Skip to main content
Erschienen in: Molecular Brain 1/2012

Open Access 01.12.2012 | Short report

Roles of CREB in the regulation of FMRP by group I metabotropic glutamate receptors in cingulate cortex

verfasst von: Hansen Wang, Yoshikazu Morishita, Daiki Miura, Jose R Naranjo, Satoshi Kida, Min Zhuo

Erschienen in: Molecular Brain | Ausgabe 1/2012

Abstract

Background

Fragile X syndrome is caused by lack of fragile X mental retardation protein (FMRP) due to silencing of the FMR1 gene. The metabotropic glutamate receptors (mGluRs) in the central nervous system contribute to higher brain functions including learning/memory, mental disorders and persistent pain. The transcription factor cyclic AMP-responsive element binding protein (CREB) is involved in important neuronal functions, such as synaptic plasticity and neuronal survival. Our recent study has shown that stimulation of Group I mGluRs upregulated FMRP and activated CREB in anterior cingulate cortex (ACC), a key region for brain cognitive and executive functions, suggesting that activation of Group I mGluRs may upregulate FMRP through CREB signaling pathway.

Results

In this study, we demonstrate that CREB contributes to the regulation of FMRP by Group I mGluRs. In ACC neurons of adult mice overexpressing dominant active CREB mutant, the upregulation of FMRP by stimulating Group I mGluR is enhanced compared to wild-type mice. However, the regulation of FMRP by Group I mGluRs is not altered by overexpression of Ca2+-insensitive mutant form of downstream regulatory element antagonist modulator (DREAM), a transcriptional repressor involved in synaptic transmission and plasticity.

Conclusion

Our study has provided further evidence for CREB involvement in regulation of FMRP by Group I mGluRs in ACC neurons, and may help to elucidate the pathogenesis of fragile X syndrome.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1756-6606-5-27) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Hansen Wang and Min Zhuo designed the study and wrote the manuscript. Hansen Wang performed the experiments. Yoshikazu Morishita, Daiki Miura and Satoshi Kida provided the CREB mutant mice and analyzed CRE sequences in the FMR1 promoter. Jose R Naranjo provided the DREAM mutant mice. Min Zhuo supervised the study. All authors read and approved the final manuscript.
Abkürzungen
FMRP
Fragile X mental retardation protein
mGluRs
Metabotropic glutamate receptors
CaMKIV
Ca2+/calmodulin-dependent protein kinase IV
AC1
Adenylyl cyclase 1
ACC
Anterior cingulate cortex
DHPG
(RS)-3: 5-Dihydroxyphenylglycine
CREB
Cyclic AMP-responsive element binding protein
pCREB
Phosphorylated CREB
DREAM
Downstream regulatory element antagonist modulator
PKA
cAMP dependent kinase
WT
Wild-type.

Background

Fragile X syndrome, the most common cause of inherited mental retardation and autism spectrum disorders, is caused by mutations of the FMR1 gene that encodes the fragile X mental retardation protein (FMRP)[19]. FMRP, an mRNA binding protein, is involved in activity-dependent synaptic plasticity through regulation of local protein synthesis at synapses[2, 7, 916]. It normally functions as a repressor of translation of specific mRNAs[10, 15, 1719]. The abnormal functions of Group I mGluR-dependent synaptic plasticity have been observed in hippocampus of Fmr1 knockout (KO) mice[16, 17, 2023]. It is believed that the protein synthesis downstream of Group I mGluRs are exaggerated due to the lack of FMRP in fragile X syndrome[8, 17, 21, 24].
The anterior cingulate cortex (ACC) is important for cognitive learning, fear memory and persistent pain[2531]. Previous studies have shown that trace fear memory is impaired in Fmr1 KO mice, accompanied by alterations in synaptic plasticity in ACC, suggesting that the dysfunction of ACC due to lack of FMRP may be responsible for certain types of mental disorders in fragile X syndrome[27, 32]. The mGluRs in ACC contribute to activity-dependent synaptic plasticity and behavioral fear memory[33, 34]. The regulation of FMRP by mGluRs has been mostly studied in hippocampal neurons[11, 17, 21, 35, 36]. Our recent study has found that activation of Group I mGluRs regulates the expression of FMRP in ACC neurons and activates cyclic AMP-responsive element binding protein (CREB)[37, 38], a transcriptional factor which plays many functional roles in central nervous system, such as neuronal survival, synaptic plasticity, learning and memory[3945]. These findings indicate possible roles of CREB in linking mGluRs to FMRP in ACC. Loss of this signaling pathway may contribute to the pathogenesis of fragile X syndrome.
In the present study, we have demonstrated that CREB is involved in the regulation of FMRP by Group I mGluRs. In cingulate cortex from transgenic mice overexpressing dominant active CREB (Y134F) mutant which displays a higher affinity with cAMP dependent kinase (PKA) compared to wild-type (WT) CREB[46, 47], we found the upregulation of FMRP by stimulating Group I mGluR was enhanced compared to that of WT mice. By contrast, the regulation of FMRP by Group I mGluRs was not affected by overexpression of Ca2+ insentive mutant form of downstream regulatory element antagonist modulator (DREAM), a transcriptional repressor involved in synaptic plasticity, learning and memory[4850]. We propose that CREB is the key transcription factor in regulation of FMRP by Group I mGluRs in ACC neurons.

Results

Overexpression of dominant active CREB enhances the regulation of FMRP by group I mGluRs in the ACC neurons

Phosphorylated CREB (pCREB) binds to cAMP response element (CRE) site in gene promoters and activates gene transcription[41, 42, 45, 51, 52]. It has been reported that the FMR1 gene promoter contains the CRE site[53, 54]. Our recent study had found that (RS)-3, 5-Dihydroxyphenylglycine ((RS)-3, 5-DHPG) treatment could upregulate FMRP and increase the pCREB levels in ACC slices, suggesting that the regulation of FMRP by Group I mGluRs in ACC neurons likely occurs through CREB activation[37, 38].
Overexpression of dominant active CREB mutant in the forebrain could positively regulate memory consolidation and enhance memory performance by upregulating the expression of Brain derived neurotrophic factor (BDNF)[47], which is well known as a CREB target gene[40, 42, 55]. To further investigate whether CREB is involved in the upregulation of FMRP caused by stimulating Group I mGluRs, we then tested the expression of FMRP induced by the Group I mGluR agonist DHPG (100 μM, 30 min) treatment in ACC slices from mice overexpressing CREB. By Western blot, we found that there was no difference in the basal levels of FMRP in ACC slices between WT and CREB overexpression mice (P > 0.05, compared with WT mice, n = 5, Figure1A). DHPG treatment could increase expression of FMRP in ACC slices; the increase of FMRP was further enhanced in ACC slices from mice overexpressing CREB compared to WT mice (198 ± 11% and 248 ± 14% of the WT control levels for WT and CREB overexpression mice, respectively. In two-way ANOVA analysis, for genotype, F = 13.39, P < 0.01; for treatment, F = 254.87, P < 0.01; genotype X treatment, F = 8.26, P < 0.05; n = 5 for each group, Figure1B). The data indicates that overexpression of CREB can enhance the upregulation of FMRP induced by Group I mGluR activation. It provides further evidence that CREB is involved in the regulation of FMRP by Group I mGluRs in ACC neurons.

