Skip to main content
Erschienen in: Pediatric Nephrology 6/2017

12.05.2016 | Review

Roles of renal ammonia metabolism other than in acid–base homeostasis

verfasst von: I. David Weiner

Erschienen in: Pediatric Nephrology | Ausgabe 6/2017

Einloggen, um Zugang zu erhalten

Abstract

The importance of renal ammonia metabolism in acid–base homeostasis is well known. However, the effects of renal ammonia metabolism other than in acid–base homeostasis are not as widely recognized. First, ammonia differs from almost all other solutes in the urine in that it does not result from arterial delivery. Instead, ammonia is produced by the kidney, and only a portion of the ammonia produced is excreted in the urine, with the remainder returned to the systemic circulation through the renal veins. In normal individuals, systemic ammonia addition is metabolized efficiently by the liver, but in patients with either acute or chronic liver disease, conditions that increase the addition of ammonia of renal origin to the systemic circulation can result in precipitation and/or worsening of hyperammonemia. Second, ammonia appears to serve as an intrarenal paracrine signaling molecule. Hypokalemia increases proximal tubule ammonia production and secretion as well as reabsorption in the thick ascending limb of the loop of Henle, thereby increasing delivery to the renal interstitium and the collecting duct. In the collecting duct, ammonia decreases potassium secretion and stimulates potassium reabsorption, thereby decreasing urinary potassium excretion and enabling feedback correction of the initiating hypokalemia. Finally, the stimulation of renal ammonia metabolism by hypokalemia may contribute to the development of metabolic alkalosis, which in turn can stimulate NaCl reabsorption and contribute to the intravascular volume expansion, increased blood pressure and diuretic resistance that can develop with hypokalemia. The evidence supporting these novel non-acid–base roles of renal ammonia metabolism is discussed in this review.
Fußnoten
1
Ammonia can exist in two molecular forms, NH3 (free ammonia) and NH4 + (ammonium cation). Throughout this review, “ammonia” refers to the combination of both molecules; “NH3” refers specifically to the molecular form of NH3; “NH4 +” refers specifically to the molecular form NH4 +.
 
Literatur
1.
2.
Zurück zum Zitat Mitch WE (2006) Metabolic and clinical consequences of metabolic acidosis. J Nephrol 19:S70–S75PubMed Mitch WE (2006) Metabolic and clinical consequences of metabolic acidosis. J Nephrol 19:S70–S75PubMed
3.
Zurück zum Zitat Weiner ID, Verlander JW (2015) Renal acidification mechanisms. In: Tall MW, Chertow GM, Marsden PA, Skorecki K, Yu AS, Brenner BM (eds) Brenner and Rector’s the kidney, 10th edn. W.B. Saunders Press, New York, pp 234–257 Weiner ID, Verlander JW (2015) Renal acidification mechanisms. In: Tall MW, Chertow GM, Marsden PA, Skorecki K, Yu AS, Brenner BM (eds) Brenner and Rector’s the kidney, 10th edn. W.B. Saunders Press, New York, pp 234–257
5.
Zurück zum Zitat Weiner ID, Mitch WE, Sands JM (2014) Urea and ammonia metabolism and the control of renal nitrogen excretion. Clin J Am Soc Nephrol 10:1444–1458CrossRefPubMedPubMedCentral Weiner ID, Mitch WE, Sands JM (2014) Urea and ammonia metabolism and the control of renal nitrogen excretion. Clin J Am Soc Nephrol 10:1444–1458CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Halperin ML, Dhadli SC, Kamel KS (2006) Physiology of acid–base balance: links with kidney stone prevention. Semin Nephrol 26:441–446CrossRefPubMed Halperin ML, Dhadli SC, Kamel KS (2006) Physiology of acid–base balance: links with kidney stone prevention. Semin Nephrol 26:441–446CrossRefPubMed
8.
Zurück zum Zitat Unwin RJ, Capasso G, Shirley DG (2004) An overview of divalent cation and citrate handling by the kidney. Nephron Physiol 98:15–20CrossRef Unwin RJ, Capasso G, Shirley DG (2004) An overview of divalent cation and citrate handling by the kidney. Nephron Physiol 98:15–20CrossRef
9.
Zurück zum Zitat Eriksson LS, Broberg S, Bjorkman O, Wahren J (1985) Ammonia metabolism during exercise in man. Clin Physiol 5:325–336CrossRefPubMed Eriksson LS, Broberg S, Bjorkman O, Wahren J (1985) Ammonia metabolism during exercise in man. Clin Physiol 5:325–336CrossRefPubMed
10.
Zurück zum Zitat Elkinton JR, Huth EJ, Webster GD Jr, McCance RA (1960) The renal excretion of hydrogen ion in renal tubular acidosis. Am J Med 36:554–575CrossRef Elkinton JR, Huth EJ, Webster GD Jr, McCance RA (1960) The renal excretion of hydrogen ion in renal tubular acidosis. Am J Med 36:554–575CrossRef
11.
