Skip to main content
Erschienen in: Neurotherapeutics 2/2016

01.04.2016 | Review

Selective Manipulation of Neural Circuits

verfasst von: Hong Geun Park, Jason B. Carmel

Erschienen in: Neurotherapeutics | Ausgabe 2/2016

Einloggen, um Zugang zu erhalten

Abstract

Unraveling the complex network of neural circuits that form the nervous system demands tools that can manipulate specific circuits. The recent evolution of genetic tools to target neural circuits allows an unprecedented precision in elucidating their function. Here we describe two general approaches for achieving circuit specificity. The first uses the genetic identity of a cell, such as a transcription factor unique to a circuit, to drive expression of a molecule that can manipulate cell function. The second uses the spatial connectivity of a circuit to achieve specificity: one genetic element is introduced at the origin of a circuit and the other at its termination. When the two genetic elements combine within a neuron, they can alter its function. These two general approaches can be combined to allow manipulation of neurons with a specific genetic identity by introducing a regulatory gene into the origin or termination of the circuit. We consider the advantages and disadvantages of both these general approaches with regard to specificity and efficacy of the manipulations. We also review the genetic techniques that allow gain- and loss-of-function within specific neural circuits. These approaches introduce light-sensitive channels (optogenetic) or drug sensitive channels (chemogenetic) into neurons that form specific circuits. We compare these tools with others developed for circuit-specific manipulation and describe the advantages of each. Finally, we discuss how these tools might be applied for identification of the neural circuits that mediate behavior and for repair of neural connections.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Broca P. Remarques Sur le Siége de la Faculté Du Langage Articulé, Suivies D’une Observation D’aphémie (Perte de la Parole). Bull Soc Anat 1861;6:330–357. Broca P. Remarques Sur le Siége de la Faculté Du Langage Articulé, Suivies D’une Observation D’aphémie (Perte de la Parole). Bull Soc Anat 1861;6:330–357.
2.
Zurück zum Zitat Nishitani N, Schürmann M, Amunts K, et al. Broca’s region: from action to language. Physiology (Bethesda) 2005;20:60–69.CrossRef Nishitani N, Schürmann M, Amunts K, et al. Broca’s region: from action to language. Physiology (Bethesda) 2005;20:60–69.CrossRef
3.
Zurück zum Zitat Ochfeld E, Newhart M, Molitoris J, et al. Ischemia in Broca area is associated with Broca aphasia more reliably in acute than in chronic stroke. Stroke 2010;41:325–330.PubMedPubMedCentralCrossRef Ochfeld E, Newhart M, Molitoris J, et al. Ischemia in Broca area is associated with Broca aphasia more reliably in acute than in chronic stroke. Stroke 2010;41:325–330.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Martin JH. The corticospinal system: from development to motor control. Neuroscientist 2005;11:161–173.PubMedCrossRef Martin JH. The corticospinal system: from development to motor control. Neuroscientist 2005;11:161–173.PubMedCrossRef
5.
Zurück zum Zitat Gross CG. The discovery of motor cortex and its background. J Hist Neurosci 2007;16:320–331.PubMedCrossRef Gross CG. The discovery of motor cortex and its background. J Hist Neurosci 2007;16:320–331.PubMedCrossRef
6.
Zurück zum Zitat Snyder PJ, Whitaker HA. Neurologic heuristics and artistic whimsy: the cerebral cartography of Wilder Penfield. J Hist Neurosci 2013;22:277–291.PubMedCrossRef Snyder PJ, Whitaker HA. Neurologic heuristics and artistic whimsy: the cerebral cartography of Wilder Penfield. J Hist Neurosci 2013;22:277–291.PubMedCrossRef
7.
Zurück zum Zitat Lomber SG. The advantages and limitations of permanent or reversible deactivation techniques in the assessment of neural function. J Neurosci Methods 1999;86:109–117.PubMedCrossRef Lomber SG. The advantages and limitations of permanent or reversible deactivation techniques in the assessment of neural function. J Neurosci Methods 1999;86:109–117.PubMedCrossRef
8.
Zurück zum Zitat Carmel JB, Kimura H, Berrol LJ, et al. Motor cortex electrical stimulation promotes axon outgrowth to brain stem and spinal targets that control the forelimb impaired by unilateral corticospinal injury. Eur J Neurosci 2013;37:1090–1102.PubMedPubMedCentralCrossRef Carmel JB, Kimura H, Berrol LJ, et al. Motor cortex electrical stimulation promotes axon outgrowth to brain stem and spinal targets that control the forelimb impaired by unilateral corticospinal injury. Eur J Neurosci 2013;37:1090–1102.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Carmel JB, Kimura H, Martin JH. Electrical stimulation of motor cortex in the uninjured hemisphere after chronic unilateral injury promotes recovery of skilled locomotion through ipsilateral control. J Neurosci 2014;34:462–466.PubMedPubMedCentralCrossRef Carmel JB, Kimura H, Martin JH. Electrical stimulation of motor cortex in the uninjured hemisphere after chronic unilateral injury promotes recovery of skilled locomotion through ipsilateral control. J Neurosci 2014;34:462–466.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Arlotta P, Molyneaux BJ, Chen J, et al. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 2005;45:207–221.PubMedCrossRef Arlotta P, Molyneaux BJ, Chen J, et al. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 2005;45:207–221.PubMedCrossRef
11.
Zurück zum Zitat Molyneaux BJ, Arlotta P, Hirata T, et al. Fezl is required for the birth and specification of corticospinal motor neurons. Neuron 2005;47:817–831.PubMedCrossRef Molyneaux BJ, Arlotta P, Hirata T, et al. Fezl is required for the birth and specification of corticospinal motor neurons. Neuron 2005;47:817–831.PubMedCrossRef
12.
Zurück zum Zitat Fink KL, Strittmatter SM, Cafferty WBJ. Comprehensive corticospinal labeling with mu-crystallin transgene reveals axon regeneration after spinal cord trauma in ngr1– /– mice. J Neurosci 2015;35:15403–15418.PubMedCrossRef Fink KL, Strittmatter SM, Cafferty WBJ. Comprehensive corticospinal labeling with mu-crystallin transgene reveals axon regeneration after spinal cord trauma in ngr1– /– mice. J Neurosci 2015;35:15403–15418.PubMedCrossRef
13.
Zurück zum Zitat Molyneaux BJ, Arlotta P, Menezes JRL, et al. Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 2007;8:427–437.PubMedCrossRef Molyneaux BJ, Arlotta P, Menezes JRL, et al. Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 2007;8:427–437.PubMedCrossRef
14.
Zurück zum Zitat Greig LC, Woodworth MB, Galazo MJ, et al. Molecular logic of neocortical projection neuron specification, development and diversity. Nat Rev Neurosci 2013;14:755–769.PubMedCrossRef Greig LC, Woodworth MB, Galazo MJ, et al. Molecular logic of neocortical projection neuron specification, development and diversity. Nat Rev Neurosci 2013;14:755–769.PubMedCrossRef
15.
Zurück zum Zitat Mayford M, Bach ME, Huang YY, et al. Control of memory formation through regulated expression of a CaMKII transgene. Science 1996;274:1678–1683.PubMedCrossRef Mayford M, Bach ME, Huang YY, et al. Control of memory formation through regulated expression of a CaMKII transgene. Science 1996;274:1678–1683.PubMedCrossRef
16.
Zurück zum Zitat Arenkiel BR, Peca J, Davison IG, et al. In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 2007;54:205–218.PubMedPubMedCentralCrossRef Arenkiel BR, Peca J, Davison IG, et al. In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 2007;54:205–218.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Wang H, Peca J, Matsuzaki M, et al. High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proc Natl Acad Sci U S A 2007;104:8143–8148.PubMedPubMedCentralCrossRef Wang H, Peca J, Matsuzaki M, et al. High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proc Natl Acad Sci U S A 2007;104:8143–8148.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Hägglund M, Borgius L, Dougherty KJ, et al. Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion. Nat Neurosci 2010;13:246–252.PubMedCrossRef Hägglund M, Borgius L, Dougherty KJ, et al. Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion. Nat Neurosci 2010;13:246–252.PubMedCrossRef
19.
Zurück zum Zitat Zhao S, Ting JT, Atallah HE, et al. Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat Methods 2011;8:745–752.PubMedPubMedCentralCrossRef Zhao S, Ting JT, Atallah HE, et al. Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat Methods 2011;8:745–752.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Kolisnyk B, Guzman MS, Raulic S, et al. ChAT-ChR2-EYFP mice have enhanced motor endurance but show deficits in attention and several additional cognitive domains. J Neurosci 2013;33:10427–10438.PubMedCrossRef Kolisnyk B, Guzman MS, Raulic S, et al. ChAT-ChR2-EYFP mice have enhanced motor endurance but show deficits in attention and several additional cognitive domains. J Neurosci 2013;33:10427–10438.PubMedCrossRef
21.
