, Gwinn-Hardy K, et al. Unaltered alphasynuclein blood levels in juvenile Parkinsonism with a parkin exon 4 deletion. Neurosci Lett 2005 Feb 21; 374(3): 189–91PubMedCrossRef Miller DW, Crawley A, Gwinn-Hardy K, et al. Unaltered alphasynuclein blood levels in juvenile Parkinsonism with a parkin exon 4 deletion. Neurosci Lett 2005 Feb 21; 374(3): 189–91PubMedCrossRef
79.
Zurück zum Zitat von Coelln R, Thomas B, Andrabi SA, et al. Inclusion body formation and neurodegeneration are parkin independent in a mouse model of alpha-synucleinopathy. J Neurosci 2006 Apr 5; 26(14): 3685–96CrossRef von Coelln R, Thomas B, Andrabi SA, et al. Inclusion body formation and neurodegeneration are parkin independent in a mouse model of alpha-synucleinopathy. J Neurosci 2006 Apr 5; 26(14): 3685–96CrossRef
80.
Zurück zum Zitat Darios F, Corti O, Lucking CB, et al. Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death. Hum Mol Genet 2003 Mar 1; 12(5): 517–26PubMedCrossRef Darios F, Corti O, Lucking CB, et al. Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death. Hum Mol Genet 2003 Mar 1; 12(5): 517–26PubMedCrossRef
81.
Zurück zum Zitat Goldberg MS, Fleming SM, Palacino JJ, et al. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem 2003 Oct 31; 278(44): 43628–35PubMedCrossRef Goldberg MS, Fleming SM, Palacino JJ, et al. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem 2003 Oct 31; 278(44): 43628–35PubMedCrossRef
82.
Zurück zum Zitat Perez FA, Palmiter RD. Parkin-deficient mice are not a robust model of parkinsonism. Proc Natl Acad Sci U S A 2005 Feb 8; 102(6): 2174–9PubMedCrossRef Perez FA, Palmiter RD. Parkin-deficient mice are not a robust model of parkinsonism. Proc Natl Acad Sci U S A 2005 Feb 8; 102(6): 2174–9PubMedCrossRef
83.
Zurück zum Zitat von Coelln R, Thomas B, Savitt JM, et al. Loss of locus coeruleus neurons and reduced startle in parkin null mice. Proc Natl Acad Sci U S A 2004 Jul 20; 101(29): 10744–9CrossRef von Coelln R, Thomas B, Savitt JM, et al. Loss of locus coeruleus neurons and reduced startle in parkin null mice. Proc Natl Acad Sci U S A 2004 Jul 20; 101(29): 10744–9CrossRef
84.
Zurück zum Zitat Palacino JJ, Sagi D, Goldberg MS, et al. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 2004 Apr 30; 279(18): 18614–22PubMedCrossRef Palacino JJ, Sagi D, Goldberg MS, et al. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 2004 Apr 30; 279(18): 18614–22PubMedCrossRef
85.
Zurück zum Zitat Greene JC, Whitworth AJ, Kuo I, et al. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci U S A 2003 Apr 1; 100(7): 4078–83PubMedCrossRef Greene JC, Whitworth AJ, Kuo I, et al. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci U S A 2003 Apr 1; 100(7): 4078–83PubMedCrossRef
86.
Zurück zum Zitat Pesah Y, Pham T, Burgess H, et al. Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress. Development 2004 May; 131(9): 2183–94PubMedCrossRef Pesah Y, Pham T, Burgess H, et al. Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress. Development 2004 May; 131(9): 2183–94PubMedCrossRef
87.
Zurück zum Zitat Bonifati V, Rizzu P, van Baren MJ, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 2003 Jan 10; 299(5604): 256–9PubMedCrossRef Bonifati V, Rizzu P, van Baren MJ, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 2003 Jan 10; 299(5604): 256–9PubMedCrossRef
88.
Zurück zum Zitat Wilson MA, Collins JL, Hod Y, et al. The 1.1-A resolution crystal structure of DJ-1, the protein mutated in autosomal recessive early onset Parkinson’s disease. Proc Natl Acad Sci USA 2003 Aug 5; 100(16): 9256–61PubMedCrossRef Wilson MA, Collins JL, Hod Y, et al. The 1.1-A resolution crystal structure of DJ-1, the protein mutated in autosomal recessive early onset Parkinson’s disease. Proc Natl Acad Sci USA 2003 Aug 5; 100(16): 9256–61PubMedCrossRef
89.