Zurück zum Zitat Curthoys NP, Moe OW (2014) Proximal tubule function and response to acidosis. Clin J Am Soc Nephrol 9:1627–1638CrossRefPubMed Curthoys NP, Moe OW (2014) Proximal tubule function and response to acidosis. Clin J Am Soc Nephrol 9:1627–1638CrossRefPubMed
12.
Zurück zum Zitat Wright PA, Knepper MA (1990) Phosphate-dependent glutaminase activity in rat renal cortical and medullary tubule segments. Am J Physiol 259:F961–F970PubMed Wright PA, Knepper MA (1990) Phosphate-dependent glutaminase activity in rat renal cortical and medullary tubule segments. Am J Physiol 259:F961–F970PubMed
13.
Zurück zum Zitat Wright PA, Knepper MA (1990) Glutamate dehydrogenase activities in microdissected rat nephron segments: effects of acid–base loading. Am J Physiol 259:F53–F59PubMed Wright PA, Knepper MA (1990) Glutamate dehydrogenase activities in microdissected rat nephron segments: effects of acid–base loading. Am J Physiol 259:F53–F59PubMed
14.
Zurück zum Zitat Nagami GT (2004) Ammonia production and secretion by S3 proximal tubule segments from acidotic mice: role of ANG II. Am J Physiol Renal Physiol 287:F707–F712CrossRefPubMed Nagami GT (2004) Ammonia production and secretion by S3 proximal tubule segments from acidotic mice: role of ANG II. Am J Physiol Renal Physiol 287:F707–F712CrossRefPubMed
15.
Zurück zum Zitat Nagami GT, Sonu CM, Kurokawa K (1986) Ammonia production by isolated mouse proximal tubules perfused in vitro: effect of metabolic acidosis. J Clin Invest 78:124–129CrossRefPubMedPubMedCentral Nagami GT, Sonu CM, Kurokawa K (1986) Ammonia production by isolated mouse proximal tubules perfused in vitro: effect of metabolic acidosis. J Clin Invest 78:124–129CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Nagami GT (2008) Role of angiotensin II in the enhancement of ammonia production and secretion by the proximal tubule in metabolic acidosis. Am J Physiol Renal Physiol 294:F874–F880CrossRefPubMed Nagami GT (2008) Role of angiotensin II in the enhancement of ammonia production and secretion by the proximal tubule in metabolic acidosis. Am J Physiol Renal Physiol 294:F874–F880CrossRefPubMed
18.
Zurück zum Zitat Weiner ID, Verlander JW (2011) Role of NH3 and NH4+ transporters in renal acid–base transport. Am J Physiol Renal Physiol 300:F11–F23CrossRefPubMed Weiner ID, Verlander JW (2011) Role of NH3 and NH4+ transporters in renal acid–base transport. Am J Physiol Renal Physiol 300:F11–F23CrossRefPubMed
19.
Zurück zum Zitat Owen EE, Tyor MP, Flanagan JF, Berry JN (1960) The kidney as a source of blood ammonia in patients with liver disease: the effect of acetazolamide. J Clin Invest 39:288–294CrossRefPubMedPubMedCentral Owen EE, Tyor MP, Flanagan JF, Berry JN (1960) The kidney as a source of blood ammonia in patients with liver disease: the effect of acetazolamide. J Clin Invest 39:288–294CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Haussinger D, Lamers WH, Moorman AF (1992) Hepatocyte heterogeneity in the metabolism of amino acids and ammonia. Enzyme 46:72–93PubMed Haussinger D, Lamers WH, Moorman AF (1992) Hepatocyte heterogeneity in the metabolism of amino acids and ammonia. Enzyme 46:72–93PubMed
21.
Zurück zum Zitat Haussinger D (1989) Glutamine metabolism in the liver: overview and current concepts. Metabolism 38:14–17CrossRefPubMed Haussinger D (1989) Glutamine metabolism in the liver: overview and current concepts. Metabolism 38:14–17CrossRefPubMed
22.
Zurück zum Zitat Kaiser S, Gerok W, Haussinger D (1988) Ammonia and glutamine metabolism in human liver slices: new aspects on the pathogenesis of hyperammonaemia in chronic liver disease. Eur J Clin Invest 18:535–542CrossRefPubMed Kaiser S, Gerok W, Haussinger D (1988) Ammonia and glutamine metabolism in human liver slices: new aspects on the pathogenesis of hyperammonaemia in chronic liver disease. Eur J Clin Invest 18:535–542CrossRefPubMed
23.
Zurück zum Zitat Haussinger D (1987) Structural-functional organization of hepatic glutamine and ammonium metabolism. Biochem Soc Trans 15:369–372CrossRefPubMed Haussinger D (1987) Structural-functional organization of hepatic glutamine and ammonium metabolism. Biochem Soc Trans 15:369–372CrossRefPubMed
24.
