Skip to main content
Erschienen in: Experimental Brain Research 4/2003

01.12.2003 | Research Article

Single-unit responses in the auditory cortex of monkeys performing a conditional acousticomotor task

verfasst von: Caroline Durif, Christophe Jouffrais, Eric M. Rouiller

Erschienen in: Experimental Brain Research | Ausgabe 4/2003

Einloggen, um Zugang zu erhalten

Abstract

The general goal of the present study was to assess the response properties to tones of single neurons in the auditory cortex (primary auditory area, A1, and middle lateral auditory belt, ML) of two macaque monkeys while performing an acousticomotor discrimination task requiring a controlled level of attention and motivation. For each neuron, an approximation of the frequency receptive field (FRF) was first established. Second, based on the FRF, sets of paired tone frequencies were defined in which two different tone frequencies had to be associated by the monkey, following a trial and error strategy, to a left or a right key-press with the left arm. After acquisition of the association, the two tones of the pair were presented randomly (“instruction stimulus”) and, if the monkey touched the correct key, the stimulus was repeated (“confirmation stimulus”) and a reward was delivered. The majority of units (63%) had a FRF formed by multiple peaks, whereas 25% and 12% of units exhibited a simple U-shaped FRF and a “mosaic” FRF, composed of several separated zones of response, respectively. Five principal response patterns were observed: On, Off, On-Off, Sustained, and Inhibition. In relation to the acousticomotor association task, some auditory cortical neurons (33%) exhibited a different response to the same stimulus when presented, in the same trials, as instruction or as confirmation. It was also observed that the response to the same instruction stimulus could differ when comparing correct trials with erroneous trials (wrong motor response). In conclusion, the response properties of auditory cortical neurons in behaving monkeys are strongly dependent on the physical parameters of sounds (frequency, intensity, etc.) as indicated by FRF characteristics, but a substantial influence of the behavioral context and performance may also play an important role.
Literatur
Zurück zum Zitat Adriani M, Maeder P, Meuli R et al. (2003) Sound recognition and localisation in man: specialised cortical networks and acute effects of circumscribed lesions. Exp Brain Res Adriani M, Maeder P, Meuli R et al. (2003) Sound recognition and localisation in man: specialised cortical networks and acute effects of circumscribed lesions. Exp Brain Res
Zurück zum Zitat Ahissar E, Abeles M, Ahissar M, Haidarliu S, Vaadia E (1998) Hebbian-like functional plasticity in the auditory cortex of the behaving monkey. Neuropharmacology 37:633–655PubMed Ahissar E, Abeles M, Ahissar M, Haidarliu S, Vaadia E (1998) Hebbian-like functional plasticity in the auditory cortex of the behaving monkey. Neuropharmacology 37:633–655PubMed
Zurück zum Zitat Aitkin LM, Merzenich MM, Irvine DRF, Clarey JC, Nelson JE (1986) Frequency representation in the auditory cortex of the common marmoset (Callithrix jacchus jacchus). J Comp Neurol 252:175–185 Aitkin LM, Merzenich MM, Irvine DRF, Clarey JC, Nelson JE (1986) Frequency representation in the auditory cortex of the common marmoset (Callithrix jacchus jacchus). J Comp Neurol 252:175–185
Zurück zum Zitat Bakin JS, Weinberger NM (1990) Classical conditioning induces CS-specific receptive field plasticity in the auditory cortex of the guinea pig. Brain Res 536:271–286PubMed Bakin JS, Weinberger NM (1990) Classical conditioning induces CS-specific receptive field plasticity in the auditory cortex of the guinea pig. Brain Res 536:271–286PubMed