Zurück zum Zitat Tao X, Tong L. Crystal structure of human DJ-1, a protein associated with early onset Parkinson’s disease. J Biol Chem 2003 Aug 15; 278(33): 31372–9PubMedCrossRef Tao X, Tong L. Crystal structure of human DJ-1, a protein associated with early onset Parkinson’s disease. J Biol Chem 2003 Aug 15; 278(33): 31372–9PubMedCrossRef
90.
Zurück zum Zitat Lee SJ, Kim SJ, Kim IK, et al. Crystal structures of human DJ-1 and Escherichia coli Hsp31, which share an evolutionarily conserved domain. J Biol Chem 2003 Nov 7; 278(45): 44552–9PubMedCrossRef Lee SJ, Kim SJ, Kim IK, et al. Crystal structures of human DJ-1 and Escherichia coli Hsp31, which share an evolutionarily conserved domain. J Biol Chem 2003 Nov 7; 278(45): 44552–9PubMedCrossRef
91.
Zurück zum Zitat Honbou K, Suzuki NN, Horiuchi M, et al. Crystallization and preliminary crystallographic analysis of DJ-1, a protein associated with male fertility and parkinsonism. Acta Crystallogr D Biol Crystallogr 2003 Aug; 59 (Pt 8): 1502–3PubMedCrossRef Honbou K, Suzuki NN, Horiuchi M, et al. Crystallization and preliminary crystallographic analysis of DJ-1, a protein associated with male fertility and parkinsonism. Acta Crystallogr D Biol Crystallogr 2003 Aug; 59 (Pt 8): 1502–3PubMedCrossRef
92.
Zurück zum Zitat Huai Q, Sun Y, Wang H, et al. Crystal structure of DJ-l/RS and implication on familial Parkinson’s disease. FEBS Lett 2003 Aug 14; 549(1–3): 171–5PubMedCrossRef Huai Q, Sun Y, Wang H, et al. Crystal structure of DJ-l/RS and implication on familial Parkinson’s disease. FEBS Lett 2003 Aug 14; 549(1–3): 171–5PubMedCrossRef
93.
Zurück zum Zitat Bandyopadhyay S, Cookson MR. Evolutionary and functional relationships within the DJ1 superfamily. BMC Evol Biol 2004 Feb 19; 4: 6PubMedCrossRef Bandyopadhyay S, Cookson MR. Evolutionary and functional relationships within the DJ1 superfamily. BMC Evol Biol 2004 Feb 19; 4: 6PubMedCrossRef
94.
Zurück zum Zitat Zhang L, Shimoji M, Thomas B, et al. Mitochondrial localization of the Parkinson’s disease related protein DJ-1: implications for pathogenesis. Hum Mol Genet 2005 Jul 15; 14(14): 2063–73PubMedCrossRef Zhang L, Shimoji M, Thomas B, et al. Mitochondrial localization of the Parkinson’s disease related protein DJ-1: implications for pathogenesis. Hum Mol Genet 2005 Jul 15; 14(14): 2063–73PubMedCrossRef
95.
Zurück zum Zitat Yokota T, Sugawara K, Ito K, et al. Down regulation of DJ-1 enhances cell death by oxidative stress, ER stress, and proteasome inhibition. Biochem Biophys Res Commun 2003 Dec 26; 312(4): 1342–8PubMedCrossRef Yokota T, Sugawara K, Ito K, et al. Down regulation of DJ-1 enhances cell death by oxidative stress, ER stress, and proteasome inhibition. Biochem Biophys Res Commun 2003 Dec 26; 312(4): 1342–8PubMedCrossRef
96.
Zurück zum Zitat Martinat C, Shendelman S, Jonason A, et al. Sensitivity to oxidative stress in DJ-1-deficient dopamine neurons: an ES-derived cell model of primary Parkinsonism. PLoS Biol 2004 Nov; 2(11): E327PubMedCrossRef Martinat C, Shendelman S, Jonason A, et al. Sensitivity to oxidative stress in DJ-1-deficient dopamine neurons: an ES-derived cell model of primary Parkinsonism. PLoS Biol 2004 Nov; 2(11): E327PubMedCrossRef
97.