Zurück zum Zitat Haussinger D (1986) Regulation of hepatic ammonia metabolism: the intercellular glutamine cycle. Adv Enzyme Regul 25:159–180CrossRefPubMed Haussinger D (1986) Regulation of hepatic ammonia metabolism: the intercellular glutamine cycle. Adv Enzyme Regul 25:159–180CrossRefPubMed
25.
Zurück zum Zitat Verlander JW, Chu D, Lee HW, Handlogten ME, Weiner ID (2013) Expression of glutamine synthetase in the mouse kidney: localization in multiple epithelial cell types and differential regulation by hypokalemia. Am J Physiol Renal Physiol 305:F701–F713CrossRefPubMedPubMedCentral Verlander JW, Chu D, Lee HW, Handlogten ME, Weiner ID (2013) Expression of glutamine synthetase in the mouse kidney: localization in multiple epithelial cell types and differential regulation by hypokalemia. Am J Physiol Renal Physiol 305:F701–F713CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Koen H, Okuda K, Musha H, Tateno Y, Fukuda N, Matsumoto T, Shisido F, Rikitake T, Iinuma T, Kurisu A, Arimizu N (1980) A dynamic study of rectally absorbed ammonia in liver cirrhosis using ammonia and a positron camera. Dig Dis Sci 25:842–848CrossRefPubMed Koen H, Okuda K, Musha H, Tateno Y, Fukuda N, Matsumoto T, Shisido F, Rikitake T, Iinuma T, Kurisu A, Arimizu N (1980) A dynamic study of rectally absorbed ammonia in liver cirrhosis using ammonia and a positron camera. Dig Dis Sci 25:842–848CrossRefPubMed
27.
Zurück zum Zitat Cooper AJ (1990) Ammonia metabolism in normal and portacaval-shunted rats. Adv Exp Med Biol 272:23–46CrossRefPubMed Cooper AJ (1990) Ammonia metabolism in normal and portacaval-shunted rats. Adv Exp Med Biol 272:23–46CrossRefPubMed
28.
Zurück zum Zitat Conn HO (1972) Studies of the source and significance of blood ammonia. IV. Early ammonia peaks after ingestion of ammonium salts. Yale J Biol Med 45:543–549PubMedPubMedCentral Conn HO (1972) Studies of the source and significance of blood ammonia. IV. Early ammonia peaks after ingestion of ammonium salts. Yale J Biol Med 45:543–549PubMedPubMedCentral
29.
Zurück zum Zitat Gumz ML, Rabinowitz L, Wingo CS (2015) An Integrated view of potassium homeostasis. N Engl J Med 373:60–72CrossRefPubMed Gumz ML, Rabinowitz L, Wingo CS (2015) An Integrated view of potassium homeostasis. N Engl J Med 373:60–72CrossRefPubMed
30.
Zurück zum Zitat Unwin RJ, Luft FC, Shirley DG (2011) Pathophysiology and management of hypokalemia: a clinical perspective. Nat Rev Nephrol 7:75–84CrossRefPubMed Unwin RJ, Luft FC, Shirley DG (2011) Pathophysiology and management of hypokalemia: a clinical perspective. Nat Rev Nephrol 7:75–84CrossRefPubMed
31.
Zurück zum Zitat Weiner ID, Wingo CS (1997) Hypokalemia—consequences, causes and correction. J Am Soc Nephrol 8:1179–1188PubMed Weiner ID, Wingo CS (1997) Hypokalemia—consequences, causes and correction. J Am Soc Nephrol 8:1179–1188PubMed
32.
Zurück zum Zitat Gabuzda GJ, Hall II (1966) Relation of potassium depletion to renal ammonium metabolism and hepatic coma. Medicine (Baltimore) 45:481–489CrossRef Gabuzda GJ, Hall II (1966) Relation of potassium depletion to renal ammonium metabolism and hepatic coma. Medicine (Baltimore) 45:481–489CrossRef
33.
Zurück zum Zitat Shear L, Gabuzda GJ (1970) Potassium deficiency and endogenous ammonium overload from kidney. Am J Clin Nutr 23:614–618PubMed Shear L, Gabuzda GJ (1970) Potassium deficiency and endogenous ammonium overload from kidney. Am J Clin Nutr 23:614–618PubMed
34.