Zurück zum Zitat Farrell MS, Pei Y, Wan Y, et al. A Gαs DREADD mouse for selective modulation of cAMP production in striatopallidal neurons. Neuropsychopharmacology 2013;38:854–862.PubMedPubMedCentralCrossRef Farrell MS, Pei Y, Wan Y, et al. A Gαs DREADD mouse for selective modulation of cAMP production in striatopallidal neurons. Neuropsychopharmacology 2013;38:854–862.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Kullander K, Butt SJB, Lebret JM, et al. Role of EphA4 and EphrinB3 in local neuronal circuits that control walking. Science 2003;299:1889–1892.PubMedCrossRef Kullander K, Butt SJB, Lebret JM, et al. Role of EphA4 and EphrinB3 in local neuronal circuits that control walking. Science 2003;299:1889–1892.PubMedCrossRef
23.
Zurück zum Zitat Fremeau RT, Voglmaier S, Seal RP, et al. VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci 2004;27:98–103.PubMedCrossRef Fremeau RT, Voglmaier S, Seal RP, et al. VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci 2004;27:98–103.PubMedCrossRef
24.
Zurück zum Zitat Wang L, Shen M, Yu Y, et al. Optogenetic activation of GABAergic neurons in the nucleus accumbens decreases the activity of the ventral pallidum and the expression of cocaine-context-associated memory. Int J Neuropsychopharmacol 2014;17:753–763.PubMedCrossRef Wang L, Shen M, Yu Y, et al. Optogenetic activation of GABAergic neurons in the nucleus accumbens decreases the activity of the ventral pallidum and the expression of cocaine-context-associated memory. Int J Neuropsychopharmacol 2014;17:753–763.PubMedCrossRef
25.
Zurück zum Zitat Ren J, Qin C, Hu F, et al. Habenula “cholinergic” neurons corelease glutamate and acetylcholine and activate postsynaptic neurons via distinct transmission modes. Neuron 2011;69:445–452.PubMedCrossRef Ren J, Qin C, Hu F, et al. Habenula “cholinergic” neurons corelease glutamate and acetylcholine and activate postsynaptic neurons via distinct transmission modes. Neuron 2011;69:445–452.PubMedCrossRef
26.
Zurück zum Zitat Ma M, Luo M. Optogenetic activation of basal forebrain cholinergic neurons modulates neuronal excitability and sensory responses in the main olfactory bulb. J Neurosci 2012;32:10105–10116.PubMedCrossRef Ma M, Luo M. Optogenetic activation of basal forebrain cholinergic neurons modulates neuronal excitability and sensory responses in the main olfactory bulb. J Neurosci 2012;32:10105–10116.PubMedCrossRef
27.
Zurück zum Zitat Ito H, Yanase M, Yamashita A, et al. Analysis of sleep disorders under pain using an optogenetic tool: possible involvement of the activation of dorsal raphe nucleus-serotonergic neurons. Mol Brain 2013;6:59.PubMedPubMedCentralCrossRef Ito H, Yanase M, Yamashita A, et al. Analysis of sleep disorders under pain using an optogenetic tool: possible involvement of the activation of dorsal raphe nucleus-serotonergic neurons. Mol Brain 2013;6:59.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Inoue K, Terashima T, Nishikawa T, et al. Fez1 is layer-specifically expressed in the adult mouse neocortex. Eur J Neurosci 2004;20:2909–2916.PubMedCrossRef Inoue K, Terashima T, Nishikawa T, et al. Fez1 is layer-specifically expressed in the adult mouse neocortex. Eur J Neurosci 2004;20:2909–2916.PubMedCrossRef
29.
Zurück zum Zitat Liësi P, Salonen EM, Dahl D, et al. Thy-1 is neuronal and glial surface antigen which interacts with matrix protein and plasminogen activator 9. Exp Brain Res 1990;79:642–650.PubMedCrossRef Liësi P, Salonen EM, Dahl D, et al. Thy-1 is neuronal and glial surface antigen which interacts with matrix protein and plasminogen activator 9. Exp Brain Res 1990;79:642–650.PubMedCrossRef
30.
Zurück zum Zitat Théveniau M, Durbec P, Gennarini G, et al. Expression and release of phosphatidylinositol anchored cell surface molecules by a cell line derived from sensory neurons. J Cell Biochem 1992;48:61–72.PubMedCrossRef Théveniau M, Durbec P, Gennarini G, et al. Expression and release of phosphatidylinositol anchored cell surface molecules by a cell line derived from sensory neurons. J Cell Biochem 1992;48:61–72.PubMedCrossRef
31.
Zurück zum Zitat O’Leary DD, Terashima T. Cortical axons branch to multiple subcortical targets by interstitial axon budding: implications for target recognition and “waiting periods”. Neuron 1988;1:901–910.PubMedCrossRef O’Leary DD, Terashima T. Cortical axons branch to multiple subcortical targets by interstitial axon budding: implications for target recognition and “waiting periods”. Neuron 1988;1:901–910.PubMedCrossRef
32.
Zurück zum Zitat Marra MA, Kucaba TA, Dietrich NL, et al. High throughput fingerprint analysis of large-insert clones. Genome Res 1997;7:1072–1084.PubMedPubMedCentral Marra MA, Kucaba TA, Dietrich NL, et al. High throughput fingerprint analysis of large-insert clones. Genome Res 1997;7:1072–1084.PubMedPubMedCentral
33.
Zurück zum Zitat Chandler KJ, Chandler RL, Broeckelmann EM, et al. Relevance of BAC transgene copy number in mice: Transgene copy number variation across multiple transgenic lines and correlations with transgene integrity and expression. Mamm Genome 2007;18:693–708.PubMedPubMedCentralCrossRef Chandler KJ, Chandler RL, Broeckelmann EM, et al. Relevance of BAC transgene copy number in mice: Transgene copy number variation across multiple transgenic lines and correlations with transgene integrity and expression. Mamm Genome 2007;18:693–708.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Gong S, Yang XW, Li C, et al. Highly efficient modification of bacterial artificial chromosomes (BACs) using novel shuttle vectors containing the R6Kγ origin of replication. Genome Res 2002;12:1992–1998.PubMedPubMedCentralCrossRef Gong S, Yang XW, Li C, et al. Highly efficient modification of bacterial artificial chromosomes (BACs) using novel shuttle vectors containing the R6Kγ origin of replication. Genome Res 2002;12:1992–1998.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Osoegawa K, Tateno M, Woon PY, et al. Bacterial artificial chromosome libraries for mouse sequencing and functional analysis. Genome Res 2000;10:116–128.PubMedPubMedCentral Osoegawa K, Tateno M, Woon PY, et al. Bacterial artificial chromosome libraries for mouse sequencing and functional analysis. Genome Res 2000;10:116–128.PubMedPubMedCentral
36.
Zurück zum Zitat McPherson JD, Marra M, Hillier L, et al. A physical map of the human genome. Nature 2001;409:934–941.PubMedCrossRef McPherson JD, Marra M, Hillier L, et al. A physical map of the human genome. Nature 2001;409:934–941.PubMedCrossRef
37.
Zurück zum Zitat Gong S, Zheng C, Doughty ML, et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 2003;425:917–925.PubMedCrossRef Gong S, Zheng C, Doughty ML, et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 2003;425:917–925.PubMedCrossRef
38.
Zurück zum Zitat Kramer PF, Christensen CH, Hazelwood LA, et al. Dopamine D2 receptor overexpression alters behavior and physiology in Drd2-EGFP mice. J Neurosci 2011;31:126–132.PubMedPubMedCentralCrossRef Kramer PF, Christensen CH, Hazelwood LA, et al. Dopamine D2 receptor overexpression alters behavior and physiology in Drd2-EGFP mice. J Neurosci 2011;31:126–132.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Witten IB, Steinberg EE, Lee SY, et al. Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 2011;72:721–733.PubMedPubMedCentralCrossRef Witten IB, Steinberg EE, Lee SY, et al. Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 2011;72:721–733.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Wright AV, Nuñez JK, Doudna JA. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 2016;164:29–44.PubMedCrossRef Wright AV, Nuñez JK, Doudna JA. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 2016;164:29–44.PubMedCrossRef
41.
Zurück zum Zitat Wahl AS, Omlor W, Rubio JC, et al. Neuronal repair. Asynchronous therapy restores motor control by rewiring of the rat corticospinal tract after stroke. Science 2014;344:1250–1255.PubMedCrossRef Wahl AS, Omlor W, Rubio JC, et al. Neuronal repair. Asynchronous therapy restores motor control by rewiring of the rat corticospinal tract after stroke. Science 2014;344:1250–1255.PubMedCrossRef
42.