Zurück zum Zitat Benson DA, Hienz RD, Goldstein MH Jr (1981) Single-unit activity in the auditory cortex of monkeys actively localizing sound sources: spatial tuning and behavioral dependency. Brain Res 219:249–267PubMed Benson DA, Hienz RD, Goldstein MH Jr (1981) Single-unit activity in the auditory cortex of monkeys actively localizing sound sources: spatial tuning and behavioral dependency. Brain Res 219:249–267PubMed
Zurück zum Zitat Bieser A (1998) Processing of twitter-call fundamental frequencies in insula and auditory cortex of squirrel monkeys. Exp Brain Res 122:139–148CrossRefPubMed Bieser A (1998) Processing of twitter-call fundamental frequencies in insula and auditory cortex of squirrel monkeys. Exp Brain Res 122:139–148CrossRefPubMed
Zurück zum Zitat Bieser A, Muller-Preuss P (1996) Auditory responsive cortex in the squirrel monkey: neural responses to amplitude-modulated sounds. Exp Brain Res 108:273–284PubMed Bieser A, Muller-Preuss P (1996) Auditory responsive cortex in the squirrel monkey: neural responses to amplitude-modulated sounds. Exp Brain Res 108:273–284PubMed
Zurück zum Zitat Brosch M, Schreiner CE (1997) Time course of forward masking tuning curves in cat primary auditory cortex. J Neurophysiol 77:923–943PubMed Brosch M, Schreiner CE (1997) Time course of forward masking tuning curves in cat primary auditory cortex. J Neurophysiol 77:923–943PubMed
Zurück zum Zitat Brosch M, Schulz A, Scheich H (1999) Processing of sound sequences in macaque auditory cortex: response enhancement. J. Neurophysiol 82:1542–1559PubMed Brosch M, Schulz A, Scheich H (1999) Processing of sound sequences in macaque auditory cortex: response enhancement. J. Neurophysiol 82:1542–1559PubMed
Zurück zum Zitat Brugge JF, Merzenich MM (1973) Responses of neurons in auditory cortex of the macaque monkey to monaural and binaural stimulation. J Neurophysiol 36:1138–1159PubMed Brugge JF, Merzenich MM (1973) Responses of neurons in auditory cortex of the macaque monkey to monaural and binaural stimulation. J Neurophysiol 36:1138–1159PubMed
Zurück zum Zitat Calford MB, Webster WR, Semple MM (1983) Measurement of frequency selectivity of single neurons in the central auditory pathway. Hear Res 11:395–401PubMed Calford MB, Webster WR, Semple MM (1983) Measurement of frequency selectivity of single neurons in the central auditory pathway. Hear Res 11:395–401PubMed
Zurück zum Zitat Cheung SW, Bedenbaugh PH, Nagarajan SS, Schreiner CE (2001a) Functional organization of squirrel monkey primary auditory cortex: responses to pure tone. J Neurophysiol 85:1732–1749PubMed Cheung SW, Bedenbaugh PH, Nagarajan SS, Schreiner CE (2001a) Functional organization of squirrel monkey primary auditory cortex: responses to pure tone. J Neurophysiol 85:1732–1749PubMed
Zurück zum Zitat Cheung SW, Nagarajan SS, Bedenbaugh PH et al. (2001b) Auditory cortical neuron response differences under isoflurane versus pentobarbital anesthesia. Hear Res 156:115–127PubMed Cheung SW, Nagarajan SS, Bedenbaugh PH et al. (2001b) Auditory cortical neuron response differences under isoflurane versus pentobarbital anesthesia. Hear Res 156:115–127PubMed
Zurück zum Zitat Diamond DM, Weinberger NM (1989) Role of context in the expression of learning-induced plasticity of single neurons in auditory cortex. Behav Neurosci 103:471–494PubMed Diamond DM, Weinberger NM (1989) Role of context in the expression of learning-induced plasticity of single neurons in auditory cortex. Behav Neurosci 103:471–494PubMed
Zurück zum Zitat Edeline J-M, Weinberger NM (1993) Receptive field plasticity in the auditory cortex during frequency discrimination training: selective retuning independent of task difficulty. Behav Neurosci 107:82–103PubMed Edeline J-M, Weinberger NM (1993) Receptive field plasticity in the auditory cortex during frequency discrimination training: selective retuning independent of task difficulty. Behav Neurosci 107:82–103PubMed