Zurück zum Zitat Baertl JM, Sancetta SM, Gabuzda GJ (1963) Relation of acute potassium depletion to renal ammonium metabolism in patients with cirrhosis. J Clin Invest 42:696–706CrossRefPubMedPubMedCentral Baertl JM, Sancetta SM, Gabuzda GJ (1963) Relation of acute potassium depletion to renal ammonium metabolism in patients with cirrhosis. J Clin Invest 42:696–706CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Han KH, Lee HW, Handlogten ME, Bishop JM, Levi M, Kim J, Verlander JW, Weiner ID (2011) Effect of hypokalemia on renal expression of the ammonia transporter family members, Rh B glycoprotein and Rh C glycoprotein, in the rat kidney. Am J Physiol Renal Physiol 301:F823–F832CrossRefPubMedPubMedCentral Han KH, Lee HW, Handlogten ME, Bishop JM, Levi M, Kim J, Verlander JW, Weiner ID (2011) Effect of hypokalemia on renal expression of the ammonia transporter family members, Rh B glycoprotein and Rh C glycoprotein, in the rat kidney. Am J Physiol Renal Physiol 301:F823–F832CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Busque SM, Wagner CA (2009) Potassium restriction, high protein intake, and metabolic acidosis increase expression of the glutamine transporter SNAT3 (Slc38a3) in mouse kidney. Am J Physiol Renal Physiol 297:F440–F450CrossRefPubMed Busque SM, Wagner CA (2009) Potassium restriction, high protein intake, and metabolic acidosis increase expression of the glutamine transporter SNAT3 (Slc38a3) in mouse kidney. Am J Physiol Renal Physiol 297:F440–F450CrossRefPubMed
37.
Zurück zum Zitat Hossain SA, Chaudhry FA, Zahedi K, Siddiqui F, Amlal H (2011) Cellular and molecular basis of increased ammoniagenesis in potassium deprivation. Am J Physiol Renal Physiol 301:F969–F978CrossRefPubMed Hossain SA, Chaudhry FA, Zahedi K, Siddiqui F, Amlal H (2011) Cellular and molecular basis of increased ammoniagenesis in potassium deprivation. Am J Physiol Renal Physiol 301:F969–F978CrossRefPubMed
38.
Zurück zum Zitat Nagami GT (1990) Effect of bath and luminal potassium concentration on ammonia production and secretion by mouse proximal tubules perfused in vitro. J Clin Invest 86:32–39CrossRefPubMedPubMedCentral Nagami GT (1990) Effect of bath and luminal potassium concentration on ammonia production and secretion by mouse proximal tubules perfused in vitro. J Clin Invest 86:32–39CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Adam WR, Koretsky AP, Weiner MW (1986) 31P-NMR in vivo measurement of renal intracellular pH: effects of acidosis and K+ depletion in rats. Am J Physiol 251:F904–F910PubMed Adam WR, Koretsky AP, Weiner MW (1986) 31P-NMR in vivo measurement of renal intracellular pH: effects of acidosis and K+ depletion in rats. Am J Physiol 251:F904–F910PubMed
40.
Zurück zum Zitat Jones B, Simpson DP (1983) Influence of alterations in acid–base conditions on intracellular pH of intact renal cortex. Ren Physiol 6:28–35PubMed Jones B, Simpson DP (1983) Influence of alterations in acid–base conditions on intracellular pH of intact renal cortex. Ren Physiol 6:28–35PubMed
41.
Zurück zum Zitat Schoolwerth AC, Culpepper RM (1990) Measurement of intracellular pH in suspensions of renal tubules from potassium-depleted rats. Miner Electrolyte Metab 16:191–196PubMed Schoolwerth AC, Culpepper RM (1990) Measurement of intracellular pH in suspensions of renal tubules from potassium-depleted rats. Miner Electrolyte Metab 16:191–196PubMed
42.
Zurück zum Zitat Olde Damink SW, Jalan R, Deutz NE, Redhead DN, Dejong CH, Hynd P, Jalan RA, Hayes PC, Soeters PB (2003) The kidney plays a major role in the hyperammonemia seen after simulated or actual GI bleeding in patients with cirrhosis. Hepatology 37:1277–1285CrossRefPubMed Olde Damink SW, Jalan R, Deutz NE, Redhead DN, Dejong CH, Hynd P, Jalan RA, Hayes PC, Soeters PB (2003) The kidney plays a major role in the hyperammonemia seen after simulated or actual GI bleeding in patients with cirrhosis. Hepatology 37:1277–1285CrossRefPubMed
43.
Zurück zum Zitat Bounoure L, Ruffoni D, Muller R, Kuhn GA, Bourgeois S, Devuyst O, Wagner CA (2014) The role of the renal ammonia transporter Rhcg in metabolic responses to dietary protein. J Am Soc Nephrol 25:2040–2052CrossRefPubMedPubMedCentral Bounoure L, Ruffoni D, Muller R, Kuhn GA, Bourgeois S, Devuyst O, Wagner CA (2014) The role of the renal ammonia transporter Rhcg in metabolic responses to dietary protein. J Am Soc Nephrol 25:2040–2052CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Brosnan JT, McPhee P, Hall B, Parry DM (1978) Renal glutamine metabolism in rats fed high-protein diets. Am J Physiol 235:E261–E265PubMed Brosnan JT, McPhee P, Hall B, Parry DM (1978) Renal glutamine metabolism in rats fed high-protein diets. Am J Physiol 235:E261–E265PubMed
45.