Overexpression of Ca2+-insensitive DREAM does not affect the regulation of FMRP by group I mGluRs in the ACC neurons

Since transcriptional repressor DREAM interacts with CREB in a Ca2+ dependent manner and prevents the recruitment of CREB-binding protein (CBP) blocking CRE-dependent gene transcription[48, 56], we next checked whether DREAM might be involved in the regulation of FMRP by Group I mGluRs through CREB signaling pathway. To explore the role of DREAM in the upregulation of FMRP by stimulating Group I mGluRs, we have taken the advantage of transgenic mice overexpressing a Ca2+-insensitive DREAM mutant (TgDREAM)[49, 50]. The TgDREAM mice could develop normally and did not exhibit any abnormalities in brain structures. However, overexpression of mutant DREAM impaired NMDA receptor-mediated synaptic plasticity and contextual fear memory[50].
We next tested the effect of DHPG (100 μM, 30 min) treatment in ACC slices from TgDREAM mice. Importantly, no difference in the basal levels of FMRP in ACC slices was observed between WT and TgDREAM mice (P > 0.05, compared with WT mice, n = 5, Figure1C). Furthermore, the increase of FMRP after DHPG treatment was not affected in ACC slices from TgDREAM mice compared to WT mice (199 ± 10% and 201 ± 9% of the WT control levels for WT and TgDREAM mice, respectively. In two-way ANOVA analysis, for genotype, F = 0.10, P = 0.75; for treatment, F = 249.81, P < 0.01; for genotype X treatment, F = 0.001, P = 1.00; n = 5 for each group, Figure1D). The data indicate that overexpression of Ca2+-insensitive mutant form of DREAM does not affect the upregulation of FMRP induced by Group I mGluR activation, suggesting that DREAM might not be involved in the CREB-dependent regulation of FMRP by Group I mGluRs in ACC neurons.

Putative CREs in the FMR1 promoter

To identify conserved sequences, 20 kb of mouse genomic sequence including the FMR1 transcription start site (TSS) was aligned among multiple mammalian species using the UCSC Genome browser (Figure2). Sequences of multiple mammalian species were then scanned for matches to the consensus sequence of CRE (TGACGTCA). Two putative CREs (upstream CRE, -48 ~ −45; downstream CRE, +106 ~ +113) were found in the highly conserved regions across multiple mammals (Figure2v). The upstream putative CRE has been reported as a potential CRE in human FMR1 promoter[53, 54]. Comparisons of putative CRE sequences among mammalian species are shown in Figure2B. These data support our finding that the FMR1 is a target gene of CREB.

Discussion

Our previous studies have shown that FMRP is required for the physiological function of ACC[25, 27, 57], the mGluRs in ACC may contribute to the activity-dependent synaptic plasticity and fear memory[33, 34]. Recently, we have provided the direct biochemical evidence that activation of Group I mGluRs upregulates FMRP in ACC neurons of adult mice; the upregulation of FMRP by Group I mGluRs occurs at the transcriptional level, stimulation of Group I mGluRs induced the phosphorylation of CREB in ACC neurons[37, 38]. In this study, we provided further evidence that CREB contributes to the upregulation of FMRP induced by stimulating Group I mGluRs and may act as a key signaling molecule linking Group I mGluRs and FMRP in cingulate cortex.
CREB is a transcriptional factor that plays important roles in synaptic plasticity[4045, 52]. The activity of CREB is regulated by its phosphorylation; pCREB binds to the CRE site within the gene and activates the gene transcription[40, 42, 45, 51, 52]. Previous and our current studies have shown that there is the CRE site in FMR1 promoter, and implicated CREB in the regulation of the FMR1 gene transcription in neural cells (Figure2)[53, 54]. Our recent studies found that the Group I mGluR activation upregulates FMRP at the transcriptional level in ACC neurons; the upregulation of FMRP is accompanied by the phosphorylation of CREB (Ser133); Ca2+-stimulated adenylyl cyclase 1 (AC1), PKA and Ca2+/Calmodulin-dependent protein kinase IV (CaMKIV) contribute to regulation of FMRP by Group I mGluR probably through CREB activation[37, 38] (see Table1). These findings supported that CREB acts as a transcriptional factor for Group I mGluR-dependent upregulation of FMRP in the ACC neurons.
Table 1
Studies on signaling pathway of CREB activation by Group I mGluRs in cingulate cortex
Signaling molecules
Manipulations
Effects on CREB phosphorylation induced by DHPG
References
AC1
AC1 knockout
Reduced
38
PKA
PKA inhibitor
Reduced
38
CaMKIV
CaMKIV knockout
Reduced
38
 
CaMK inhibitor
Reduced
37
 
CaMKIV over expression
Enhanced
37
In this study, we have shown that the upregulation of FMRP induced by Group I mGluR agonist DHPG DHPG is enhanced in ACC slices from mice overexpressing dominant active CREB (Y134F) mutant. This finding further supports that CREB is critical for the regulation of FMRP by Group I mGluRs in ACC neurons. We also found that overexpression of dominant active CREB mutant does not affect the basal levels of FMRP, although it enhanced the upregulation of FMRP by stimulating Group I mGluRs in ACC slices. These results may reflect less synaptic activity at baseline condition, or suggest that CREB, which can be shared by many different signaling pathways, may specifically contribute to the upregulation of FMRP by stimulating Group I mGluRs (see Figure3 for the model). It is possible that long term expression of dominant active CREB in the mice may cause some developmental or secondary changes in ACC of transgenic mice. However, we think that the effect of CREB mutant on regulation of FMRP by Group I mGluRs cannot be simply attributed to developmental or secondary changes in ACC since the roles of CREB have been further supported by other genetic and pharmacological evidence from our previous studies[37, 38].
DREAM, a multifunctional Ca2+-binding protein, contributes to synaptic plasticity, and behavioral learning and memory. As a transcriptional repressor, it can affect CRE-dependent gene transcription by preventing the recruitment of CBP by pCREB[48, 49, 56]. In this study, we found the upregulation of FMRP by stimulating Group I mGluRs was not affected in ACC slices from mice overexpressing Ca2+-insensitive mutant form of DREAM. The data indicates that overexpression of this mutant form of DREAM does not affect basal expression or CREB-dependent FMRP induction by Group I mGluRs. Since the overexpression of TgDREAM has been associated with the repression of different target genes[49, 58, 59], these results suggest that DREAM might not be involved in the regulation of the FMRP in ACC neurons.