Zurück zum Zitat Edeline J-M, Pham P, Weinberger NM (1993) Rapid development of learning-induced receptive field plasticity in the auditory cortex. Behav Neurosci 107:539–551PubMed Edeline J-M, Pham P, Weinberger NM (1993) Rapid development of learning-induced receptive field plasticity in the auditory cortex. Behav Neurosci 107:539–551PubMed
Zurück zum Zitat Fishman YI, Reser DH, Arezzo JC, Steinschneider M (2000) Complex tone processing in primary auditory cortex of the awake monkey. I. Neural ensemble correlates of roughness. J Acoust Soc Am 108:235–246PubMed Fishman YI, Reser DH, Arezzo JC, Steinschneider M (2000) Complex tone processing in primary auditory cortex of the awake monkey. I. Neural ensemble correlates of roughness. J Acoust Soc Am 108:235–246PubMed
Zurück zum Zitat Funkenstein HH, Winter P (1973) Responses to acoustic stimuli of units in the auditory cortex of awake squirrel monkeys. Exp Brain Res 18:464–488PubMed Funkenstein HH, Winter P (1973) Responses to acoustic stimuli of units in the auditory cortex of awake squirrel monkeys. Exp Brain Res 18:464–488PubMed
Zurück zum Zitat Gaese BH, Ostwald J (2001) Anesthesia changes frequency tuning of neurons in the rat primary auditory cortex. J Neurophysiol 86:1062–1066PubMed Gaese BH, Ostwald J (2001) Anesthesia changes frequency tuning of neurons in the rat primary auditory cortex. J Neurophysiol 86:1062–1066PubMed
Zurück zum Zitat Glass I, Wollberg Z (1979) Lability in the responses of cells in the auditory cortex of squirrel monkeys to species-specific vocalizations. Exp Brain Res 34:489–498PubMed Glass I, Wollberg Z (1979) Lability in the responses of cells in the auditory cortex of squirrel monkeys to species-specific vocalizations. Exp Brain Res 34:489–498PubMed
Zurück zum Zitat Hackett TA, Stepniewska I, Kaas JH (1998) Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. J Comp Neurol 394:475–495CrossRefPubMed Hackett TA, Stepniewska I, Kaas JH (1998) Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. J Comp Neurol 394:475–495CrossRefPubMed
Zurück zum Zitat Hackett TA, Preuss TM, Kaas JH (2001) Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J Comp Neurol 441:197–222 Hackett TA, Preuss TM, Kaas JH (2001) Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J Comp Neurol 441:197–222
Zurück zum Zitat Hikosaka K, Watanabe M (2000) Delay activity of orbital and lateral prefrontal neurons of the monkey varying with different rewards. Cereb Cortex 10:263–271PubMed Hikosaka K, Watanabe M (2000) Delay activity of orbital and lateral prefrontal neurons of the monkey varying with different rewards. Cereb Cortex 10:263–271PubMed
Zurück zum Zitat Hocherman S, Itzhaki A, Gilat E (1981) The response of single units in the auditory cortex of rhesus monkeys to predicted and to unpredicted sound stimuli. Brain Res 230:65–86PubMed Hocherman S, Itzhaki A, Gilat E (1981) The response of single units in the auditory cortex of rhesus monkeys to predicted and to unpredicted sound stimuli. Brain Res 230:65–86PubMed
Zurück zum Zitat Imig TS, Ruggero MA, Kitzes LM, Javel E, Brugge JF (1977) Organization of auditory cortex in the owl monkey. J Comp Neurol 171:111–128PubMed Imig TS, Ruggero MA, Kitzes LM, Javel E, Brugge JF (1977) Organization of auditory cortex in the owl monkey. J Comp Neurol 171:111–128PubMed
Zurück zum Zitat Kaas JH, Hackett TA (1999) “What” and “where” processing in the auditory cortex. Nat Neurosci 2:1045–1047PubMed Kaas JH, Hackett TA (1999) “What” and “where” processing in the auditory cortex. Nat Neurosci 2:1045–1047PubMed
Zurück zum Zitat Kermadi I, Liu Y, Tempini A, Calciati E, Rouiller EM (1998) Neuronal activity in the primate supplementary motor area and the primary motor cortex in relation to spatio-temporal bimanual coordination. Somatosens Mot Res 15:287–308PubMed Kermadi I, Liu Y, Tempini A, Calciati E, Rouiller EM (1998) Neuronal activity in the primate supplementary motor area and the primary motor cortex in relation to spatio-temporal bimanual coordination. Somatosens Mot Res 15:287–308PubMed