Zurück zum Zitat Lee HW, Osis G, Handlogten ME, Guo H, Verlander JW, Weiner ID (2015) Effect of dietary protein restriction on renal ammonia metabolism. Am J Physiol Renal Physiol 308:F1463–F1473CrossRefPubMedPubMedCentral Lee HW, Osis G, Handlogten ME, Guo H, Verlander JW, Weiner ID (2015) Effect of dietary protein restriction on renal ammonia metabolism. Am J Physiol Renal Physiol 308:F1463–F1473CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Inoue K, Takahashi T, Yamamoto Y, Suzuki E, Takahashi Y, Imai K, Inoue Y, Hirai K, Tsuji D, Itoh K (2015) Influence of glutamine synthetase gene polymorphisms on the development of hyperammonemia during valproic acid–based therapy. Seizure 33:76–80CrossRefPubMed Inoue K, Takahashi T, Yamamoto Y, Suzuki E, Takahashi Y, Imai K, Inoue Y, Hirai K, Tsuji D, Itoh K (2015) Influence of glutamine synthetase gene polymorphisms on the development of hyperammonemia during valproic acid–based therapy. Seizure 33:76–80CrossRefPubMed
47.
Zurück zum Zitat Elhamri M, Ferrier B, Martin M, Baverel G (1993) Effect of valproate, sodium 2-propyl-4-pentenoate and sodium 2-propyl-2-pentenoate on renal substrate uptake and ammoniagenesis in the rat. J Pharmacol Exp Ther 266:89–96PubMed Elhamri M, Ferrier B, Martin M, Baverel G (1993) Effect of valproate, sodium 2-propyl-4-pentenoate and sodium 2-propyl-2-pentenoate on renal substrate uptake and ammoniagenesis in the rat. J Pharmacol Exp Ther 266:89–96PubMed
48.
Zurück zum Zitat Martin G, Durozard D, Besson J, Baverel G (1990) Effect of the antiepileptic drug sodium valproate on glutamine and glutamate metabolism in isolated human kidney tubules. Biochim Biophys Acta 1033:261–266CrossRefPubMed Martin G, Durozard D, Besson J, Baverel G (1990) Effect of the antiepileptic drug sodium valproate on glutamine and glutamate metabolism in isolated human kidney tubules. Biochim Biophys Acta 1033:261–266CrossRefPubMed
49.
Zurück zum Zitat Doval M, Culebras M, Lopez-Farre A, Rengel M, Gougoux A, Vinay P, Lopez-Novoa JM (1989) Effect of valproate on lactate and glutamine metabolism by rat renal cortical tubules. Proc Soc Exp Biol Med 190:357–364CrossRefPubMed Doval M, Culebras M, Lopez-Farre A, Rengel M, Gougoux A, Vinay P, Lopez-Novoa JM (1989) Effect of valproate on lactate and glutamine metabolism by rat renal cortical tubules. Proc Soc Exp Biol Med 190:357–364CrossRefPubMed
50.
Zurück zum Zitat Marini AM, Zaret BS, Beckner RR (1988) Hepatic and renal contributions to valproic acid-induced hyperammonemia. Neurology 38:365–371CrossRefPubMed Marini AM, Zaret BS, Beckner RR (1988) Hepatic and renal contributions to valproic acid-induced hyperammonemia. Neurology 38:365–371CrossRefPubMed
51.
Zurück zum Zitat Rengel M, Doval M, Culebras M, Gougoux A, Vinay P, Lopez-Novoa JM (1988) Ammoniagenesis and valproic acid in the rat in vivo: role of the kidney. Contrib Nephrol 63:132–135CrossRefPubMed Rengel M, Doval M, Culebras M, Gougoux A, Vinay P, Lopez-Novoa JM (1988) Ammoniagenesis and valproic acid in the rat in vivo: role of the kidney. Contrib Nephrol 63:132–135CrossRefPubMed
52.
Zurück zum Zitat Imler M, Chabrier G, Marescaux C, Warter JM (1986) Effects of 2,4-dinitrophenol on renal ammoniagenesis in the rat. Eur J Pharmacol 123:175–179CrossRefPubMed Imler M, Chabrier G, Marescaux C, Warter JM (1986) Effects of 2,4-dinitrophenol on renal ammoniagenesis in the rat. Eur J Pharmacol 123:175–179CrossRefPubMed
53.
Zurück zum Zitat Warter JM, Brandt C, Marescaux C, Rumbach L, Micheletti G, Chabrier G, Krieger J, Imler M (1983) The renal origin of sodium valproate-induced hyperammonemia in fasting humans. Neurology 33:1136–1140CrossRefPubMed Warter JM, Brandt C, Marescaux C, Rumbach L, Micheletti G, Chabrier G, Krieger J, Imler M (1983) The renal origin of sodium valproate-induced hyperammonemia in fasting humans. Neurology 33:1136–1140CrossRefPubMed
54.
Zurück zum Zitat Warter JM, Marescaux C, Brandt C, Rumbach L, Micheletti G, Chabrier G, Imler M, Kurtz D (1983) Sodium valproate associated with phenobarbital: effects on ammonia metabolism in humans. Epilepsia 24:628–633CrossRefPubMed Warter JM, Marescaux C, Brandt C, Rumbach L, Micheletti G, Chabrier G, Imler M, Kurtz D (1983) Sodium valproate associated with phenobarbital: effects on ammonia metabolism in humans. Epilepsia 24:628–633CrossRefPubMed
55.