Zurück zum Zitat Shendelman S, Jonason A, Martinat C, et al. DJ-1 is a redoxdependent molecular chaperone that inhibits alpha-synuclein aggregate formation. PLoS Biol 2004 Nov; 2(11): E362PubMedCrossRef Shendelman S, Jonason A, Martinat C, et al. DJ-1 is a redoxdependent molecular chaperone that inhibits alpha-synuclein aggregate formation. PLoS Biol 2004 Nov; 2(11): E362PubMedCrossRef
98.
Zurück zum Zitat Hod Y, Pentyala SN, Whyard TC, et al. Identification and characterization of a novel protein that regulates RNA-protein interaction. J Cell Biochem 1999 Mar 1; 72(3): 435–44PubMedCrossRef Hod Y, Pentyala SN, Whyard TC, et al. Identification and characterization of a novel protein that regulates RNA-protein interaction. J Cell Biochem 1999 Mar 1; 72(3): 435–44PubMedCrossRef
99.
Zurück zum Zitat Abou-Sleiman PM, Healy DG, Quinn N, et al. The role of pathogenic DJ-1 mutations in Parkinson’s disease. Ann Neurol 2003 Sep; 54(3): 283–6PubMedCrossRef Abou-Sleiman PM, Healy DG, Quinn N, et al. The role of pathogenic DJ-1 mutations in Parkinson’s disease. Ann Neurol 2003 Sep; 54(3): 283–6PubMedCrossRef
100.
Zurück zum Zitat Gorner K, Holtorf E, Odoy S, et al. Differential effects of Parkinson’s disease-associated mutations on stability and folding of DJ-1. J Biol Chem 2004 Feb 20; 279(8): 6943–51PubMedCrossRef Gorner K, Holtorf E, Odoy S, et al. Differential effects of Parkinson’s disease-associated mutations on stability and folding of DJ-1. J Biol Chem 2004 Feb 20; 279(8): 6943–51PubMedCrossRef
101.
Zurück zum Zitat Miller DW, Ahmad R, Hague S, et al. L166P mutant DJ-1, causative for recessive Parkinson’s disease, is degraded through the ubiquitin-proteasome system. J Biol Chem 2003 Sep 19; 278(38): 36588–95PubMedCrossRef Miller DW, Ahmad R, Hague S, et al. L166P mutant DJ-1, causative for recessive Parkinson’s disease, is degraded through the ubiquitin-proteasome system. J Biol Chem 2003 Sep 19; 278(38): 36588–95PubMedCrossRef
102.
Zurück zum Zitat Olzmann JA, Brown K, Wilkinson KD, et al. Familial Parkinson’s disease-associated L166P mutation disrupts DJ-1 protein folding and function. J Biol Chem 2004 Feb 27; 279(9): 8506–15PubMedCrossRef Olzmann JA, Brown K, Wilkinson KD, et al. Familial Parkinson’s disease-associated L166P mutation disrupts DJ-1 protein folding and function. J Biol Chem 2004 Feb 27; 279(9): 8506–15PubMedCrossRef
103.
Zurück zum Zitat Chen L, Cagniard B, Mathews T, et al. Age-dependent motor deficits and dopaminergic dysfunction in DJ-1 null mice. J Biol Chem 2005 Jun 3; 280(22): 21418–26PubMedCrossRef Chen L, Cagniard B, Mathews T, et al. Age-dependent motor deficits and dopaminergic dysfunction in DJ-1 null mice. J Biol Chem 2005 Jun 3; 280(22): 21418–26PubMedCrossRef
104.
Zurück zum Zitat Goldberg MS, Pisani A, Haburcak M, et al. Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron 2005 Feb 17; 45(4): 489–96PubMedCrossRef Goldberg MS, Pisani A, Haburcak M, et al. Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron 2005 Feb 17; 45(4): 489–96PubMedCrossRef
105.
Zurück zum Zitat Kim RH, Smith PD, Aleyasin H, et al. Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-l,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc Natl Acad Sci U S A 2005 Apr 5; 102(14): 5215–20PubMedCrossRef Kim RH, Smith PD, Aleyasin H, et al. Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-l,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc Natl Acad Sci U S A 2005 Apr 5; 102(14): 5215–20PubMedCrossRef
106.