Zurück zum Zitat Kinoshita M, Matsui R, Kato S, et al. Genetic dissection of the circuit for hand dexterity in primates. Nature 2012;487:235–238.PubMedCrossRef Kinoshita M, Matsui R, Kato S, et al. Genetic dissection of the circuit for hand dexterity in primates. Nature 2012;487:235–238.PubMedCrossRef
43.
Zurück zum Zitat Sooksawate T, Isa K, Matsui R, et al. Viral vector-mediated selective and reversible blockade of the pathway for visual orienting in mice. Front Neural Circuits 2013;7:162.PubMedPubMedCentralCrossRef Sooksawate T, Isa K, Matsui R, et al. Viral vector-mediated selective and reversible blockade of the pathway for visual orienting in mice. Front Neural Circuits 2013;7:162.PubMedPubMedCentralCrossRef
44.
45.
Zurück zum Zitat Sauer B. Manipulation of transgenes by site-specific recombination: use of Cre recombinase. Methods Enzymol 1993;225:890–900.PubMedCrossRef Sauer B. Manipulation of transgenes by site-specific recombination: use of Cre recombinase. Methods Enzymol 1993;225:890–900.PubMedCrossRef
46.
Zurück zum Zitat Bareyre FM, Kerschensteiner M, Misgeld T, et al. Transgenic labeling of the corticospinal tract for monitoring axonal responses to spinal cord injury. Nat Med 2005;11:1355–1360.PubMedCrossRef Bareyre FM, Kerschensteiner M, Misgeld T, et al. Transgenic labeling of the corticospinal tract for monitoring axonal responses to spinal cord injury. Nat Med 2005;11:1355–1360.PubMedCrossRef
47.
Zurück zum Zitat Schnütgen F, Doerflinger N, Calléja C, et al. A directional strategy for monitoring Cre-mediated recombination at the cellular level in the mouse. Nat Biotechnol 2003;21:562–565.PubMedCrossRef Schnütgen F, Doerflinger N, Calléja C, et al. A directional strategy for monitoring Cre-mediated recombination at the cellular level in the mouse. Nat Biotechnol 2003;21:562–565.PubMedCrossRef
48.
49.
Zurück zum Zitat Atasoy D, Aponte Y, Su HH, et al. A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J Neurosci 2008;28:7025–7030.PubMedPubMedCentralCrossRef Atasoy D, Aponte Y, Su HH, et al. A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J Neurosci 2008;28:7025–7030.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Metzger D, Clifford J, Chiba H, et al. Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc Natl Acad Sci U S A 1995;92:6991–6995.PubMedPubMedCentralCrossRef Metzger D, Clifford J, Chiba H, et al. Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc Natl Acad Sci U S A 1995;92:6991–6995.PubMedPubMedCentralCrossRef
51.
52.
Zurück zum Zitat Feil R, Wagner J, Metzger D, et al. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 1997;237:752–757.PubMedCrossRef Feil R, Wagner J, Metzger D, et al. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 1997;237:752–757.PubMedCrossRef
53.
Zurück zum Zitat Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 1992;89:5547–5551.PubMedPubMedCentralCrossRef Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 1992;89:5547–5551.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Berens C, Hillen W. Gene regulation by tetracyclines. Constraints of resistance regulation in bacteria shape TetR for application in eukaryotes. Eur J Biochem 2003;270:3109–3121.PubMedCrossRef Berens C, Hillen W. Gene regulation by tetracyclines. Constraints of resistance regulation in bacteria shape TetR for application in eukaryotes. Eur J Biochem 2003;270:3109–3121.PubMedCrossRef
55.
Zurück zum Zitat Hillen W, Berens C. Mechanisms underlying expression of TN10 encoded tetracycline resistance. Annu Rev Microbiol 1994;48:345–369.PubMedCrossRef Hillen W, Berens C. Mechanisms underlying expression of TN10 encoded tetracycline resistance. Annu Rev Microbiol 1994;48:345–369.PubMedCrossRef
56.
Zurück zum Zitat Gossen M, Freundlieb S, Bender G, et al. Transcriptional activation by tetracyclines in mammalian cells. Science 1995;268:1766–1769.PubMedCrossRef Gossen M, Freundlieb S, Bender G, et al. Transcriptional activation by tetracyclines in mammalian cells. Science 1995;268:1766–1769.PubMedCrossRef
57.
Zurück zum Zitat LaVail JH, Topp KS, Giblin PA, et al. Factors that contribute to the transneuronal spread of herpes simplex virus. J Neurosci Res 1997;49:485–496.PubMedCrossRef LaVail JH, Topp KS, Giblin PA, et al. Factors that contribute to the transneuronal spread of herpes simplex virus. J Neurosci Res 1997;49:485–496.PubMedCrossRef
58.
Zurück zum Zitat Kelly RM, Strick PL. Rabies as a transneuronal tracer of circuits in the central nervous system. J Neurosci Methods 2000;103:63–71.PubMedCrossRef Kelly RM, Strick PL. Rabies as a transneuronal tracer of circuits in the central nervous system. J Neurosci Methods 2000;103:63–71.PubMedCrossRef
59.
Zurück zum Zitat Larsen DD. Retrograde tracing with recombinant rabies virus reveals correlations between projection targets and dendritic architecture in layer 5 of mouse barrel cortex. Front Neural Circuits 2008;1:5.PubMedPubMedCentralCrossRef Larsen DD. Retrograde tracing with recombinant rabies virus reveals correlations between projection targets and dendritic architecture in layer 5 of mouse barrel cortex. Front Neural Circuits 2008;1:5.PubMedPubMedCentralCrossRef
61.
62.
Zurück zum Zitat Aschauer DF, Kreuz S, Rumpel S. Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS One 2013;8:e76310.PubMedPubMedCentralCrossRef Aschauer DF, Kreuz S, Rumpel S. Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS One 2013;8:e76310.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Löw K, Aebischer P, Schneider BL. Direct and retrograde transduction of nigral neurons with AAV6, 8, and 9 and intraneuronal persistence of viral particles. Hum Gene Ther 2013;24:613–629.PubMedPubMedCentralCrossRef Löw K, Aebischer P, Schneider BL. Direct and retrograde transduction of nigral neurons with AAV6, 8, and 9 and intraneuronal persistence of viral particles. Hum Gene Ther 2013;24:613–629.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Rothermel M, Brunert D, Zabawa C, et al. Transgene expression in target-defined neuron populations mediated by retrograde infection with adeno-associated viral vectors. J Neurosci 2013;33:15195–15206.PubMedPubMedCentralCrossRef Rothermel M, Brunert D, Zabawa C, et al. Transgene expression in target-defined neuron populations mediated by retrograde infection with adeno-associated viral vectors. J Neurosci 2013;33:15195–15206.PubMedPubMedCentralCrossRef
65.
66.
Zurück zum Zitat Kato S, Kobayashi K, Inoue K, et al. A lentiviral strategy for highly efficient retrograde gene transfer by pseudotyping with fusion envelope glycoprotein. Hum Gene Ther 2011;22:197–206.PubMedCrossRef Kato S, Kobayashi K, Inoue K, et al. A lentiviral strategy for highly efficient retrograde gene transfer by pseudotyping with fusion envelope glycoprotein. Hum Gene Ther 2011;22:197–206.PubMedCrossRef
67.
Zurück zum Zitat Kato S, Kuramochi M, Takasumi K, et al. Neuron-specific gene transfer through retrograde transport of lentiviral vector pseudotyped with a novel type of fusion envelope glycoprotein. Hum Gene Ther 2011;22:1511–1523.PubMedCrossRef Kato S, Kuramochi M, Takasumi K, et al. Neuron-specific gene transfer through retrograde transport of lentiviral vector pseudotyped with a novel type of fusion envelope glycoprotein. Hum Gene Ther 2011;22:1511–1523.PubMedCrossRef
68.
Zurück zum Zitat Peel AL, Klein RL. Adeno-associated virus vectors: activity and applications in the CNS. J Neurosci Methods 2000;98:95–104.PubMedCrossRef Peel AL, Klein RL. Adeno-associated virus vectors: activity and applications in the CNS. J Neurosci Methods 2000;98:95–104.PubMedCrossRef
69.
Zurück zum Zitat Jacobsson J, Lundberg C. Lentiviral vectors for use in the central nervous system. Mol Ther 2006;13:484–493.CrossRef Jacobsson J, Lundberg C. Lentiviral vectors for use in the central nervous system. Mol Ther 2006;13:484–493.CrossRef
70.
71.