Conclusion

We have demonstrated that CREB is critical for regulation of FMRP by Group I mGluRs in ACC neurons by using genetic approaches. Our study has provided further evidence that CREB is involved in regulation of FMRP by Group I mGluRs in cingulate cortex, and may help to further elucidate the molecular and cellular mechanisms underlying fragile X syndrome.

Materials and methods

Animals

Adult male C57Bl/6 mice were used in most of experiments. The transgenic mice overexpressing dominant active mutant CREB (Y134F) or Ca2+ insentive DREAM were generated and maintained as reported previously[47, 50]. All mice were housed under a 12:12 light cycle with food and water provided ad libitum. All mouse protocols are in accordance with NIH guidelines and approved by the Animal Care and Use Committee of University of Toronto.

Drugs and antibodies

(RS)-3, 5-DHPG was purchased from Tocris Bioscience (Ellisville, MO). phosphatase inhibitor cocktail 1 and 2 were purchased from Sigma-Aldrich (St. Louis, MO). The anti-FMRP antibody, horseradish peroxidase-linked goat anti-mouse IgG and goat anti-rabbit IgG for Western blot were purchased from Chemicon International (Temecula, CA). The anti-phospho-threonine antibody, anti-CREB antibody and anti-phosph CREB antibody were purchased from Cell Signaling Technology (Danvers, MA). The anti-actin antibody was from Sigma-Aldrich (St. Louis, MO).

Brain slice preparations

Mice were anesthetized with 2% halothane and brain slices (300 μm) containing ACC were cut at 4°C using a Vibratome, in oxygenated artificial cerebrospinal fluid [ACSF; containing the following (in mM): 124 NaCl, 4 KCl, 26 NaHCO3, 2.0 CaCl2, 1.0 MgSO4, 1.0 NaH2PO4, 10 D-glucose, pH 7.4]. The slices were slowly brought to final temperature of 30°C in ACSF gassed with 95% O2/5% CO2 and incubated for at least 1 hour before experiments. Slices then were exposed to different compounds of interest for the indicated times and snap frozen over dry ice. For biochemical experiments, the ACC regions were microdissected and sonicated in ice-cold homogenization buffer containing phosphatase and protease inhibitors.

Western blot analysis

Western blot was conducted as previously described[25, 38]. The brain tissues were dissected and homogenized in lysis buffer containing 10 mM Tris–HCl (pH 7.4), 2 mM EDTA, 1% SDS, 1X protease inhibitor cocktail, and 1X phosphatase inhibitor cocktail 1 and 2. Protein concentration was measured by Bradford protein assay (Bio-Rad, Hercules, CA). Electrophoresis of equal amounts of total protein was performed on NuPAGE 4-12% Bis-Tris Gels (Invitrogen, Carlsbad, CA). Separated proteins were transferred to polyvinylidene fluoride membranes (Pall Corporation, East Hills, NY) at 4°C for analysis. Membranes were probed with 1:3000 dilution of anti-FMRP, or 1:1000 dilution of anti-phospho-CREB (Ser133) and anti-CREB antibodies. The membranes were incubated in the appropriate horseradish peroxidase-coupled secondary antibody diluted 1:3000 for 2 h followed by enhanced chemiluminescence (ECL) detection of the proteins with Western Lightning Plus-ECL (PerkinElmer Life and Analytical Science Inc., Waltham, MA) according to the manufacturer’s instructions. To verify equal loading, membranes were also probed with 1:3000 dilution of anti-actin antibody. The density of immunoblots was measured using NIH ImageJ program.

Data analysis

All data were presented as the mean ± S.E.M. Statistical comparisons were performed by paired t-test or two-way ANOVA. In all cases, P < 0.05 is considered statistically significant.

Acknowledgments

This work was supported by grants from the EJLB-CIHR Michael Smith Chair in Neurosciences and Mental Health, Canada Research Chair, Canadian Institute for Health Research operating grant (MOP-124807), NSERC Discovery Grant (RGPIN 402555) (M. Z.). H. W. was supported by Postdoctoral Fellowship from The Fragile X Research Foundation of Canada. S. K. was supported by Grant-in-Aids for Scientific Research 20380078 and 20658035, and High Technology Research and Priority Areas (Molecular Brain Science) 18022038 and 20022039 from the Ministry of Education, Culture, Sports, Science, and Technology, Japan; Core Research for Evolutional Science and Technology, Japan; and the Research Grant for Nervous and Mental Disorders from the Ministry of Health, Labour, and Welfare, Japan; and grants ERA-Net Neuron (grant nEUROsyn 2008), Ministerio Ciencia e Innovacion (SAF2007-62449) and CIBERNED to J.R.N.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Hansen Wang and Min Zhuo designed the study and wrote the manuscript. Hansen Wang performed the experiments. Yoshikazu Morishita, Daiki Miura and Satoshi Kida provided the CREB mutant mice and analyzed CRE sequences in the FMR1 promoter. Jose R Naranjo provided the DREAM mutant mice. Min Zhuo supervised the study. All authors read and approved the final manuscript.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Jetzt e.Med zum Sonderpreis bestellen!

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Jetzt bestellen und 100 € sparen!

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

e.Med Neurologie

Kombi-Abonnement

Mit e.Med Neurologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes, den Premium-Inhalten der neurologischen Fachzeitschriften, inklusive einer gedruckten Neurologie-Zeitschrift Ihrer Wahl.