Zurück zum Zitat Warter JM, Imler M, Marescaux C, Chabrier G, Rumbach L, Micheletti G, Krieger J (1983) Sodium valproate-induced hyperammonemia in the rat: Role of the kidney. Eur J Pharmacol 87:177–182CrossRefPubMed Warter JM, Imler M, Marescaux C, Chabrier G, Rumbach L, Micheletti G, Krieger J (1983) Sodium valproate-induced hyperammonemia in the rat: Role of the kidney. Eur J Pharmacol 87:177–182CrossRefPubMed
56.
Zurück zum Zitat Tannen RL (1977) Relationship of renal ammonia production and potassium homeostasis. Kidney Int 11:453–465CrossRefPubMed Tannen RL (1977) Relationship of renal ammonia production and potassium homeostasis. Kidney Int 11:453–465CrossRefPubMed
58.
Zurück zum Zitat Tannen RL, Terrien T (1975) Potassium-sparing effect of enhanced renal ammonia production. Am J Physiol 228:699–705PubMed Tannen RL, Terrien T (1975) Potassium-sparing effect of enhanced renal ammonia production. Am J Physiol 228:699–705PubMed
59.
Zurück zum Zitat Jaeger P, Karlmark B, Giebisch G (1983) Ammonium transport in rat cortical tubule: relationship to potassium metabolism. Am J Physiol 245:F593–F600PubMed Jaeger P, Karlmark B, Giebisch G (1983) Ammonium transport in rat cortical tubule: relationship to potassium metabolism. Am J Physiol 245:F593–F600PubMed
60.
Zurück zum Zitat Hamm LL, Gillespie C, Klahr S (1985) NH4Cl inhibition of transport in the rabbit cortical collecting tubule. Am J Physiol 248:F631–F637PubMed Hamm LL, Gillespie C, Klahr S (1985) NH4Cl inhibition of transport in the rabbit cortical collecting tubule. Am J Physiol 248:F631–F637PubMed
61.
Zurück zum Zitat Wang WH, Giebisch G (2009) Regulation of potassium (K) handling in the renal collecting duct. Pflugers Arch 458:157–168CrossRefPubMed Wang WH, Giebisch G (2009) Regulation of potassium (K) handling in the renal collecting duct. Pflugers Arch 458:157–168CrossRefPubMed
62.
Zurück zum Zitat Muto S (2001) Potassium transport in the mammalian collecting duct. Physiol Rev 81:85–116PubMed Muto S (2001) Potassium transport in the mammalian collecting duct. Physiol Rev 81:85–116PubMed
63.
Zurück zum Zitat Frank AE, Wingo CS, Weiner ID (2000) Effects of ammonia on bicarbonate transport in the cortical collecting duct. Am J Physiol Renal Physiol 278:F219–F226PubMed Frank AE, Wingo CS, Weiner ID (2000) Effects of ammonia on bicarbonate transport in the cortical collecting duct. Am J Physiol Renal Physiol 278:F219–F226PubMed
64.
Zurück zum Zitat Chalfant ML, Denton JS, Berdiev BK, Ismailov II, Benos DJ, Stanton BA (1999) Intracellular H+ regulates the alpha-subunit of ENaC, the epithelial Na+ channel. Am J Physiol 276:C477–C486PubMed Chalfant ML, Denton JS, Berdiev BK, Ismailov II, Benos DJ, Stanton BA (1999) Intracellular H+ regulates the alpha-subunit of ENaC, the epithelial Na+ channel. Am J Physiol 276:C477–C486PubMed
65.
Zurück zum Zitat Konstas AA, Mavrelos D, Korbmacher C (2000) Conservation of pH sensitivity in the epithelial sodium channel (ENaC) with Liddle’s syndrome mutation. Pflugers Arch 441:341–350CrossRefPubMed Konstas AA, Mavrelos D, Korbmacher C (2000) Conservation of pH sensitivity in the epithelial sodium channel (ENaC) with Liddle’s syndrome mutation. Pflugers Arch 441:341–350CrossRefPubMed
66.
Zurück zum Zitat Nakhoul NL, Hering-Smith KS, Abdulnour-Nakhoul SM, Hamm LL (2001) Ammonium interaction with the epithelial sodium channel. Am J Physiol Renal Physiol 281:F493–F502PubMed Nakhoul NL, Hering-Smith KS, Abdulnour-Nakhoul SM, Hamm LL (2001) Ammonium interaction with the epithelial sodium channel. Am J Physiol Renal Physiol 281:F493–F502PubMed
67.