Zurück zum Zitat Urban A, Rancillac A, Martinez L, et al. Deciphering the neuronal circuitry controlling local blood flow in the cerebral cortex with optogenetics in PV::Cre transgenic mice. Front Pharmacol 2012;3:105.PubMedPubMedCentralCrossRef Urban A, Rancillac A, Martinez L, et al. Deciphering the neuronal circuitry controlling local blood flow in the cerebral cortex with optogenetics in PV::Cre transgenic mice. Front Pharmacol 2012;3:105.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Ciesielska A, Hadaczek P, Mittermeyer G, et al. Cerebral infusion of AAV9 vector-encoding non-self proteins can elicit cell-mediated immune responses. Mol Ther 2012;21:158–166.PubMedPubMedCentralCrossRef Ciesielska A, Hadaczek P, Mittermeyer G, et al. Cerebral infusion of AAV9 vector-encoding non-self proteins can elicit cell-mediated immune responses. Mol Ther 2012;21:158–166.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat McDonald AJ. Neuronal organization of the lateral and basolateral amygdaloid nuclei in the rat. J Comp Neurol 1984;222:589–606.PubMedCrossRef McDonald AJ. Neuronal organization of the lateral and basolateral amygdaloid nuclei in the rat. J Comp Neurol 1984;222:589–606.PubMedCrossRef
75.
Zurück zum Zitat Johansen JP, Hamanaka H, Monfils MH, et al. Optical activation of lateral amygdala pyramidal cells instructs associative fear learning. Proc Natl Acad Sci U S A 2010;107:12692–12697.PubMedPubMedCentralCrossRef Johansen JP, Hamanaka H, Monfils MH, et al. Optical activation of lateral amygdala pyramidal cells instructs associative fear learning. Proc Natl Acad Sci U S A 2010;107:12692–12697.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Benson DL, Isackson PJ, Gall CM, et al. Contrasting patterns in the localization of glutamic acid decarboxylase and Ca2+/calmodulin protein kinase gene expression in the rat central nervous system. Neuroscience 1992;46:825–849.PubMedCrossRef Benson DL, Isackson PJ, Gall CM, et al. Contrasting patterns in the localization of glutamic acid decarboxylase and Ca2+/calmodulin protein kinase gene expression in the rat central nervous system. Neuroscience 1992;46:825–849.PubMedCrossRef
77.
Zurück zum Zitat Jones EG, Huntley GW, Benson DL. Alpha calcium/calmodulin-dependent protein kinase II selectively expressed in a subpopulation of excitatory neurons in monkey sensory-motor cortex: comparison with GAD-67 expression. J Neurosci 1994;14:611–629.PubMed Jones EG, Huntley GW, Benson DL. Alpha calcium/calmodulin-dependent protein kinase II selectively expressed in a subpopulation of excitatory neurons in monkey sensory-motor cortex: comparison with GAD-67 expression. J Neurosci 1994;14:611–629.PubMed
78.
Zurück zum Zitat Esposito MS, Capelli P, Arber S. Brainstem nucleus MdV mediates skilled forelimb motor tasks. Nature 2014;508:351–356.PubMedCrossRef Esposito MS, Capelli P, Arber S. Brainstem nucleus MdV mediates skilled forelimb motor tasks. Nature 2014;508:351–356.PubMedCrossRef
79.
Zurück zum Zitat Gong S, Doughty M, Harbaugh CR, et al. Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J Neurosci 2007;27:9817–9823.PubMedCrossRef Gong S, Doughty M, Harbaugh CR, et al. Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J Neurosci 2007;27:9817–9823.PubMedCrossRef
80.
Zurück zum Zitat Taniguchi H, He M, Wu P, et al. A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 2011;71:995–1013.PubMedPubMedCentralCrossRef Taniguchi H, He M, Wu P, et al. A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 2011;71:995–1013.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Tanaka KF, Matsui K, Sasaki T, et al. Expanding the repertoire of optogenetically targeted cells with an enhanced gene expression system. Cell Rep 2012;2:397–406.PubMedCrossRef Tanaka KF, Matsui K, Sasaki T, et al. Expanding the repertoire of optogenetically targeted cells with an enhanced gene expression system. Cell Rep 2012;2:397–406.PubMedCrossRef
82.
Zurück zum Zitat Harris JA, Hirokawa KE, Sorensen SA, et al. Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation. Front Neural Circuits 2014;8:76.PubMedPubMedCentralCrossRef Harris JA, Hirokawa KE, Sorensen SA, et al. Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation. Front Neural Circuits 2014;8:76.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Madisen L, Zwingman TA, Sunkin SM, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 2010;13:133–140.PubMedPubMedCentralCrossRef Madisen L, Zwingman TA, Sunkin SM, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 2010;13:133–140.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Madisen L, Mao T, Koch H, et al. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci 2012;15:793–802.PubMedPubMedCentralCrossRef Madisen L, Mao T, Koch H, et al. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci 2012;15:793–802.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Hägglund M, Dougherty KJ, Borgius L, et al. Optogenetic dissection reveals multiple rhythmogenic modules underlying locomotion. Proc Natl Acad Sci U S A 2013;110:11589–11594.PubMedPubMedCentralCrossRef Hägglund M, Dougherty KJ, Borgius L, et al. Optogenetic dissection reveals multiple rhythmogenic modules underlying locomotion. Proc Natl Acad Sci U S A 2013;110:11589–11594.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Gerfen CR, Paletzki R, Heintz N. GENSAT BAC Cre-recombinase driver lines to study the functional organization of cerebral cortical and basal ganglia circuits. Neuron 2013;80:1368–1383. Gerfen CR, Paletzki R, Heintz N. GENSAT BAC Cre-recombinase driver lines to study the functional organization of cerebral cortical and basal ganglia circuits. Neuron 2013;80:1368–1383.
87.
Zurück zum Zitat Sadowski PD. The Flp recombinase of the 2-microns plasmid of Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol 1995;51:53–91.PubMedCrossRef Sadowski PD. The Flp recombinase of the 2-microns plasmid of Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol 1995;51:53–91.PubMedCrossRef
88.
Zurück zum Zitat Anastassiadis K, Fu J, Patsch C, et al. Dre recombinase, like Cre, is a highly efficient site-specific recombinase in E. coli, mammalian cells and mice. Dis Model Mech 2009;2:508–515.PubMedCrossRef Anastassiadis K, Fu J, Patsch C, et al. Dre recombinase, like Cre, is a highly efficient site-specific recombinase in E. coli, mammalian cells and mice. Dis Model Mech 2009;2:508–515.PubMedCrossRef
89.
Zurück zum Zitat Madisen L, Garner AR, Shimaoka D, et al. Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 2015;85:942–958.PubMedPubMedCentralCrossRef Madisen L, Garner AR, Shimaoka D, et al. Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 2015;85:942–958.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Kuhlman SJ, Huang ZJ. High-resolution labeling and functional manipulation of specific neuron types in mouse brain by Cre-activated viral gene expression. PLoS One 2008;3:e2005.PubMedPubMedCentralCrossRef Kuhlman SJ, Huang ZJ. High-resolution labeling and functional manipulation of specific neuron types in mouse brain by Cre-activated viral gene expression. PLoS One 2008;3:e2005.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Witten IB, Lin SC, Brodsky M, et al. Cholinergic interneurons control local circuit activity and cocaine conditioning. Science 2010;330:1677–1681.PubMedPubMedCentralCrossRef Witten IB, Lin SC, Brodsky M, et al. Cholinergic interneurons control local circuit activity and cocaine conditioning. Science 2010;330:1677–1681.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Krashes MJ, Koda S, Ye C, et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice Michael. J Clin Invest 2011;121:2–6.CrossRef Krashes MJ, Koda S, Ye C, et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice Michael. J Clin Invest 2011;121:2–6.CrossRef
93.
Zurück zum Zitat Krashes MJ, Shah BP, Madara JC, et al. An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature 2014;507:238–242.PubMedPubMedCentralCrossRef Krashes MJ, Shah BP, Madara JC, et al. An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature 2014;507:238–242.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Zhan C, Zhou J, Feng Q, et al. Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively. J Neurosci 2013;33:3624–3632.PubMedCrossRef Zhan C, Zhou J, Feng Q, et al. Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively. J Neurosci 2013;33:3624–3632.PubMedCrossRef
95.
Zurück zum Zitat Soumier A, Sibille E. Opposing effects of acute versus chronic blockade of frontal cortex somatostatin-positive inhibitory neurons on behavioral emotionality in mice. Neuropsychopharmacology 2014;39:2252–2262.PubMedPubMedCentralCrossRef Soumier A, Sibille E. Opposing effects of acute versus chronic blockade of frontal cortex somatostatin-positive inhibitory neurons on behavioral emotionality in mice. Neuropsychopharmacology 2014;39:2252–2262.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Perova Z, Delevich K, Li B. Depression of Excitatory synapses onto parvalbumin interneurons in the medial prefrontal cortex in susceptibility to stress. J Neurosci 2015;35:3201–3206.PubMedPubMedCentralCrossRef Perova Z, Delevich K, Li B. Depression of Excitatory synapses onto parvalbumin interneurons in the medial prefrontal cortex in susceptibility to stress. J Neurosci 2015;35:3201–3206.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Threlfell S, Lalic T, Platt NJ, et al. Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron 2012;75:58–64.PubMedCrossRef Threlfell S, Lalic T, Platt NJ, et al. Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron 2012;75:58–64.PubMedCrossRef
98.