Anhänge

Authors’ original submitted files for images

Literatur
1.
Zurück zum Zitat Belmonte MK, Bourgeron T: Fragile X syndrome and autism at the intersection of genetic and neural networks. Nat Neurosci. 2006, 9 (10): 1221-1225. 10.1038/nn1765.CrossRefPubMed Belmonte MK, Bourgeron T: Fragile X syndrome and autism at the intersection of genetic and neural networks. Nat Neurosci. 2006, 9 (10): 1221-1225. 10.1038/nn1765.CrossRefPubMed
2.
Zurück zum Zitat Bhakar AL, Dolen G, Bear MF: The Pathophysiology of Fragile X (and What It Teaches Us about Synapses). Annu Rev Neurosci. 2012, 2012: 2012- Bhakar AL, Dolen G, Bear MF: The Pathophysiology of Fragile X (and What It Teaches Us about Synapses). Annu Rev Neurosci. 2012, 2012: 2012-
3.
Zurück zum Zitat Feng Y, Zhang F, Lokey LK, Chastain JL, Lakkis L, Eberhart D, Warren ST: Translational suppression by trinucleotide repeat expansion at FMR1. Science. 1995, 268 (5211): 731-734. 10.1126/science.7732383.CrossRefPubMed Feng Y, Zhang F, Lokey LK, Chastain JL, Lakkis L, Eberhart D, Warren ST: Translational suppression by trinucleotide repeat expansion at FMR1. Science. 1995, 268 (5211): 731-734. 10.1126/science.7732383.CrossRefPubMed
5.
Zurück zum Zitat Huber K: Fragile X syndrome: molecular mechanisms of cognitive dysfunction. Am J Psychiatry. 2007, 164 (4): 556-10.1176/appi.ajp.164.4.556.CrossRefPubMed Huber K: Fragile X syndrome: molecular mechanisms of cognitive dysfunction. Am J Psychiatry. 2007, 164 (4): 556-10.1176/appi.ajp.164.4.556.CrossRefPubMed
6.
Zurück zum Zitat Jin P, Warren ST: New insights into fragile X syndrome: from molecules to neurobehaviors. Trends Biochem Sci. 2003, 28 (3): 152-158. 10.1016/S0968-0004(03)00033-1.CrossRefPubMed Jin P, Warren ST: New insights into fragile X syndrome: from molecules to neurobehaviors. Trends Biochem Sci. 2003, 28 (3): 152-158. 10.1016/S0968-0004(03)00033-1.CrossRefPubMed
7.
Zurück zum Zitat Santoro MR, Bray SM, Warren ST: Molecular mechanisms of fragile X syndrome: a twenty-year perspective. Annu Rev Pathol. 2011, 7: 219-245.CrossRefPubMed Santoro MR, Bray SM, Warren ST: Molecular mechanisms of fragile X syndrome: a twenty-year perspective. Annu Rev Pathol. 2011, 7: 219-245.CrossRefPubMed
8.
Zurück zum Zitat Krueger DD, Bear MF: Toward fulfilling the promise of molecular medicine in fragile X syndrome. Annu Rev Med. 2011, 62: 411-429. 10.1146/annurev-med-061109-134644.PubMedCentralCrossRefPubMed Krueger DD, Bear MF: Toward fulfilling the promise of molecular medicine in fragile X syndrome. Annu Rev Med. 2011, 62: 411-429. 10.1146/annurev-med-061109-134644.PubMedCentralCrossRefPubMed
9.
Zurück zum Zitat Wang T, Bray SM, Warren ST: New perspectives on the biology of fragile X syndrome. Curr Opin Genet Dev. 2012, 22 (3): 256-263. 10.1016/j.gde.2012.02.002.PubMedCentralCrossRefPubMed Wang T, Bray SM, Warren ST: New perspectives on the biology of fragile X syndrome. Curr Opin Genet Dev. 2012, 22 (3): 256-263. 10.1016/j.gde.2012.02.002.PubMedCentralCrossRefPubMed
10.
Zurück zum Zitat Bagni C, Greenough WT: From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome. Nat Rev Neurosci. 2005, 6 (5): 376-387.CrossRefPubMed Bagni C, Greenough WT: From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome. Nat Rev Neurosci. 2005, 6 (5): 376-387.CrossRefPubMed
11.
Zurück zum Zitat Bassell GJ, Warren ST: Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron. 2008, 60 (2): 201-214. 10.1016/j.neuron.2008.10.004.PubMedCentralCrossRefPubMed Bassell GJ, Warren ST: Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron. 2008, 60 (2): 201-214. 10.1016/j.neuron.2008.10.004.PubMedCentralCrossRefPubMed
12.
Zurück zum Zitat Brown V, Small K, Lakkis L, Feng Y, Gunter C, Wilkinson KD, Warren ST: Purified recombinant Fmrp exhibits selective RNA binding as an intrinsic property of the fragile X mental retardation protein. J Biol Chem. 1998, 273 (25): 15521-15527. 10.1074/jbc.273.25.15521.CrossRefPubMed Brown V, Small K, Lakkis L, Feng Y, Gunter C, Wilkinson KD, Warren ST: Purified recombinant Fmrp exhibits selective RNA binding as an intrinsic property of the fragile X mental retardation protein. J Biol Chem. 1998, 273 (25): 15521-15527. 10.1074/jbc.273.25.15521.CrossRefPubMed
13.
Zurück zum Zitat Costa-Mattioli M, Sossin WS, Klann E, Sonenberg N: Translational control of long-lasting synaptic plasticity and memory. Neuron. 2009, 61 (1): 10-26. 10.1016/j.neuron.2008.10.055.CrossRefPubMed Costa-Mattioli M, Sossin WS, Klann E, Sonenberg N: Translational control of long-lasting synaptic plasticity and memory. Neuron. 2009, 61 (1): 10-26. 10.1016/j.neuron.2008.10.055.CrossRefPubMed
14.
Zurück zum Zitat Fahling M, Mrowka R, Steege A, Kirschner KM, Benko E, Forstera B, Persson PB, Thiele BJ, Meier JC, Scholz H: Translational regulation of the human achaete-scute homologue-1 by fragile X mental retardation protein. J Biol Chem. 2009, 284 (7): 4255-4266.CrossRefPubMed Fahling M, Mrowka R, Steege A, Kirschner KM, Benko E, Forstera B, Persson PB, Thiele BJ, Meier JC, Scholz H: Translational regulation of the human achaete-scute homologue-1 by fragile X mental retardation protein. J Biol Chem. 2009, 284 (7): 4255-4266.CrossRefPubMed
15.
Zurück zum Zitat Greenough WT, Klintsova AY, Irwin SA, Galvez R, Bates KE, Weiler IJ: Synaptic regulation of protein synthesis and the fragile X protein. Proc Natl Acad Sci U S A. 2001, 98 (13): 7101-7106. 10.1073/pnas.141145998.PubMedCentralCrossRefPubMed Greenough WT, Klintsova AY, Irwin SA, Galvez R, Bates KE, Weiler IJ: Synaptic regulation of protein synthesis and the fragile X protein. Proc Natl Acad Sci U S A. 2001, 98 (13): 7101-7106. 10.1073/pnas.141145998.PubMedCentralCrossRefPubMed