Zurück zum Zitat Greenlee MM, Lynch IJ, Gumz ML, Cain BD, Wingo CS (2010) The renal H, K-ATPases. Curr Opin Nephrol Hypertens 19:478–482CrossRefPubMed Greenlee MM, Lynch IJ, Gumz ML, Cain BD, Wingo CS (2010) The renal H, K-ATPases. Curr Opin Nephrol Hypertens 19:478–482CrossRefPubMed
68.
Zurück zum Zitat Weiner ID, Linus S, Wingo CS (2010) Disorders of potassium metabolism. In: Johnson RJ, Fluege J, Feehally J (eds) Comprehensive clinical nephrology, 4th edn. W.B. Saunders, Philadelphia, pp 118–129CrossRef Weiner ID, Linus S, Wingo CS (2010) Disorders of potassium metabolism. In: Johnson RJ, Fluege J, Feehally J (eds) Comprehensive clinical nephrology, 4th edn. W.B. Saunders, Philadelphia, pp 118–129CrossRef
69.
Zurück zum Zitat Frank AE, Wingo CS, Andrews PM, Ageloff S, Knepper MA, Weiner ID (2002) Mechanisms through which ammonia regulates cortical collecting duct net proton secretion. Am J Physiol Renal Physiol 282:F1120–F1128CrossRefPubMed Frank AE, Wingo CS, Andrews PM, Ageloff S, Knepper MA, Weiner ID (2002) Mechanisms through which ammonia regulates cortical collecting duct net proton secretion. Am J Physiol Renal Physiol 282:F1120–F1128CrossRefPubMed
70.
Zurück zum Zitat Good DW (1990) Ammonium transport by the loop of Henle. Miner Electrolyte Metab 16:291–298PubMed Good DW (1990) Ammonium transport by the loop of Henle. Miner Electrolyte Metab 16:291–298PubMed
71.
Zurück zum Zitat Wall SM, Davis BS, Hassell KA, Mehta P, Park SJ (1999) In rat tIMCD, NH4 + uptake by the Na+, K+-ATPase is critical to net acid secretion during chronic hypokalemia. Am J Physiol 277:F866–F874PubMed Wall SM, Davis BS, Hassell KA, Mehta P, Park SJ (1999) In rat tIMCD, NH4 + uptake by the Na+, K+-ATPase is critical to net acid secretion during chronic hypokalemia. Am J Physiol 277:F866–F874PubMed
72.
Zurück zum Zitat Frank AE, Weiner ID (2001) Effects of ammonia on acid–base transport by the B-type intercalated cell. J Am Soc Nephrol 12:1607–1614PubMed Frank AE, Weiner ID (2001) Effects of ammonia on acid–base transport by the B-type intercalated cell. J Am Soc Nephrol 12:1607–1614PubMed
73.
Zurück zum Zitat Barri YM, Wingo CS (1997) The effects of potassium depletion and supplementation on blood pressure: a clinical review. Am J Med Sci 314:37–40PubMed Barri YM, Wingo CS (1997) The effects of potassium depletion and supplementation on blood pressure: a clinical review. Am J Med Sci 314:37–40PubMed
74.
Zurück zum Zitat Krishna GG, Kapoor SC (1991) Potassium depletion exacerbates essential hypertension. Ann Intern Med 115:77–83CrossRefPubMed Krishna GG, Kapoor SC (1991) Potassium depletion exacerbates essential hypertension. Ann Intern Med 115:77–83CrossRefPubMed
75.
Zurück zum Zitat Krishna GG (1990) Effect of potassium intake on blood pressure. J Am Soc Nephrol 1:43–52PubMed Krishna GG (1990) Effect of potassium intake on blood pressure. J Am Soc Nephrol 1:43–52PubMed
76.
Zurück zum Zitat Hernandez RE, Schambelan M, Cogan MG, Colman J, Morris RC, Sebastian A (1987) Dietary NaCl determines severity of potassium depletion-induced metabolic alkalosis. Kidney Int 31:1356–1367CrossRefPubMed Hernandez RE, Schambelan M, Cogan MG, Colman J, Morris RC, Sebastian A (1987) Dietary NaCl determines severity of potassium depletion-induced metabolic alkalosis. Kidney Int 31:1356–1367CrossRefPubMed
77.
Zurück zum Zitat Cremer W, Bock KD (1977) Symptoms and course of chronic hypokalemic nephropathy in man. Clin Nephrol 7:112–119PubMed Cremer W, Bock KD (1977) Symptoms and course of chronic hypokalemic nephropathy in man. Clin Nephrol 7:112–119PubMed
78.
Zurück zum Zitat Loon NR, Wilcox CS (1998) Mild metabolic alkalosis impairs the natriuretic response to bumetanide in normal human subjects. Clin Sci (Lond) 94:287–292CrossRef Loon NR, Wilcox CS (1998) Mild metabolic alkalosis impairs the natriuretic response to bumetanide in normal human subjects. Clin Sci (Lond) 94:287–292CrossRef
79.