Zurück zum Zitat Yi F, Catudio-Garrett E, Gabriel R, et al. Hippocampal “cholinergic interneurons” visualized with the choline acetyltransferase promoter: anatomical distribution, intrinsic membrane properties, neurochemical characteristics, and capacity for cholinergic modulation. Front Synaptic Neurosci 2015;7:4.PubMedPubMedCentralCrossRef Yi F, Catudio-Garrett E, Gabriel R, et al. Hippocampal “cholinergic interneurons” visualized with the choline acetyltransferase promoter: anatomical distribution, intrinsic membrane properties, neurochemical characteristics, and capacity for cholinergic modulation. Front Synaptic Neurosci 2015;7:4.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Armstrong DM, Saper CB, Levey AI, et al. Distribution of cholinergic neurons in rat brain: demonstrated by the immunocytochemical localization of choline acetyltransferase. J Comp Neurol 1983;216:53–68.PubMedCrossRef Armstrong DM, Saper CB, Levey AI, et al. Distribution of cholinergic neurons in rat brain: demonstrated by the immunocytochemical localization of choline acetyltransferase. J Comp Neurol 1983;216:53–68.PubMedCrossRef
100.
Zurück zum Zitat Oda Y, Nakahishi I. The distribution of cholinergic neurons in the central nervous system. Histol Histopathol 2000;15:825–834.PubMed Oda Y, Nakahishi I. The distribution of cholinergic neurons in the central nervous system. Histol Histopathol 2000;15:825–834.PubMed
101.
Zurück zum Zitat Newman EL, Gupta K, Climer JR, et al. Cholinergic modulation of cognitive processing: insights drawn from computational models. Front Behav Neurosci 2012;6:1–19.CrossRef Newman EL, Gupta K, Climer JR, et al. Cholinergic modulation of cognitive processing: insights drawn from computational models. Front Behav Neurosci 2012;6:1–19.CrossRef
102.
Zurück zum Zitat Hornung JP. The human raphe nuclei and the serotonergic system. J Chem Neuroanat 2003;26:331–343.PubMedCrossRef Hornung JP. The human raphe nuclei and the serotonergic system. J Chem Neuroanat 2003;26:331–343.PubMedCrossRef
103.
Zurück zum Zitat O’Leary DD, Koester SE. Development of projection neuron types, axon pathways, and patterned connections of the mammalian cortex. Neuron 1993;10:991–1006.PubMedCrossRef O’Leary DD, Koester SE. Development of projection neuron types, axon pathways, and patterned connections of the mammalian cortex. Neuron 1993;10:991–1006.PubMedCrossRef
104.
Zurück zum Zitat Kita T, Kita H. The subthalamic nucleus is one of multiple innervation sites for long-range corticofugal axons: a single-axon tracing study in the rat. J Neurosci 2012;32:5990–5999.PubMedPubMedCentralCrossRef Kita T, Kita H. The subthalamic nucleus is one of multiple innervation sites for long-range corticofugal axons: a single-axon tracing study in the rat. J Neurosci 2012;32:5990–5999.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Urban DJ, Roth BL. DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu Rev Pharmacol Toxicol 2015;55:399–417.PubMedCrossRef Urban DJ, Roth BL. DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu Rev Pharmacol Toxicol 2015;55:399–417.PubMedCrossRef
107.
Zurück zum Zitat Deisseroth K, Feng G, Majewska AK, et al. Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci 2006;26:10380–10386.PubMedPubMedCentralCrossRef Deisseroth K, Feng G, Majewska AK, et al. Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci 2006;26:10380–10386.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Nagel G, Ollig D, Fuhrmann M, et al. Channelrhodopsin-1: a light-gated proton channel in green algae. Science 2002;296:2395–2398.PubMedCrossRef Nagel G, Ollig D, Fuhrmann M, et al. Channelrhodopsin-1: a light-gated proton channel in green algae. Science 2002;296:2395–2398.PubMedCrossRef
110.
Zurück zum Zitat Nagel G, Szellas T, Huhn W, et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 2003;100:13940–13945.PubMedPubMedCentralCrossRef Nagel G, Szellas T, Huhn W, et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 2003;100:13940–13945.PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Boyden ES, Zhang F, Bamberg E, et al. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 2005;8:1263–1268.PubMedCrossRef Boyden ES, Zhang F, Bamberg E, et al. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 2005;8:1263–1268.PubMedCrossRef
112.
Zurück zum Zitat Zhang F, Wang LP, Brauner M, et al. Multimodal fast optical interrogation of neural circuitry. Nature 2007;446:633–639.PubMedCrossRef Zhang F, Wang LP, Brauner M, et al. Multimodal fast optical interrogation of neural circuitry. Nature 2007;446:633–639.PubMedCrossRef
113.
Zurück zum Zitat Chow BY, Han X, Dobry AS, et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 2010;463:98–102.PubMedPubMedCentralCrossRef Chow BY, Han X, Dobry AS, et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 2010;463:98–102.PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Lin JY, Lin MZ, Steinbach P, et al. Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys J 2009;96:1803–1814.PubMedPubMedCentralCrossRef Lin JY, Lin MZ, Steinbach P, et al. Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys J 2009;96:1803–1814.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Gunaydin LA, Yizhar O, Berndt A, et al. Ultrafast optogenetic control. Nat Neurosci 2010;13:387–392.PubMedCrossRef Gunaydin LA, Yizhar O, Berndt A, et al. Ultrafast optogenetic control. Nat Neurosci 2010;13:387–392.PubMedCrossRef
116.
Zurück zum Zitat Zhang F, Prigge M, Beyrière F, et al. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat Neurosci 2008;11:631–633.PubMedPubMedCentralCrossRef Zhang F, Prigge M, Beyrière F, et al. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat Neurosci 2008;11:631–633.PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Yizhar O, Fenno LE, Prigge M, et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 2011;477:171–178.PubMedPubMedCentralCrossRef Yizhar O, Fenno LE, Prigge M, et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 2011;477:171–178.PubMedPubMedCentralCrossRef
118.
119.
Zurück zum Zitat Lin JY, Knutsen PM, Muller A, et al. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 2013;16:1499–1508.PubMedPubMedCentralCrossRef Lin JY, Knutsen PM, Muller A, et al. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 2013;16:1499–1508.PubMedPubMedCentralCrossRef
120.
121.
Zurück zum Zitat Wang H, Sugiyama Y, Hikima T, et al. Molecular determinants differentiating photocurrent properties of two channelrhodopsins from Chlamydomonas. J Biol Chem 2009;284:5685–5696.PubMedCrossRef Wang H, Sugiyama Y, Hikima T, et al. Molecular determinants differentiating photocurrent properties of two channelrhodopsins from Chlamydomonas. J Biol Chem 2009;284:5685–5696.PubMedCrossRef
122.
Zurück zum Zitat Berndt A, Schoenenberger P, Mattis J, et al. High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proc Natl Acad Sci U S A 2011;108:7595–7600.PubMedPubMedCentralCrossRef Berndt A, Schoenenberger P, Mattis J, et al. High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proc Natl Acad Sci U S A 2011;108:7595–7600.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Berndt A, Yizhar O, Gunaydin LA, et al. Bi-stable neural state switches. Nat Neurosci 2009;12:229–234.PubMedCrossRef Berndt A, Yizhar O, Gunaydin LA, et al. Bi-stable neural state switches. Nat Neurosci 2009;12:229–234.PubMedCrossRef
125.
Zurück zum Zitat Kim KM, Baratta MV, Yang A, et al. Optogenetic mimicry of the transient activation of dopamine neurons by natural reward is sufficient for operant reinforcement. PLoS One 2012;7:e33612.PubMedPubMedCentralCrossRef Kim KM, Baratta MV, Yang A, et al. Optogenetic mimicry of the transient activation of dopamine neurons by natural reward is sufficient for operant reinforcement. PLoS One 2012;7:e33612.PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Bass CE, Grinevich VP, Gioia D, et al. Optogenetic stimulation of VTA dopamine neurons reveals that tonic but not phasic patterns of dopamine transmission reduce ethanol self-administration. Front Behav Neurosci 2013;7:1–10.CrossRef Bass CE, Grinevich VP, Gioia D, et al. Optogenetic stimulation of VTA dopamine neurons reveals that tonic but not phasic patterns of dopamine transmission reduce ethanol self-administration. Front Behav Neurosci 2013;7:1–10.CrossRef
127.
Zurück zum Zitat Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005;308:1314–1318.PubMedCrossRef Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005;308:1314–1318.PubMedCrossRef
128.
Zurück zum Zitat Polikov VS, Tresco PA, Reichert WM. Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods 2005;148:1–18.PubMedCrossRef Polikov VS, Tresco PA, Reichert WM. Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods 2005;148:1–18.PubMedCrossRef
129.