16.
Zurück zum Zitat Huber KM, Gallagher SM, Warren ST, Bear MF: Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci U S A. 2002, 99 (11): 7746-7750. 10.1073/pnas.122205699.PubMedCentralCrossRefPubMed Huber KM, Gallagher SM, Warren ST, Bear MF: Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci U S A. 2002, 99 (11): 7746-7750. 10.1073/pnas.122205699.PubMedCentralCrossRefPubMed
17.
Zurück zum Zitat Bear MF, Huber KM, Warren ST: The mGluR theory of fragile X mental retardation. Trends Neurosci. 2004, 27 (7): 370-377. 10.1016/j.tins.2004.04.009.CrossRefPubMed Bear MF, Huber KM, Warren ST: The mGluR theory of fragile X mental retardation. Trends Neurosci. 2004, 27 (7): 370-377. 10.1016/j.tins.2004.04.009.CrossRefPubMed
18.
Zurück zum Zitat Grossman AW, Aldridge GM, Weiler IJ, Greenough WT: Local protein synthesis and spine morphogenesis: Fragile X syndrome and beyond. J Neurosci. 2006, 26 (27): 7151-7155. 10.1523/JNEUROSCI.1790-06.2006.CrossRefPubMed Grossman AW, Aldridge GM, Weiler IJ, Greenough WT: Local protein synthesis and spine morphogenesis: Fragile X syndrome and beyond. J Neurosci. 2006, 26 (27): 7151-7155. 10.1523/JNEUROSCI.1790-06.2006.CrossRefPubMed
19.
Zurück zum Zitat Kao DI, Aldridge GM, Weiler IJ, Greenough WT: Altered mRNA transport, docking, and protein translation in neurons lacking fragile X mental retardation protein. Proc Natl Acad Sci U S A. 2010, 107 (35): 15601-15606. 10.1073/pnas.1010564107.PubMedCentralCrossRefPubMed Kao DI, Aldridge GM, Weiler IJ, Greenough WT: Altered mRNA transport, docking, and protein translation in neurons lacking fragile X mental retardation protein. Proc Natl Acad Sci U S A. 2010, 107 (35): 15601-15606. 10.1073/pnas.1010564107.PubMedCentralCrossRefPubMed
20.
Zurück zum Zitat Gross C, Berry-Kravis EM, Bassell GJ: Therapeutic strategies in fragile X syndrome: dysregulated mGluR signaling and beyond. Neuropsychopharmacology. 2012, 37 (1): 178-195. 10.1038/npp.2011.137.PubMedCentralCrossRefPubMed Gross C, Berry-Kravis EM, Bassell GJ: Therapeutic strategies in fragile X syndrome: dysregulated mGluR signaling and beyond. Neuropsychopharmacology. 2012, 37 (1): 178-195. 10.1038/npp.2011.137.PubMedCentralCrossRefPubMed
21.
Zurück zum Zitat Hou L, Antion MD, Hu D, Spencer CM, Paylor R, Klann E: Dynamic translational and proteasomal regulation of fragile X mental retardation protein controls mGluR-dependent long-term depression. Neuron. 2006, 51 (4): 441-454. 10.1016/j.neuron.2006.07.005.CrossRefPubMed Hou L, Antion MD, Hu D, Spencer CM, Paylor R, Klann E: Dynamic translational and proteasomal regulation of fragile X mental retardation protein controls mGluR-dependent long-term depression. Neuron. 2006, 51 (4): 441-454. 10.1016/j.neuron.2006.07.005.CrossRefPubMed
22.
Zurück zum Zitat Nakamoto M, Nalavadi V, Epstein MP, Narayanan U, Bassell GJ, Warren ST: Fragile X mental retardation protein deficiency leads to excessive mGluR5-dependent internalization of AMPA receptors. Proc Natl Acad Sci U S A. 2007, 104 (39): 15537-15542. 10.1073/pnas.0707484104.PubMedCentralCrossRefPubMed Nakamoto M, Nalavadi V, Epstein MP, Narayanan U, Bassell GJ, Warren ST: Fragile X mental retardation protein deficiency leads to excessive mGluR5-dependent internalization of AMPA receptors. Proc Natl Acad Sci U S A. 2007, 104 (39): 15537-15542. 10.1073/pnas.0707484104.PubMedCentralCrossRefPubMed
23.
Zurück zum Zitat Osterweil EK, Krueger DD, Reinhold K, Bear MF: Hypersensitivity to mGluR5 and ERK1/2 leads to excessive protein synthesis in the hippocampus of a mouse model of fragile X syndrome. J Neurosci. 2010, 30 (46): 15616-15627. 10.1523/JNEUROSCI.3888-10.2010.PubMedCentralCrossRefPubMed Osterweil EK, Krueger DD, Reinhold K, Bear MF: Hypersensitivity to mGluR5 and ERK1/2 leads to excessive protein synthesis in the hippocampus of a mouse model of fragile X syndrome. J Neurosci. 2010, 30 (46): 15616-15627. 10.1523/JNEUROSCI.3888-10.2010.PubMedCentralCrossRefPubMed
24.
Zurück zum Zitat Richter JD, Klann E: Making synaptic plasticity and memory last: mechanisms of translational regulation. Genes Dev. 2009, 23 (1): 1-11. 10.1101/gad.1735809.CrossRefPubMed Richter JD, Klann E: Making synaptic plasticity and memory last: mechanisms of translational regulation. Genes Dev. 2009, 23 (1): 1-11. 10.1101/gad.1735809.CrossRefPubMed
25.
Zurück zum Zitat Wang H, Wu LJ, Kim SS, Lee FJ, Gong B, Toyoda H, Ren M, Shang YZ, Xu H, Liu F, et al: FMRP acts as a key messenger for dopamine modulation in the forebrain. Neuron. 2008, 59 (4): 634-647. 10.1016/j.neuron.2008.06.027.CrossRefPubMed Wang H, Wu LJ, Kim SS, Lee FJ, Gong B, Toyoda H, Ren M, Shang YZ, Xu H, Liu F, et al: FMRP acts as a key messenger for dopamine modulation in the forebrain. Neuron. 2008, 59 (4): 634-647. 10.1016/j.neuron.2008.06.027.CrossRefPubMed
26.
Zurück zum Zitat Wang H, Xu H, Wu LJ, Kim SS, Chen T, Koga K, Descalzi G, Gong B, Vadakkan KI, Zhang X, et al: Identification of an adenylyl cyclase inhibitor for treating neuropathic and inflammatory pain. Sci Transl Med. 2011, 3 (65): 65-63.CrossRef Wang H, Xu H, Wu LJ, Kim SS, Chen T, Koga K, Descalzi G, Gong B, Vadakkan KI, Zhang X, et al: Identification of an adenylyl cyclase inhibitor for treating neuropathic and inflammatory pain. Sci Transl Med. 2011, 3 (65): 65-63.CrossRef