Zurück zum Zitat Tokonami N, Morla L, Centeno G, Mordasini D, Ramakrishnan SK, Nikolaeva S, Wagner CA, Bonny O, Houillier P, Doucet A, Firsov D (2013) a-Ketoglutarate regulates acid–base balance through an intrarenal paracrine mechanism. J Clin Invest 123:3166–3171CrossRefPubMedPubMedCentral Tokonami N, Morla L, Centeno G, Mordasini D, Ramakrishnan SK, Nikolaeva S, Wagner CA, Bonny O, Houillier P, Doucet A, Firsov D (2013) a-Ketoglutarate regulates acid–base balance through an intrarenal paracrine mechanism. J Clin Invest 123:3166–3171CrossRefPubMedPubMedCentral
80.
Zurück zum Zitat Martin M, Ferrier B, Baverel G (1989) Transport and utilization of alpha-ketoglutarate by the rat kidney in vivo. Pflugers Arch 413:217–224CrossRefPubMed Martin M, Ferrier B, Baverel G (1989) Transport and utilization of alpha-ketoglutarate by the rat kidney in vivo. Pflugers Arch 413:217–224CrossRefPubMed
81.
Zurück zum Zitat Ferrier B, Martin M, Baverel G (1985) Reabsorption and secretion of alpha-ketoglutarate along the rat nephron: a micropuncture study. Am J Physiol 248:F404–F412PubMed Ferrier B, Martin M, Baverel G (1985) Reabsorption and secretion of alpha-ketoglutarate along the rat nephron: a micropuncture study. Am J Physiol 248:F404–F412PubMed
82.
Zurück zum Zitat Balagura S, Pitts RF (1964) Renal handling of a-ketoglutarate by the dog. Am J Physiol 207:483–494PubMed Balagura S, Pitts RF (1964) Renal handling of a-ketoglutarate by the dog. Am J Physiol 207:483–494PubMed
83.
Zurück zum Zitat Terker AS, Zhang C, Erspamer KJ, Gamba G, Yang CL, Ellison DH (2016) Unique chloride-sensing properties of WNK4 permit the distal nephron to modulate potassium homeostasis. Kidney Int 89:127–134CrossRefPubMedPubMedCentral Terker AS, Zhang C, Erspamer KJ, Gamba G, Yang CL, Ellison DH (2016) Unique chloride-sensing properties of WNK4 permit the distal nephron to modulate potassium homeostasis. Kidney Int 89:127–134CrossRefPubMedPubMedCentral
84.
Zurück zum Zitat Hadchouel J, Ellison DH, Gamba G (2016) Regulation of renal electrolyte transport by WNK and SPAK-OSR1 kinases. Annu Rev Physiol 78:367–389CrossRefPubMed Hadchouel J, Ellison DH, Gamba G (2016) Regulation of renal electrolyte transport by WNK and SPAK-OSR1 kinases. Annu Rev Physiol 78:367–389CrossRefPubMed
85.
Zurück zum Zitat Zhang C, Wang L, Zhang J, Su XT, Lin DH, Scholl UI, Giebisch G, Lifton RP, Wang WH (2014) KCNJ10 determines the expression of the apical Na-Cl cotransporter (NCC) in the early distal convoluted tubule (DCT1). Proc Natl Acad Sci USA 111:11864–11869CrossRefPubMedPubMedCentral Zhang C, Wang L, Zhang J, Su XT, Lin DH, Scholl UI, Giebisch G, Lifton RP, Wang WH (2014) KCNJ10 determines the expression of the apical Na-Cl cotransporter (NCC) in the early distal convoluted tubule (DCT1). Proc Natl Acad Sci USA 111:11864–11869CrossRefPubMedPubMedCentral
87.
Zurück zum Zitat Bazua-Valenti S, Chavez-Canales M, Rojas-Vega L, Gonzalez-Rodriguez X, Vazquez N, Rodriguez-Gama A, Argaiz ER, Melo Z, Plata C, Ellison DH, Garcia-Valdes J, Hadchouel J, Gamba G (2015) The effect of WNK4 on the Na+−Cl- cotransporter is modulated by intracellular chloride. J Am Soc Nephrol 26:1781–1786CrossRefPubMed Bazua-Valenti S, Chavez-Canales M, Rojas-Vega L, Gonzalez-Rodriguez X, Vazquez N, Rodriguez-Gama A, Argaiz ER, Melo Z, Plata C, Ellison DH, Garcia-Valdes J, Hadchouel J, Gamba G (2015) The effect of WNK4 on the Na+−Cl- cotransporter is modulated by intracellular chloride. J Am Soc Nephrol 26:1781–1786CrossRefPubMed
Metadaten
Titel
Roles of renal ammonia metabolism other than in acid–base homeostasis
verfasst von
I. David Weiner
Publikationsdatum
12.05.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Pediatric Nephrology / Ausgabe 6/2017
Print ISSN: 0931-041X
Elektronische ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-016-3401-x

Weitere Artikel der Ausgabe 6/2017

Pediatric Nephrology 6/2017 Zur Ausgabe

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.