Zurück zum Zitat Xu HT, Pan F, Yang G, et al. Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat Neurosci 2007;10:549–551.PubMedCrossRef Xu HT, Pan F, Yang G, et al. Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat Neurosci 2007;10:549–551.PubMedCrossRef
130.
Zurück zum Zitat Wentz CT, Bernstein JG, Monahan P, et al. A wirelessly powered and controlled device for optical neural control of freely-behaving animals. J Neural Eng 2011;8:046021.PubMedPubMedCentralCrossRef Wentz CT, Bernstein JG, Monahan P, et al. A wirelessly powered and controlled device for optical neural control of freely-behaving animals. J Neural Eng 2011;8:046021.PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Kim TI, McCall JG, Jung YH, et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 2013;340:211–216.PubMedPubMedCentralCrossRef Kim TI, McCall JG, Jung YH, et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 2013;340:211–216.PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Kwon KY, Lee H-M, Ghovanloo M, et al. Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application. Front Syst Neurosci 2015;9:69.PubMedPubMedCentralCrossRef Kwon KY, Lee H-M, Ghovanloo M, et al. Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application. Front Syst Neurosci 2015;9:69.PubMedPubMedCentralCrossRef
133.
Zurück zum Zitat Montgomery KL, Yeh AJ, Ho JS, et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat Methods 2015;12:969–974.PubMedCrossRef Montgomery KL, Yeh AJ, Ho JS, et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat Methods 2015;12:969–974.PubMedCrossRef
134.
Zurück zum Zitat Park SI, Shin G, Banks A, et al. Ultraminiaturized photovoltaic and radio frequency powered optoelectronic systems for wireless optogenetics. J Neural Eng 2015;12:056002.PubMedCrossRef Park SI, Shin G, Banks A, et al. Ultraminiaturized photovoltaic and radio frequency powered optoelectronic systems for wireless optogenetics. J Neural Eng 2015;12:056002.PubMedCrossRef
135.
Zurück zum Zitat Li X, Gutierrez D V, Hanson MG, et al. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc Natl Acad Sci U S A 2005;102:17816–17821.PubMedPubMedCentralCrossRef Li X, Gutierrez D V, Hanson MG, et al. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc Natl Acad Sci U S A 2005;102:17816–17821.PubMedPubMedCentralCrossRef
136.
Zurück zum Zitat Huber D, Petreanu L, Ghitani N, et al. Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature 2008;451:61–64.PubMedPubMedCentralCrossRef Huber D, Petreanu L, Ghitani N, et al. Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature 2008;451:61–64.PubMedPubMedCentralCrossRef
137.
Zurück zum Zitat Hira R, Honkura N, Noguchi J, et al. Transcranial optogenetic stimulation for functional mapping of the motor cortex. J Neurosci Methods 2009;179:258–263.PubMedCrossRef Hira R, Honkura N, Noguchi J, et al. Transcranial optogenetic stimulation for functional mapping of the motor cortex. J Neurosci Methods 2009;179:258–263.PubMedCrossRef
138.
139.
Zurück zum Zitat Scott NA, Murphy TH. Hemodynamic responses evoked by neuronal stimulation via channelrhodopsin-2 can be independent of intracortical glutamatergic synaptic transmission. PLoS One 2012;7:e29859.PubMedPubMedCentralCrossRef Scott NA, Murphy TH. Hemodynamic responses evoked by neuronal stimulation via channelrhodopsin-2 can be independent of intracortical glutamatergic synaptic transmission. PLoS One 2012;7:e29859.PubMedPubMedCentralCrossRef
140.
Zurück zum Zitat Jacques SL. Optical properties of biological tissues: a review. Phys Med Biol 2013;58:R37–R61.PubMedCrossRef Jacques SL. Optical properties of biological tissues: a review. Phys Med Biol 2013;58:R37–R61.PubMedCrossRef
141.
Zurück zum Zitat Sternson SM, Roth BL. Chemogenetic tools to interrogate brain functions. Annu Rev Neurosci 2014;37:387–407.PubMedCrossRef Sternson SM, Roth BL. Chemogenetic tools to interrogate brain functions. Annu Rev Neurosci 2014;37:387–407.PubMedCrossRef
142.
Zurück zum Zitat Schöneberg T, Schulz A, Biebermann H, et al. Mutant G-protein-coupled receptors as a cause of human diseases. Pharmacol Ther 2004;104:173–206.PubMedCrossRef Schöneberg T, Schulz A, Biebermann H, et al. Mutant G-protein-coupled receptors as a cause of human diseases. Pharmacol Ther 2004;104:173–206.PubMedCrossRef
143.
Zurück zum Zitat Wettschureck N, Offermanns S. Mammalian G proteins and their cell type specific functions. Physiol Rev 2005;85:1159–1204.PubMedCrossRef Wettschureck N, Offermanns S. Mammalian G proteins and their cell type specific functions. Physiol Rev 2005;85:1159–1204.PubMedCrossRef
144.
Zurück zum Zitat Allen JA, Roth BL. Strategies to discover unexpected targets for drugs active at G protein-coupled receptors. Annu Rev Pharmacol Toxicol 2011;51:117–144.PubMedCrossRef Allen JA, Roth BL. Strategies to discover unexpected targets for drugs active at G protein-coupled receptors. Annu Rev Pharmacol Toxicol 2011;51:117–144.PubMedCrossRef
145.
Zurück zum Zitat Coward P, Wada HG, Falk MS, et al. Controlling signaling with a specifically designed Gi-coupled receptor. Proc Natl Acad Sci U S A 1998;95:352–357.PubMedPubMedCentralCrossRef Coward P, Wada HG, Falk MS, et al. Controlling signaling with a specifically designed Gi-coupled receptor. Proc Natl Acad Sci U S A 1998;95:352–357.PubMedPubMedCentralCrossRef
146.
Zurück zum Zitat Armbruster BN, Li X, Pausch MH, et al. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 2007;104:5163–5168.PubMedPubMedCentralCrossRef Armbruster BN, Li X, Pausch MH, et al. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 2007;104:5163–5168.PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Weiner DM, Meltzer HY, Veinbergs I, et al. The role of M1 muscarinic receptor agonism of N-desmethylclozapine in the unique clinical effects of clozapine. Psychopharmacology (Berl) 2004;177:207–216.CrossRef Weiner DM, Meltzer HY, Veinbergs I, et al. The role of M1 muscarinic receptor agonism of N-desmethylclozapine in the unique clinical effects of clozapine. Psychopharmacology (Berl) 2004;177:207–216.CrossRef
149.
Zurück zum Zitat Guettier J-M, Gautam D, Scarselli M, et al. A chemical-genetic approach to study G protein regulation of beta cell function in vivo. Proc Natl Acad Sci U S A 2009;106:19197–19202.PubMedPubMedCentralCrossRef Guettier J-M, Gautam D, Scarselli M, et al. A chemical-genetic approach to study G protein regulation of beta cell function in vivo. Proc Natl Acad Sci U S A 2009;106:19197–19202.PubMedPubMedCentralCrossRef
150.
Zurück zum Zitat Alexander GM, Rogan SC, Abbas AI, et al. Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 2009;63:27–39.PubMedPubMedCentralCrossRef Alexander GM, Rogan SC, Abbas AI, et al. Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 2009;63:27–39.PubMedPubMedCentralCrossRef
152.
153.
Zurück zum Zitat Vardy E, Robinson JE, Li C, et al. A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior. Neuron 2015;86:936–946.PubMedCrossRef Vardy E, Robinson JE, Li C, et al. A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior. Neuron 2015;86:936–946.PubMedCrossRef
154.
Zurück zum Zitat Ansonoff MA, Zhang J, Czyzyk T, et al. Antinociceptive and hypothermic effects of Salvinorin A are abolished in a novel strain of kappa-opioid receptor-1 knockout mice. J Pharmacol Exp Ther 2006;318:641–648.PubMedCrossRef Ansonoff MA, Zhang J, Czyzyk T, et al. Antinociceptive and hypothermic effects of Salvinorin A are abolished in a novel strain of kappa-opioid receptor-1 knockout mice. J Pharmacol Exp Ther 2006;318:641–648.PubMedCrossRef
155.
Zurück zum Zitat Hooker JM, Munro TA, Béguin C, et al. Salvinorin A and derivatives: protection from metabolism does not prolong short-term, whole-brain residence. Neuropharmacology 2009;57:386–391.PubMedPubMedCentralCrossRef Hooker JM, Munro TA, Béguin C, et al. Salvinorin A and derivatives: protection from metabolism does not prolong short-term, whole-brain residence. Neuropharmacology 2009;57:386–391.PubMedPubMedCentralCrossRef
156.