27.
Zurück zum Zitat Zhao MG, Toyoda H, Ko SW, Ding HK, Wu LJ, Zhuo M: Deficits in trace fear memory and long-term potentiation in a mouse model for fragile X syndrome. J Neurosci. 2005, 25 (32): 7385-7392. 10.1523/JNEUROSCI.1520-05.2005.CrossRefPubMed Zhao MG, Toyoda H, Ko SW, Ding HK, Wu LJ, Zhuo M: Deficits in trace fear memory and long-term potentiation in a mouse model for fragile X syndrome. J Neurosci. 2005, 25 (32): 7385-7392. 10.1523/JNEUROSCI.1520-05.2005.CrossRefPubMed
28.
Zurück zum Zitat Zhuo M: Molecular mechanisms of pain in the anterior cingulate cortex. J Neurosci Res. 2006, 84 (5): 927-933. 10.1002/jnr.21003.CrossRefPubMed Zhuo M: Molecular mechanisms of pain in the anterior cingulate cortex. J Neurosci Res. 2006, 84 (5): 927-933. 10.1002/jnr.21003.CrossRefPubMed
29.
Zurück zum Zitat Zhuo M: Cortical excitation and chronic pain. Trends Neurosci. 2008, 31 (4): 199-207. 10.1016/j.tins.2008.01.003.CrossRefPubMed Zhuo M: Cortical excitation and chronic pain. Trends Neurosci. 2008, 31 (4): 199-207. 10.1016/j.tins.2008.01.003.CrossRefPubMed
30.
Zurück zum Zitat Han CJ, O’Tuathaigh CM, van Trigt L, Quinn JJ, Fanselow MS, Mongeau R, Koch C, Anderson DJ: Trace but not delay fear conditioning requires attention and the anterior cingulate cortex. Proc Natl Acad Sci U S A. 2003, 100 (22): 13087-13092. 10.1073/pnas.2132313100.PubMedCentralCrossRefPubMed Han CJ, O’Tuathaigh CM, van Trigt L, Quinn JJ, Fanselow MS, Mongeau R, Koch C, Anderson DJ: Trace but not delay fear conditioning requires attention and the anterior cingulate cortex. Proc Natl Acad Sci U S A. 2003, 100 (22): 13087-13092. 10.1073/pnas.2132313100.PubMedCentralCrossRefPubMed
31.
Zurück zum Zitat Frankland PW, Bontempi B, Talton LE, Kaczmarek L, Silva AJ: The involvement of the anterior cingulate cortex in remote contextual fear memory. Science. 2004, 304 (5672): 881-883. 10.1126/science.1094804.CrossRefPubMed Frankland PW, Bontempi B, Talton LE, Kaczmarek L, Silva AJ: The involvement of the anterior cingulate cortex in remote contextual fear memory. Science. 2004, 304 (5672): 881-883. 10.1126/science.1094804.CrossRefPubMed
32.
Zurück zum Zitat Hayashi ML, Rao BS, Seo JS, Choi HS, Dolan BM, Choi SY, Chattarji S, Tonegawa S: Inhibition of p21-activated kinase rescues symptoms of fragile X syndrome in mice. Proc Natl Acad Sci U S A. 2007, 104 (27): 11489-11494. 10.1073/pnas.0705003104.PubMedCentralCrossRefPubMed Hayashi ML, Rao BS, Seo JS, Choi HS, Dolan BM, Choi SY, Chattarji S, Tonegawa S: Inhibition of p21-activated kinase rescues symptoms of fragile X syndrome in mice. Proc Natl Acad Sci U S A. 2007, 104 (27): 11489-11494. 10.1073/pnas.0705003104.PubMedCentralCrossRefPubMed
33.
Zurück zum Zitat Tang J, Ko S, Ding HK, Qiu CS, Calejesan AA, Zhuo M: Pavlovian fear memory induced by activation in the anterior cingulate cortex. Mol Pain. 2005, 1 (1): 6-10.1186/1744-8069-1-6.PubMedCentralCrossRefPubMed Tang J, Ko S, Ding HK, Qiu CS, Calejesan AA, Zhuo M: Pavlovian fear memory induced by activation in the anterior cingulate cortex. Mol Pain. 2005, 1 (1): 6-10.1186/1744-8069-1-6.PubMedCentralCrossRefPubMed
34.
Zurück zum Zitat Wei F, Li P, Zhuo M: Loss of synaptic depression in mammalian anterior cingulate cortex after amputation. J Neurosci. 1999, 19 (21): 9346-9354.PubMed Wei F, Li P, Zhuo M: Loss of synaptic depression in mammalian anterior cingulate cortex after amputation. J Neurosci. 1999, 19 (21): 9346-9354.PubMed
35.
Zurück zum Zitat Weiler IJ, Spangler CC, Klintsova AY, Grossman AW, Kim SH, Bertaina-Anglade V, Khaliq H, de Vries FE, Lambers FA, Hatia F, et al: Fragile X mental retardation protein is necessary for neurotransmitter-activated protein translation at synapses. Proc Natl Acad Sci U S A. 2004, 101 (50): 17504-17509. 10.1073/pnas.0407533101.PubMedCentralCrossRefPubMed Weiler IJ, Spangler CC, Klintsova AY, Grossman AW, Kim SH, Bertaina-Anglade V, Khaliq H, de Vries FE, Lambers FA, Hatia F, et al: Fragile X mental retardation protein is necessary for neurotransmitter-activated protein translation at synapses. Proc Natl Acad Sci U S A. 2004, 101 (50): 17504-17509. 10.1073/pnas.0407533101.PubMedCentralCrossRefPubMed
36.
Zurück zum Zitat Nosyreva ED, Huber KM: Metabotropic receptor-dependent long-term depression persists in the absence of protein synthesis in the mouse model of fragile X syndrome. J Neurophysiol. 2006, 95 (5): 3291-3295. 10.1152/jn.01316.2005.CrossRefPubMed Nosyreva ED, Huber KM: Metabotropic receptor-dependent long-term depression persists in the absence of protein synthesis in the mouse model of fragile X syndrome. J Neurophysiol. 2006, 95 (5): 3291-3295. 10.1152/jn.01316.2005.CrossRefPubMed
37.
Zurück zum Zitat Wang H, Fukushima H, Kida S, Zhuo M: Ca2+/calmodulin-dependent protein kinase IV links group I metabotropic glutamate receptors to fragile X mental retardation protein in cingulate cortex. J Biol Chem. 2009, 284 (28): 18953-18962. 10.1074/jbc.M109.019141.PubMedCentralCrossRefPubMed Wang H, Fukushima H, Kida S, Zhuo M: Ca2+/calmodulin-dependent protein kinase IV links group I metabotropic glutamate receptors to fragile X mental retardation protein in cingulate cortex. J Biol Chem. 2009, 284 (28): 18953-18962. 10.1074/jbc.M109.019141.PubMedCentralCrossRefPubMed
38.