Zurück zum Zitat Meulener M, Whitworth AJ, Armstrong-Gold CE, et al. Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson’s disease. Curr Biol 2005 Sep 6; 15(17): 1572–7PubMedCrossRef Meulener M, Whitworth AJ, Armstrong-Gold CE, et al. Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson’s disease. Curr Biol 2005 Sep 6; 15(17): 1572–7PubMedCrossRef
107.
Zurück zum Zitat Canet-Aviles RM, Wilson MA, Miller DW, et al. The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteinesulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci U S A 2004 Jun 15; 101(24): 9103–8PubMedCrossRef Canet-Aviles RM, Wilson MA, Miller DW, et al. The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteinesulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci U S A 2004 Jun 15; 101(24): 9103–8PubMedCrossRef
108.
Zurück zum Zitat Kinumi T, Kimata J, Taira T, et al. Cysteine-106 of DJ-1 is the most sensitive cysteine residue to hydrogen peroxide-mediated oxidation in vivo in human umbilical vein endothelial cells. Biochem Biophys Res Commun 2004 May 7; 317(3): 722–8PubMedCrossRef Kinumi T, Kimata J, Taira T, et al. Cysteine-106 of DJ-1 is the most sensitive cysteine residue to hydrogen peroxide-mediated oxidation in vivo in human umbilical vein endothelial cells. Biochem Biophys Res Commun 2004 May 7; 317(3): 722–8PubMedCrossRef
109.
Zurück zum Zitat Mitsumoto A, Nakagawa Y, Takeuchi A, et al. Oxidized forms of peroxiredoxins and DJ-1 on two-dimensional gels increased in response to sublethal levels of paraquat. Free Radic Res 2001 Sep; 35(3): 301–10PubMedCrossRef Mitsumoto A, Nakagawa Y, Takeuchi A, et al. Oxidized forms of peroxiredoxins and DJ-1 on two-dimensional gels increased in response to sublethal levels of paraquat. Free Radic Res 2001 Sep; 35(3): 301–10PubMedCrossRef
110.
Zurück zum Zitat Valente EM, Salvi S, Ialongo T, et al. PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann Neurol 2004 Sep; 56(3): 336–41PubMedCrossRef Valente EM, Salvi S, Ialongo T, et al. PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann Neurol 2004 Sep; 56(3): 336–41PubMedCrossRef
111.
Zurück zum Zitat Unoki M, Nakamura Y. Growth-suppressive effects of BPOZ and EGR2, two genes involved in the PTEN signaling pathway. Oncogene 2001 Jul 27; 20(33): 4457–65PubMedCrossRef Unoki M, Nakamura Y. Growth-suppressive effects of BPOZ and EGR2, two genes involved in the PTEN signaling pathway. Oncogene 2001 Jul 27; 20(33): 4457–65PubMedCrossRef
112.
Zurück zum Zitat Hatano Y, Li Y, Sato K, et al. Novel PINKl mutations in earlyonset parkinsonism. Ann Neurol 2004 Sep; 56(3): 424–7PubMedCrossRef Hatano Y, Li Y, Sato K, et al. Novel PINKl mutations in earlyonset parkinsonism. Ann Neurol 2004 Sep; 56(3): 424–7PubMedCrossRef
113.
Zurück zum Zitat Rohe CF, Montagna P, Breedveld G, et al. Homozygous PINKl C-terminus mutation causing early-onset parkinsonism. Ann Neurol 2004 Sep; 56(3): 427–31PubMedCrossRef Rohe CF, Montagna P, Breedveld G, et al. Homozygous PINKl C-terminus mutation causing early-onset parkinsonism. Ann Neurol 2004 Sep; 56(3): 427–31PubMedCrossRef
114.
Zurück zum Zitat Ibanez P, Lesage S, Lohmann E, et al. Mutational analysis of the PINK1 gene in early-onset parkinsonism in Europe and North Africa. Brain 2006 Mar; 129 (Pt 3): 686–94PubMedCrossRef Ibanez P, Lesage S, Lohmann E, et al. Mutational analysis of the PINK1 gene in early-onset parkinsonism in Europe and North Africa. Brain 2006 Mar; 129 (Pt 3): 686–94PubMedCrossRef
115.
Zurück zum Zitat Silvestri L, Caputo V, Bellacchio E, et al. Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum Mol Genet 2005 Nov 15; 14(22): 3477–92PubMedCrossRef Silvestri L, Caputo V, Bellacchio E, et al. Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum Mol Genet 2005 Nov 15; 14(22): 3477–92PubMedCrossRef
116.