Zurück zum Zitat Corringer PJ, Novere NL, Changeux JP. Nicotinic receptors at the amino acid level. Annu Rev Pharmacol Toxicol 2000;40:431–458.PubMedCrossRef Corringer PJ, Novere NL, Changeux JP. Nicotinic receptors at the amino acid level. Annu Rev Pharmacol Toxicol 2000;40:431–458.PubMedCrossRef
157.
Zurück zum Zitat Eisele JL, Bertrand S, Galzi JL, et al. Chimaeric nicotinic-serotonergic receptor combines distinct ligand binding and channel specificities. Nature 1993;366:479–483.PubMedCrossRef Eisele JL, Bertrand S, Galzi JL, et al. Chimaeric nicotinic-serotonergic receptor combines distinct ligand binding and channel specificities. Nature 1993;366:479–483.PubMedCrossRef
158.
Zurück zum Zitat Grutter T, Carvalho LP, Dufresne V, et al. Molecular tuning of fast gating in pentameric ligand-gated ion channels. Proc Natl Acad Sci U S A 2005;102:18207–18212.PubMedPubMedCentralCrossRef Grutter T, Carvalho LP, Dufresne V, et al. Molecular tuning of fast gating in pentameric ligand-gated ion channels. Proc Natl Acad Sci U S A 2005;102:18207–18212.PubMedPubMedCentralCrossRef
159.
Zurück zum Zitat Link E, Edelmann L, Chou JH, et al. Tetanus toxin action: inhibition of neurotransmitter release linked to synaptobrevin proteolysis. Biochem Biophys Res Commun 1992;189:1017–1023.PubMedCrossRef Link E, Edelmann L, Chou JH, et al. Tetanus toxin action: inhibition of neurotransmitter release linked to synaptobrevin proteolysis. Biochem Biophys Res Commun 1992;189:1017–1023.PubMedCrossRef
160.
Zurück zum Zitat Schiavo G, Benfenati F, Poulain B, et al. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 1992;359:832–835.PubMedCrossRef Schiavo G, Benfenati F, Poulain B, et al. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 1992;359:832–835.PubMedCrossRef
161.
Zurück zum Zitat Südhof TC. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 1995;375:645–653.PubMedCrossRef Südhof TC. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 1995;375:645–653.PubMedCrossRef
162.
Zurück zum Zitat Schoch S, Deák F, Königstorfer A, et al. SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science 2001;294:1117–1122.PubMedCrossRef Schoch S, Deák F, Königstorfer A, et al. SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science 2001;294:1117–1122.PubMedCrossRef
163.
Zurück zum Zitat Yamamoto M, Wada N, Kitabatake Y, et al. Reversible suppression of glutamatergic neurotransmission of cerebellar granule cells in vivo by genetically manipulated expression of tetanus neurotoxin light chain. J Neurosci 2003;23:6759–6767.PubMed Yamamoto M, Wada N, Kitabatake Y, et al. Reversible suppression of glutamatergic neurotransmission of cerebellar granule cells in vivo by genetically manipulated expression of tetanus neurotoxin light chain. J Neurosci 2003;23:6759–6767.PubMed
164.
Zurück zum Zitat Nakashiba T. Transgenic inhibition of synaptic transmission reveals role of CA3 output in hippocampal learning. Science 2008;1260:1260–1264.CrossRef Nakashiba T. Transgenic inhibition of synaptic transmission reveals role of CA3 output in hippocampal learning. Science 2008;1260:1260–1264.CrossRef
166.
Zurück zum Zitat Gogos JA, Osborne J, Nemes A, et al. Genetic ablation and restoration of the olfactory topographic map. Cell 2000;103:609–620.PubMedCrossRef Gogos JA, Osborne J, Nemes A, et al. Genetic ablation and restoration of the olfactory topographic map. Cell 2000;103:609–620.PubMedCrossRef
167.
Zurück zum Zitat Sakamoto M, Imayoshi I, Ohtsuka T, et al. Continuous neurogenesis in the adult forebrain is required for innate olfactory responses. Proc Natl Acad Sci U S A 2011;108:8479–8484.PubMedPubMedCentralCrossRef Sakamoto M, Imayoshi I, Ohtsuka T, et al. Continuous neurogenesis in the adult forebrain is required for innate olfactory responses. Proc Natl Acad Sci U S A 2011;108:8479–8484.PubMedPubMedCentralCrossRef
169.
Zurück zum Zitat Stirpe F, Gasperi-Campani A, Barbieri L, et al. Ribosome-inactivating proteins from the seeds of Saponaria officinalis L. (soapwort), of Agrostemma githago L. (corn cockle) and of Asparagus officinalis L. (asparagus), and from the latex of Hura crepitans L. (sandbox tree). Biochem J 1983;216:617–625.PubMedPubMedCentralCrossRef Stirpe F, Gasperi-Campani A, Barbieri L, et al. Ribosome-inactivating proteins from the seeds of Saponaria officinalis L. (soapwort), of Agrostemma githago L. (corn cockle) and of Asparagus officinalis L. (asparagus), and from the latex of Hura crepitans L. (sandbox tree). Biochem J 1983;216:617–625.PubMedPubMedCentralCrossRef
170.
Zurück zum Zitat Wenk GL, Stoehr JD, Quintana G, et al. Behavioral, biochemical, histological, and electrophysiological effects of 192 IgG-saporin injections into the basal forebrain of rats. J Neurosci 1994;14:5986–5995.PubMed Wenk GL, Stoehr JD, Quintana G, et al. Behavioral, biochemical, histological, and electrophysiological effects of 192 IgG-saporin injections into the basal forebrain of rats. J Neurosci 1994;14:5986–5995.PubMed
171.
Zurück zum Zitat Wiley RG, Kline Iv RH. Neuronal lesioning with axonally transported toxins. J Neurosci Methods 2000;103:73–82.PubMedCrossRef Wiley RG, Kline Iv RH. Neuronal lesioning with axonally transported toxins. J Neurosci Methods 2000;103:73–82.PubMedCrossRef
172.
Zurück zum Zitat Yoder RM, Pang KCH. Involvement of GABAergic and cholinergic medial septal neurons in hippocampal theta rhythm. Hippocampus 2005;15:381–392.PubMedCrossRef Yoder RM, Pang KCH. Involvement of GABAergic and cholinergic medial septal neurons in hippocampal theta rhythm. Hippocampus 2005;15:381–392.PubMedCrossRef
173.
Zurück zum Zitat Antonucci F, Alpar A, Kacza J, et al. Cracking down on inhibition: selective removal of GABAergic interneurons from hippocampal networks. J Neurosci 2012;32:1989–2001.PubMedPubMedCentralCrossRef Antonucci F, Alpar A, Kacza J, et al. Cracking down on inhibition: selective removal of GABAergic interneurons from hippocampal networks. J Neurosci 2012;32:1989–2001.PubMedPubMedCentralCrossRef
174.
Zurück zum Zitat Hamlin AS, Windels F, Boskovic Z, et al. Lesions of the basal forebrain cholinergic system in mice disrupt idiothetic navigation. PLoS One 2013;8:e53472.PubMedPubMedCentralCrossRef Hamlin AS, Windels F, Boskovic Z, et al. Lesions of the basal forebrain cholinergic system in mice disrupt idiothetic navigation. PLoS One 2013;8:e53472.PubMedPubMedCentralCrossRef
175.
Zurück zum Zitat Suzuki R, Rahman W, Rygh LJ, et al. Spinal-supraspinal serotonergic circuits regulating neuropathic pain and its treatment with gabapentin. Pain 2005;117:292–303.PubMedCrossRef Suzuki R, Rahman W, Rygh LJ, et al. Spinal-supraspinal serotonergic circuits regulating neuropathic pain and its treatment with gabapentin. Pain 2005;117:292–303.PubMedCrossRef
176.
Zurück zum Zitat Potts JT, Fong AY, Anguelov PI, et al. Targeted deletion of neurokinin-1 receptor expressing nucleus tractus solitarii neurons precludes somatosensory depression of arterial baroreceptor-heart rate reflex. Neuroscience 2007;145:1168–1181.PubMedPubMedCentralCrossRef Potts JT, Fong AY, Anguelov PI, et al. Targeted deletion of neurokinin-1 receptor expressing nucleus tractus solitarii neurons precludes somatosensory depression of arterial baroreceptor-heart rate reflex. Neuroscience 2007;145:1168–1181.PubMedPubMedCentralCrossRef
177.
Zurück zum Zitat Akiyama T, Nguyen T, Curtis E, et al. A central role for spinal dorsal horn neurons that express neurokinin-1 receptors in chronic itch. Pain 2015;156:1240–1246.PubMedCrossRef Akiyama T, Nguyen T, Curtis E, et al. A central role for spinal dorsal horn neurons that express neurokinin-1 receptors in chronic itch. Pain 2015;156:1240–1246.PubMedCrossRef
178.