Zurück zum Zitat Wang H, Wu LJ, Zhang F, Zhuo M: Roles of calcium-stimulated adenylyl cyclase and calmodulin-dependent protein kinase IV in the regulation of FMRP by group I metabotropic glutamate receptors. J Neurosci. 2008, 28 (17): 4385-4397. 10.1523/JNEUROSCI.0646-08.2008.CrossRefPubMed Wang H, Wu LJ, Zhang F, Zhuo M: Roles of calcium-stimulated adenylyl cyclase and calmodulin-dependent protein kinase IV in the regulation of FMRP by group I metabotropic glutamate receptors. J Neurosci. 2008, 28 (17): 4385-4397. 10.1523/JNEUROSCI.0646-08.2008.CrossRefPubMed
39.
Zurück zum Zitat Ao H, Ko SW, Zhuo M: CREB activity maintains the survival of cingulate cortical pyramidal neurons in the adult mouse brain. Mol Pain. 2006, 2: 15-10.1186/1744-8069-2-15.PubMedCentralCrossRefPubMed Ao H, Ko SW, Zhuo M: CREB activity maintains the survival of cingulate cortical pyramidal neurons in the adult mouse brain. Mol Pain. 2006, 2: 15-10.1186/1744-8069-2-15.PubMedCentralCrossRefPubMed
40.
Zurück zum Zitat Barco A, Patterson SL, Alarcon JM, Gromova P, Mata-Roig M, Morozov A, Kandel ER: Gene expression profiling of facilitated L-LTP in VP16-CREB mice reveals that BDNF is critical for the maintenance of LTP and its synaptic capture. Neuron. 2005, 48 (1): 123-137. 10.1016/j.neuron.2005.09.005.CrossRefPubMed Barco A, Patterson SL, Alarcon JM, Gromova P, Mata-Roig M, Morozov A, Kandel ER: Gene expression profiling of facilitated L-LTP in VP16-CREB mice reveals that BDNF is critical for the maintenance of LTP and its synaptic capture. Neuron. 2005, 48 (1): 123-137. 10.1016/j.neuron.2005.09.005.CrossRefPubMed
41.
Zurück zum Zitat Hardingham GE, Bading H: Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci. 2010, 11 (10): 682-696. 10.1038/nrn2911.PubMedCentralCrossRefPubMed Hardingham GE, Bading H: Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci. 2010, 11 (10): 682-696. 10.1038/nrn2911.PubMedCentralCrossRefPubMed
42.
Zurück zum Zitat Lonze BE, Ginty DD: Function and regulation of CREB family transcription factors in the nervous system. Neuron. 2002, 35 (4): 605-623. 10.1016/S0896-6273(02)00828-0.CrossRefPubMed Lonze BE, Ginty DD: Function and regulation of CREB family transcription factors in the nervous system. Neuron. 2002, 35 (4): 605-623. 10.1016/S0896-6273(02)00828-0.CrossRefPubMed
43.
Zurück zum Zitat Wang H, Gong B, Vadakkan KI, Toyoda H, Kaang BK, Zhuo M: Genetic evidence for adenylyl cyclase 1 as a target for preventing neuronal excitotoxicity mediated by N-methyl-D-aspartate receptors. J Biol Chem. 2007, 282 (2): 1507-1517.CrossRefPubMed Wang H, Gong B, Vadakkan KI, Toyoda H, Kaang BK, Zhuo M: Genetic evidence for adenylyl cyclase 1 as a target for preventing neuronal excitotoxicity mediated by N-methyl-D-aspartate receptors. J Biol Chem. 2007, 282 (2): 1507-1517.CrossRefPubMed
44.
Zurück zum Zitat Wheeler DG, Groth RD, Ma H, Barrett CF, Owen SF, Safa P, Tsien RW: Ca(V)1 and Ca(V)2 Channels Engage Distinct Modes of Ca(2+) Signaling to Control CREB-Dependent Gene Expression. Cell. 2012, 149 (5): 1112-1124. 10.1016/j.cell.2012.03.041.PubMedCentralCrossRefPubMed Wheeler DG, Groth RD, Ma H, Barrett CF, Owen SF, Safa P, Tsien RW: Ca(V)1 and Ca(V)2 Channels Engage Distinct Modes of Ca(2+) Signaling to Control CREB-Dependent Gene Expression. Cell. 2012, 149 (5): 1112-1124. 10.1016/j.cell.2012.03.041.PubMedCentralCrossRefPubMed
45.
Zurück zum Zitat Wu GY, Deisseroth K, Tsien RW: Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S A. 2001, 98 (5): 2808-2813. 10.1073/pnas.051634198.PubMedCentralCrossRefPubMed Wu GY, Deisseroth K, Tsien RW: Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S A. 2001, 98 (5): 2808-2813. 10.1073/pnas.051634198.PubMedCentralCrossRefPubMed
46.
Zurück zum Zitat Du K, Asahara H, Jhala US, Wagner BL, Montminy M: Characterization of a CREB gain-of-function mutant with constitutive transcriptional activity in vivo. Mol Cell Biol. 2000, 20 (12): 4320-4327. 10.1128/MCB.20.12.4320-4327.2000.PubMedCentralCrossRefPubMed Du K, Asahara H, Jhala US, Wagner BL, Montminy M: Characterization of a CREB gain-of-function mutant with constitutive transcriptional activity in vivo. Mol Cell Biol. 2000, 20 (12): 4320-4327. 10.1128/MCB.20.12.4320-4327.2000.PubMedCentralCrossRefPubMed
47.
Zurück zum Zitat Suzuki A, Fukushima H, Mukawa T, Toyoda H, Wu LJ, Zhao MG, Xu H, Shang Y, Endoh K, Iwamoto T, et al: Upregulation of CREB-Mediated Transcription Enhances Both Short- and Long-Term Memory. J Neurosci. 2011, 31 (24): 8786-8802. 10.1523/JNEUROSCI.3257-10.2011.CrossRefPubMed Suzuki A, Fukushima H, Mukawa T, Toyoda H, Wu LJ, Zhao MG, Xu H, Shang Y, Endoh K, Iwamoto T, et al: Upregulation of CREB-Mediated Transcription Enhances Both Short- and Long-Term Memory. J Neurosci. 2011, 31 (24): 8786-8802. 10.1523/JNEUROSCI.3257-10.2011.CrossRefPubMed
48.
Zurück zum Zitat Alexander JC, McDermott CM, Tunur T, Rands V, Stelly C, Karhson D, Bowlby MR, An WF, Sweatt JD, Schrader LA: The role of calsenilin/DREAM/KChIP3 in contextual fear conditioning. Learn Mem. 2009, 16 (3): 167-177. 10.1101/lm.1261709.PubMedCentralCrossRefPubMed Alexander JC, McDermott CM, Tunur T, Rands V, Stelly C, Karhson D, Bowlby MR, An WF, Sweatt JD, Schrader LA: The role of calsenilin/DREAM/KChIP3 in contextual fear conditioning. Learn Mem. 2009, 16 (3): 167-177. 10.1101/lm.1261709.PubMedCentralCrossRefPubMed
49.