Zurück zum Zitat Deng H, Jankovic J, Guo Y, et al. Small interfering RNA targeting the PINK1 induces apoptosis in dopaminergic cells SH-SY5Y. Biochem Biophys Res Commun 2005 Dec 2; 337(4): 1133–8PubMedCrossRef Deng H, Jankovic J, Guo Y, et al. Small interfering RNA targeting the PINK1 induces apoptosis in dopaminergic cells SH-SY5Y. Biochem Biophys Res Commun 2005 Dec 2; 337(4): 1133–8PubMedCrossRef
117.
Zurück zum Zitat Beilina A, van der BM, Ahmad R, et al. Mutations in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability. Proc Natl Acad Sci U S A 2005 Apr 19; 102(16): 5703–8PubMedCrossRef Beilina A, van der BM, Ahmad R, et al. Mutations in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability. Proc Natl Acad Sci U S A 2005 Apr 19; 102(16): 5703–8PubMedCrossRef
118.
Zurück zum Zitat Park J, Lee SB, Lee S, et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 2006 Jun 29; 441: 1162–6CrossRef Park J, Lee SB, Lee S, et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 2006 Jun 29; 441: 1162–6CrossRef
119.
Zurück zum Zitat Clark IE, Dodson MW, Jiang C, et al. Drosophila pinkl is required for mitochondrial function and interacts genetically with parkin. Nature 2006 Jun 29; 441: 1157–61CrossRef Clark IE, Dodson MW, Jiang C, et al. Drosophila pinkl is required for mitochondrial function and interacts genetically with parkin. Nature 2006 Jun 29; 441: 1157–61CrossRef
120.
Zurück zum Zitat Tang B, Xiong H, Sun P, et al. Association of PINK1 and DJ-1 confers digenic inheritance of early-onset Parkinson’s disease. Hum Mol Genet 2006 Jun 1; 15(11): 1816–25PubMedCrossRef Tang B, Xiong H, Sun P, et al. Association of PINK1 and DJ-1 confers digenic inheritance of early-onset Parkinson’s disease. Hum Mol Genet 2006 Jun 1; 15(11): 1816–25PubMedCrossRef
121.
Zurück zum Zitat Zimprich A, Biskup S, Leitner P, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 2004 Nov 18; 44(4): 601–7PubMedCrossRef Zimprich A, Biskup S, Leitner P, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 2004 Nov 18; 44(4): 601–7PubMedCrossRef
122.
Zurück zum Zitat Paisan-Ruiz C, Jain S, Evans EW, et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 2004 Nov 18; 44(4): 595–600PubMedCrossRef Paisan-Ruiz C, Jain S, Evans EW, et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 2004 Nov 18; 44(4): 595–600PubMedCrossRef
123.
Zurück zum Zitat Taylor JP, Mata IF, Farrer MJ. LRRK2: a common pathway for parkinsonism, pathogenesis and prevention? Trends Mol Med 2006 Feb; 12(2): 76–82PubMedCrossRef Taylor JP, Mata IF, Farrer MJ. LRRK2: a common pathway for parkinsonism, pathogenesis and prevention? Trends Mol Med 2006 Feb; 12(2): 76–82PubMedCrossRef
124.
Zurück zum Zitat Paisan-Ruiz C, Lang AE, Kawarai T, et al. LRRK2 gene in Parkinson disease. Neurology 2005 Sept 13; 65(5): 696–700PubMedCrossRef Paisan-Ruiz C, Lang AE, Kawarai T, et al. LRRK2 gene in Parkinson disease. Neurology 2005 Sept 13; 65(5): 696–700PubMedCrossRef
125.
Zurück zum Zitat Deng H, Le W, Guo Y, et al. Genetic and clinical identification of Parkinson’s disease patients with LRRK2 G2019S mutation. Ann Neurol 2005 Jun; 57(6): 933–4PubMedCrossRef Deng H, Le W, Guo Y, et al. Genetic and clinical identification of Parkinson’s disease patients with LRRK2 G2019S mutation. Ann Neurol 2005 Jun; 57(6): 933–4PubMedCrossRef
126.