Zurück zum Zitat Antonucci F, Rossi C, Gianfranceschi L, et al. Long-distance retrograde effects of botulinum neurotoxin A. J Neurosci 2008;28:3689–3696.PubMedCrossRef Antonucci F, Rossi C, Gianfranceschi L, et al. Long-distance retrograde effects of botulinum neurotoxin A. J Neurosci 2008;28:3689–3696.PubMedCrossRef
179.
Zurück zum Zitat Restani L, Giribaldi F, Manich M, et al. Botulinum neurotoxins A and E undergo retrograde axonal transport in primary motor neurons. PLoS Pathog 2012;8:e1003087.PubMedPubMedCentralCrossRef Restani L, Giribaldi F, Manich M, et al. Botulinum neurotoxins A and E undergo retrograde axonal transport in primary motor neurons. PLoS Pathog 2012;8:e1003087.PubMedPubMedCentralCrossRef
180.
Zurück zum Zitat Papagiannopoulou D, Vardouli L, Dimitriadis F, et al. Retrograde transport of radiolabelled botulinum neurotoxin type A to the CNS after intradetrusor injection in rats. BJU Int 2015 Apr 24 [Epub ahead of print]. Papagiannopoulou D, Vardouli L, Dimitriadis F, et al. Retrograde transport of radiolabelled botulinum neurotoxin type A to the CNS after intradetrusor injection in rats. BJU Int 2015 Apr 24 [Epub ahead of print].
181.
Zurück zum Zitat Naglich JG, Eidels L. Isolation of diphtheria toxin-sensitive mouse cells from a toxin-resistant population transfected with monkey DNA. Proc Natl Acad Sci U S A 1990;87:7250–7254.PubMedPubMedCentralCrossRef Naglich JG, Eidels L. Isolation of diphtheria toxin-sensitive mouse cells from a toxin-resistant population transfected with monkey DNA. Proc Natl Acad Sci U S A 1990;87:7250–7254.PubMedPubMedCentralCrossRef
182.
Zurück zum Zitat Buch T, Heppner FL, Tertilt C, et al. A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat Methods 2005;2:419–426.PubMedCrossRef Buch T, Heppner FL, Tertilt C, et al. A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat Methods 2005;2:419–426.PubMedCrossRef
183.
Zurück zum Zitat Han JH, Kushner SA, Yiu AP, et al. Selective erasure of fear memory. Science 2009;323:1492–1496.PubMedCrossRef Han JH, Kushner SA, Yiu AP, et al. Selective erasure of fear memory. Science 2009;323:1492–1496.PubMedCrossRef
184.
Zurück zum Zitat Gonatas NK, Harper C, Mizutani T, et al. Superior sensitivity agglutinin. J Histochem Cytochem 1979;27:728–734.PubMedCrossRef Gonatas NK, Harper C, Mizutani T, et al. Superior sensitivity agglutinin. J Histochem Cytochem 1979;27:728–734.PubMedCrossRef
185.
Zurück zum Zitat Masco D, Van de Walle M, Spiegel S. Interaction modulates of ganglioside GM1 with the B subunit of cholera toxin growth and differentiation of neuroblastoma. J Neurosci 1991;11:2443–2452.PubMed Masco D, Van de Walle M, Spiegel S. Interaction modulates of ganglioside GM1 with the B subunit of cholera toxin growth and differentiation of neuroblastoma. J Neurosci 1991;11:2443–2452.PubMed
186.
Zurück zum Zitat Lanciego JL, Wouterlood FG. A half century of experimental neuroanatomical tracing. J Chem Neuroanat 2011;42:157–183.PubMedCrossRef Lanciego JL, Wouterlood FG. A half century of experimental neuroanatomical tracing. J Chem Neuroanat 2011;42:157–183.PubMedCrossRef
187.
Zurück zum Zitat Kaneda Y, Uchida T, Mekada E, et al. Entry of diphtheria toxin into cells: possible existence of cellular factor(s) for entry of diphtheria toxin into cells was studied in somatic cell hybrids and hybrid toxins. J Cell Biol 1984;98:466–472.PubMedCrossRef Kaneda Y, Uchida T, Mekada E, et al. Entry of diphtheria toxin into cells: possible existence of cellular factor(s) for entry of diphtheria toxin into cells was studied in somatic cell hybrids and hybrid toxins. J Cell Biol 1984;98:466–472.PubMedCrossRef
188.
Zurück zum Zitat Oeltmann TN, Wiley RG. Wheat germ agglutinin-ricin A-chain conjugate is neuronotoxic after vagal injection. Brain Res 1986;377:221–228.PubMedCrossRef Oeltmann TN, Wiley RG. Wheat germ agglutinin-ricin A-chain conjugate is neuronotoxic after vagal injection. Brain Res 1986;377:221–228.PubMedCrossRef
189.
Zurück zum Zitat Chaddock J a, Purkiss JR, Friis LM, et al. Inhibition of vesicular secretion in both neuronal and nonneuronal cells by a retargeted endopeptidase derivative of Clostridium botulinum neurotoxin type A. Infect Immun 2000;68:2587–2593. Chaddock J a, Purkiss JR, Friis LM, et al. Inhibition of vesicular secretion in both neuronal and nonneuronal cells by a retargeted endopeptidase derivative of Clostridium botulinum neurotoxin type A. Infect Immun 2000;68:2587–2593.
190.
Zurück zum Zitat Nichols NL, Vinit S, Bauernschmidt L, et al. Respiratory function after selective respiratory motor neuron death from intrapleural CTB–saporin injections. Exp Neurol 2015;267:18–29.PubMedCrossRef Nichols NL, Vinit S, Bauernschmidt L, et al. Respiratory function after selective respiratory motor neuron death from intrapleural CTB–saporin injections. Exp Neurol 2015;267:18–29.PubMedCrossRef
191.
Zurück zum Zitat Dell’Anno MT, Caiazzo M, Leo D, et al. Remote control of induced dopaminergic neurons in parkinsonian rats. J Clin Invest 2014;124:3215–3229.PubMedPubMedCentralCrossRef Dell’Anno MT, Caiazzo M, Leo D, et al. Remote control of induced dopaminergic neurons in parkinsonian rats. J Clin Invest 2014;124:3215–3229.PubMedPubMedCentralCrossRef
192.
Zurück zum Zitat Seeger-Armbruster S, Bosch-Bouju C, Little STC, et al. Patterned, but not tonic, optogenetic stimulation in motor thalamus improves reaching in acute drug-induced Parkinsonian rats. J Neurosci 2015;35:1211–1216.PubMedCrossRef Seeger-Armbruster S, Bosch-Bouju C, Little STC, et al. Patterned, but not tonic, optogenetic stimulation in motor thalamus improves reaching in acute drug-induced Parkinsonian rats. J Neurosci 2015;35:1211–1216.PubMedCrossRef
193.
Zurück zum Zitat Cheng MY, Wang EH, Woodson WJ, et al. Optogenetic neuronal stimulation promotes functional recovery after stroke. Proc Natl Acad Sci U S A 2014;111:12913–12918.PubMedPubMedCentralCrossRef Cheng MY, Wang EH, Woodson WJ, et al. Optogenetic neuronal stimulation promotes functional recovery after stroke. Proc Natl Acad Sci U S A 2014;111:12913–12918.PubMedPubMedCentralCrossRef
195.
197.
198.
Zurück zum Zitat Krook-Magnuson E, Szabo GG, Armstrong C, et al. Cerebellar directed optogenetic intervention inhibits spontaneous hippocampal seizures in a mouse model of temporal lobe epilepsy. eNeuro 2014;1:e.2014.PubMedCrossRef Krook-Magnuson E, Szabo GG, Armstrong C, et al. Cerebellar directed optogenetic intervention inhibits spontaneous hippocampal seizures in a mouse model of temporal lobe epilepsy. eNeuro 2014;1:e.2014.PubMedCrossRef
200.
Zurück zum Zitat Barrett JM, Degenaar P, Sernagor E. Blockade of pathological retinal ganglion cell hyperactivity improves optogenetically evoked light responses in rd1 mice. Front Cell Neurosci 2015;9:1–14.CrossRef Barrett JM, Degenaar P, Sernagor E. Blockade of pathological retinal ganglion cell hyperactivity improves optogenetically evoked light responses in rd1 mice. Front Cell Neurosci 2015;9:1–14.CrossRef
201.
Zurück zum Zitat Sagdullaev Neurotherapeutics 2016;13:2. in press. Sagdullaev Neurotherapeutics 2016;13:2. in press.
Metadaten
Titel
Selective Manipulation of Neural Circuits
verfasst von
Hong Geun Park
Jason B. Carmel
Publikationsdatum
01.04.2016
Verlag
Springer US
Erschienen in
Neurotherapeutics / Ausgabe 2/2016
Print ISSN: 1933-7213
Elektronische ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-016-0425-7

Weitere Artikel der Ausgabe 2/2016

Neurotherapeutics 2/2016 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.