Zurück zum Zitat Kiang NYS (1965) Stimulus coding in the auditory nerve and cochlear nucleus. Acta Otolaryngol 59:186–200 Kiang NYS (1965) Stimulus coding in the auditory nerve and cochlear nucleus. Acta Otolaryngol 59:186–200
Zurück zum Zitat Kiang NYS, Pfeiffer RR, Warr WB, Backus ASN (1965) Stimulus coding in the cochlear nucleus. Ann Otol Rhinol Laryngol 74:463–485PubMed Kiang NYS, Pfeiffer RR, Warr WB, Backus ASN (1965) Stimulus coding in the cochlear nucleus. Ann Otol Rhinol Laryngol 74:463–485PubMed
Zurück zum Zitat Kisley MA, Gerstein GL (1999) Trial-to-trial variability and state-dependent modulation of auditory-evoked responses in cortex. J Neurosci 19:10451–10460PubMed Kisley MA, Gerstein GL (1999) Trial-to-trial variability and state-dependent modulation of auditory-evoked responses in cortex. J Neurosci 19:10451–10460PubMed
Zurück zum Zitat Kisley MA, Gerstein GL (2001) Daily variation and appetitive conditioning-induced plasticity of auditory cortex receptive fields. Eur J Neurosci 13:1993–2003CrossRefPubMed Kisley MA, Gerstein GL (2001) Daily variation and appetitive conditioning-induced plasticity of auditory cortex receptive fields. Eur J Neurosci 13:1993–2003CrossRefPubMed
Zurück zum Zitat Kosaki H, Hashikawa T, He J, Jones EG (1997) Tonotopic organization of auditory cortical field delineated by parvalbumin immunoreactivity in macaque monkeys. J Comp Neurol 386:304–316CrossRefPubMed Kosaki H, Hashikawa T, He J, Jones EG (1997) Tonotopic organization of auditory cortical field delineated by parvalbumin immunoreactivity in macaque monkeys. J Comp Neurol 386:304–316CrossRefPubMed
Zurück zum Zitat Liang L, Lu T, Wang X (2002) Neural representation of sinusoidal amplitude and frequency modulations in the primary auditory cortex of awake primates. J Neurophysiol 87:2237–2261PubMed Liang L, Lu T, Wang X (2002) Neural representation of sinusoidal amplitude and frequency modulations in the primary auditory cortex of awake primates. J Neurophysiol 87:2237–2261PubMed
Zurück zum Zitat Luethke LE, Krubitzer LA, Kaas JH (1989) Connections of primary auditory cortex in the new world monkey (Saguinus). J Comp Neurol 285:487–513 Luethke LE, Krubitzer LA, Kaas JH (1989) Connections of primary auditory cortex in the new world monkey (Saguinus). J Comp Neurol 285:487–513
Zurück zum Zitat Maeder P, Meuli R, Adriani M et al. (2001) Distinct pathways involved in sound recognition and localization: a human fMRI study. Neuroimage 14:802–816PubMed Maeder P, Meuli R, Adriani M et al. (2001) Distinct pathways involved in sound recognition and localization: a human fMRI study. Neuroimage 14:802–816PubMed
Zurück zum Zitat Manley JA, Muller-Preuss P (1978) Response variability of auditory cortex cells in the squirrel monkey to constant acoustic stimuli. Exp Brain Res 32:171–180PubMed Manley JA, Muller-Preuss P (1978) Response variability of auditory cortex cells in the squirrel monkey to constant acoustic stimuli. Exp Brain Res 32:171–180PubMed
Zurück zum Zitat Merzenich MM, Brugge JF (1973) Representation of the cochlear partition on the superior temporal plane of the macaque monkey. Brain Res 50:275–296PubMed Merzenich MM, Brugge JF (1973) Representation of the cochlear partition on the superior temporal plane of the macaque monkey. Brain Res 50:275–296PubMed
Zurück zum Zitat Merzenich MM, Knight PL, Roth GL (1975) Representation of the cochlea within primary auditory cortex in the cat. J Neurophysiol 38:231–249PubMed Merzenich MM, Knight PL, Roth GL (1975) Representation of the cochlea within primary auditory cortex in the cat. J Neurophysiol 38:231–249PubMed
Zurück zum Zitat Miller JM, Sutton D, Pfingst B et al. (1972) Single-cell activity in the auditory cortex of rhesus monkeys: behavioral dependency. Science 177:449–451PubMed Miller JM, Sutton D, Pfingst B et al. (1972) Single-cell activity in the auditory cortex of rhesus monkeys: behavioral dependency. Science 177:449–451PubMed