Zurück zum Zitat Gilks WP, Abou-Sleiman PM, Gandhi S, et al. A common LRRK2 mutation in idiopathic Parkinson’s disease. Lancet 2005 Jan 29; 365(9457): 415–6PubMed Gilks WP, Abou-Sleiman PM, Gandhi S, et al. A common LRRK2 mutation in idiopathic Parkinson’s disease. Lancet 2005 Jan 29; 365(9457): 415–6PubMed
127.
Zurück zum Zitat Di Fonzo A, Rohe CF, Ferreira J, et al. A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson’s disease. Lancet 2005 Jan 29; 365(9457): 412–5PubMedCrossRef Di Fonzo A, Rohe CF, Ferreira J, et al. A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson’s disease. Lancet 2005 Jan 29; 365(9457): 412–5PubMedCrossRef
128.
Zurück zum Zitat Kachergus J, Mata IF, Hulihan M, et al. Identification of a novel LRRK2 mutation linked to autosomal dominant parkinsonism: evidence of a common founder across European populations. Am J Hum Genet 2005 Apr; 76(4): 672–80PubMedCrossRef Kachergus J, Mata IF, Hulihan M, et al. Identification of a novel LRRK2 mutation linked to autosomal dominant parkinsonism: evidence of a common founder across European populations. Am J Hum Genet 2005 Apr; 76(4): 672–80PubMedCrossRef
129.
Zurück zum Zitat Hernandez D, Paisan RC, Crawley A, et al. The dardarin G2019S mutation is a common cause of Parkinson’s disease but not other neurodegenerative diseases. Neurosci Lett 2005 Dec 9; 389(3): 137–9PubMedCrossRef Hernandez D, Paisan RC, Crawley A, et al. The dardarin G2019S mutation is a common cause of Parkinson’s disease but not other neurodegenerative diseases. Neurosci Lett 2005 Dec 9; 389(3): 137–9PubMedCrossRef
130.
Zurück zum Zitat Nichols WC, Pankratz N, Hernandez D, et al. Genetic screening for a single common LRRK2 mutation in familial Parkinson’s disease. Lancet 2005 Jan 29; 365(9457): 410–2PubMed Nichols WC, Pankratz N, Hernandez D, et al. Genetic screening for a single common LRRK2 mutation in familial Parkinson’s disease. Lancet 2005 Jan 29; 365(9457): 410–2PubMed
131.
Zurück zum Zitat Giasson BI, Covy JP, Bonini NM, et al. Biochemical and pathological characterization of Lrrk2. Ann Neurol 2006 Feb; 59(2): 315–22PubMedCrossRef Giasson BI, Covy JP, Bonini NM, et al. Biochemical and pathological characterization of Lrrk2. Ann Neurol 2006 Feb; 59(2): 315–22PubMedCrossRef
132.
Zurück zum Zitat West AB, Moore DJ, Biskup S, et al. Parkinson’s diseaseassociated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U S A 2005 Nov 15; 102(46): 16842–7PubMedCrossRef West AB, Moore DJ, Biskup S, et al. Parkinson’s diseaseassociated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U S A 2005 Nov 15; 102(46): 16842–7PubMedCrossRef
133.
Zurück zum Zitat Strauss KM, Martins LM, Plun-Favreau H, et al. Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson’s disease. Hum Mol Genet 2005 Aug 1; 14(15): 2099–111PubMedCrossRef Strauss KM, Martins LM, Plun-Favreau H, et al. Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson’s disease. Hum Mol Genet 2005 Aug 1; 14(15): 2099–111PubMedCrossRef
134.
Zurück zum Zitat Tieu K, Perier C, Caspersen C, et al. D-beta-Hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease. J Clin Invest 2003 Sep; 112(6): 892–901PubMed Tieu K, Perier C, Caspersen C, et al. D-beta-Hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease. J Clin Invest 2003 Sep; 112(6): 892–901PubMed
Metadaten
Titel
Role of Mitochondrial Dysfunction in Parkinson’s Disease
Implications for Treatment
verfasst von
Chenere P. Ramsey
Dr Benoit I. Giasson
Publikationsdatum
01.02.2007
Verlag
Springer International Publishing
Erschienen in
Drugs & Aging / Ausgabe 2/2007
Print ISSN: 1170-229X
Elektronische ISSN: 1179-1969
DOI
https://doi.org/10.2165/00002512-200724020-00002

Weitere Artikel der Ausgabe 2/2007

Drugs & Aging 2/2007 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.