Zurück zum Zitat Gomez-Villafuertes R, Torres B, Barrio J, Savignac M, Gabellini N, Rizzato F, Pintado B, Gutierrez-Adan A, Mellstrom B, Carafoli E, et al: Downstream regulatory element antagonist modulator regulates Ca2+ homeostasis and viability in cerebellar neurons. J Neurosci. 2005, 25 (47): 10822-10830. 10.1523/JNEUROSCI.3912-05.2005.CrossRefPubMed Gomez-Villafuertes R, Torres B, Barrio J, Savignac M, Gabellini N, Rizzato F, Pintado B, Gutierrez-Adan A, Mellstrom B, Carafoli E, et al: Downstream regulatory element antagonist modulator regulates Ca2+ homeostasis and viability in cerebellar neurons. J Neurosci. 2005, 25 (47): 10822-10830. 10.1523/JNEUROSCI.3912-05.2005.CrossRefPubMed
50.
Zurück zum Zitat Wu LJ, Mellstrom B, Wang H, Ren M, Domingo S, Kim SS, Li XY, Chen T, Naranjo JR, Zhuo M: DREAM (downstream regulatory element antagonist modulator) contributes to synaptic depression and contextual fear memory. Mol Brain. 2010, 3: 3-10.1186/1756-6606-3-3.PubMedCentralCrossRefPubMed Wu LJ, Mellstrom B, Wang H, Ren M, Domingo S, Kim SS, Li XY, Chen T, Naranjo JR, Zhuo M: DREAM (downstream regulatory element antagonist modulator) contributes to synaptic depression and contextual fear memory. Mol Brain. 2010, 3: 3-10.1186/1756-6606-3-3.PubMedCentralCrossRefPubMed
51.
Zurück zum Zitat Shaywitz AJ, Greenberg ME: CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem. 1999, 68: 821-861. 10.1146/annurev.biochem.68.1.821.CrossRefPubMed Shaywitz AJ, Greenberg ME: CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem. 1999, 68: 821-861. 10.1146/annurev.biochem.68.1.821.CrossRefPubMed
52.
53.
Zurück zum Zitat Hwu WL, Wang TR, Lee YM: FMR1 enhancer is regulated by cAMP through a cAMP-responsive element. DNA Cell Biol. 1997, 16 (4): 449-453. 10.1089/dna.1997.16.449.CrossRefPubMed Hwu WL, Wang TR, Lee YM: FMR1 enhancer is regulated by cAMP through a cAMP-responsive element. DNA Cell Biol. 1997, 16 (4): 449-453. 10.1089/dna.1997.16.449.CrossRefPubMed
54.
Zurück zum Zitat Smith KT, Nicholls RD, Reines D: The gene encoding the fragile X RNA-binding protein is controlled by nuclear respiratory factor 2 and the CREB family of transcription factors. Nucleic Acids Res. 2006, 34 (4): 1205-1215. 10.1093/nar/gkj521.PubMedCentralCrossRefPubMed Smith KT, Nicholls RD, Reines D: The gene encoding the fragile X RNA-binding protein is controlled by nuclear respiratory factor 2 and the CREB family of transcription factors. Nucleic Acids Res. 2006, 34 (4): 1205-1215. 10.1093/nar/gkj521.PubMedCentralCrossRefPubMed
55.
Zurück zum Zitat Benito E, Barco A: CREB’s control of intrinsic and synaptic plasticity: implications for CREB-dependent memory models. Trends Neurosci. 2010, 33 (5): 230-240. 10.1016/j.tins.2010.02.001.CrossRefPubMed Benito E, Barco A: CREB’s control of intrinsic and synaptic plasticity: implications for CREB-dependent memory models. Trends Neurosci. 2010, 33 (5): 230-240. 10.1016/j.tins.2010.02.001.CrossRefPubMed
56.
Zurück zum Zitat Ledo F, Kremer L, Mellstrom B, Naranjo JR: Ca2 + −dependent block of CREB-CBP transcription by repressor DREAM. Embo J. 2002, 21 (17): 4583-4592. 10.1093/emboj/cdf440.PubMedCentralCrossRefPubMed Ledo F, Kremer L, Mellstrom B, Naranjo JR: Ca2 + −dependent block of CREB-CBP transcription by repressor DREAM. Embo J. 2002, 21 (17): 4583-4592. 10.1093/emboj/cdf440.PubMedCentralCrossRefPubMed
57.
Zurück zum Zitat Wang H, Kim SS, Zhuo M: Roles of fragile X mental retardation protein in dopaminergic stimulation-induced synapse-associated protein synthesis and subsequent alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-4-propionate (AMPA) receptor internalization. J Biol Chem. 2010, 285 (28): 21888-21901. 10.1074/jbc.M110.116293.PubMedCentralCrossRefPubMed Wang H, Kim SS, Zhuo M: Roles of fragile X mental retardation protein in dopaminergic stimulation-induced synapse-associated protein synthesis and subsequent alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-4-propionate (AMPA) receptor internalization. J Biol Chem. 2010, 285 (28): 21888-21901. 10.1074/jbc.M110.116293.PubMedCentralCrossRefPubMed
58.
Zurück zum Zitat Rivera-Arconada I, Benedet T, Roza C, Torres B, Barrio J, Krzyzanowska A, Avendano C, Mellstrom B, Lopez-Garcia JA, Naranjo JR: DREAM regulates BDNF-dependent spinal sensitization. Mol Pain. 2010, 6: 95-10.1186/1744-8069-6-95.PubMedCentralCrossRefPubMed Rivera-Arconada I, Benedet T, Roza C, Torres B, Barrio J, Krzyzanowska A, Avendano C, Mellstrom B, Lopez-Garcia JA, Naranjo JR: DREAM regulates BDNF-dependent spinal sensitization. Mol Pain. 2010, 6: 95-10.1186/1744-8069-6-95.PubMedCentralCrossRefPubMed
59.
Zurück zum Zitat Savignac M, Pintado B, Gutierrez-Adan A, Palczewska M, Mellstrom B, Naranjo JR: Transcriptional repressor DREAM regulates T-lymphocyte proliferation and cytokine gene expression. Embo J. 2005, 24 (20): 3555-3564. 10.1038/sj.emboj.7600810.PubMedCentralCrossRefPubMed Savignac M, Pintado B, Gutierrez-Adan A, Palczewska M, Mellstrom B, Naranjo JR: Transcriptional repressor DREAM regulates T-lymphocyte proliferation and cytokine gene expression. Embo J. 2005, 24 (20): 3555-3564. 10.1038/sj.emboj.7600810.PubMedCentralCrossRefPubMed
Metadaten
Titel
Roles of CREB in the regulation of FMRP by group I metabotropic glutamate receptors in cingulate cortex
verfasst von
Hansen Wang
Yoshikazu Morishita
Daiki Miura
Jose R Naranjo
Satoshi Kida
Min Zhuo
Publikationsdatum
01.12.2012
Verlag
BioMed Central
Erschienen in
Molecular Brain / Ausgabe 1/2012
Elektronische ISSN: 1756-6606
DOI
https://doi.org/10.1186/1756-6606-5-27

Weitere Artikel der Ausgabe 1/2012

Molecular Brain 1/2012 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.