Zurück zum Zitat Morel A, Kaas JH (1992) Subdivisions and connections of auditory cortex in owl monkeys. J Comp Neurol 318:27–63 Morel A, Kaas JH (1992) Subdivisions and connections of auditory cortex in owl monkeys. J Comp Neurol 318:27–63
Zurück zum Zitat Morel A, Garraghty PE, Kaas JH (1993) Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. J Comp Neurol 335:437–459PubMed Morel A, Garraghty PE, Kaas JH (1993) Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. J Comp Neurol 335:437–459PubMed
Zurück zum Zitat Nagarajan SS, Cheung SW, Bedenbaugh P et al. (2002) Representation of spectral and temporal envelope of twitter vocalizations in common marmoset primary auditory cortex. J Neurophysiol 87:1723–1737PubMed Nagarajan SS, Cheung SW, Bedenbaugh P et al. (2002) Representation of spectral and temporal envelope of twitter vocalizations in common marmoset primary auditory cortex. J Neurophysiol 87:1723–1737PubMed
Zurück zum Zitat Ohl FW, Scheich H (1997) Learning-induced dynamic receptive field changes in primary auditory cortex of the unanaesthetized Mongolian gerbil. J Comp Physiol [A] 181:685–696 Ohl FW, Scheich H (1997) Learning-induced dynamic receptive field changes in primary auditory cortex of the unanaesthetized Mongolian gerbil. J Comp Physiol [A] 181:685–696
Zurück zum Zitat Paxinos G, Huang XF, Toga AW (2000) The rhesus monkey brain in stereotaxic coordinates. Academic, London, pp 1–165 Paxinos G, Huang XF, Toga AW (2000) The rhesus monkey brain in stereotaxic coordinates. Academic, London, pp 1–165
Zurück zum Zitat Pelleg-Toiba R, Wollberg Z (1989) Tuning properties of auditory cortex cells in the awake squirrel monkey. Exp Brain Res 74:353–364PubMed Pelleg-Toiba R, Wollberg Z (1989) Tuning properties of auditory cortex cells in the awake squirrel monkey. Exp Brain Res 74:353–364PubMed
Zurück zum Zitat Pelleg-Toiba R, Wollberg Z (1991) Discrimination of communication calls in the squirrel monkey: “call detectors” or “cell ensembles”? J Basic Clin Physiol Pharmacol 2:257–272PubMed Pelleg-Toiba R, Wollberg Z (1991) Discrimination of communication calls in the squirrel monkey: “call detectors” or “cell ensembles”? J Basic Clin Physiol Pharmacol 2:257–272PubMed
Zurück zum Zitat Pfeiffer RR (1966) Classification of response patterns of spike discharges for units in the cochlear nucleus: tone burst stimulation. Exp Brain Res 1:220–235PubMed Pfeiffer RR (1966) Classification of response patterns of spike discharges for units in the cochlear nucleus: tone burst stimulation. Exp Brain Res 1:220–235PubMed
Zurück zum Zitat Pfeiffer RR, Kiang NYS (1965) Spike discharge pattern of spontaneous and continuously stimulated activity in the cochlear nucleus of anaesthetized cats. Biophys J 5:301–316 Pfeiffer RR, Kiang NYS (1965) Spike discharge pattern of spontaneous and continuously stimulated activity in the cochlear nucleus of anaesthetized cats. Biophys J 5:301–316
Zurück zum Zitat Pfingst BE, O’Connor TA (1980) A vertical stereotaxic approach to auditory cortex in the unanesthetized monkey. J Neurosci Methods 2:33–45CrossRefPubMed Pfingst BE, O’Connor TA (1980) A vertical stereotaxic approach to auditory cortex in the unanesthetized monkey. J Neurosci Methods 2:33–45CrossRefPubMed
Zurück zum Zitat Pfingst BE, O’Connor TA (1981) Characteristics of neurons in auditory cortex of monkeys performing a simple auditory task. J Neurophysiol 45:16–34PubMed Pfingst BE, O’Connor TA (1981) Characteristics of neurons in auditory cortex of monkeys performing a simple auditory task. J Neurophysiol 45:16–34PubMed
Zurück zum Zitat Pfingst BE, O’Connor TA, Miller JM (1977) Response plasticity of neurons in auditory cortex of the rhesus monkey. Exp Brain Res 29:393–404PubMed Pfingst BE, O’Connor TA, Miller JM (1977) Response plasticity of neurons in auditory cortex of the rhesus monkey. Exp Brain Res 29:393–404PubMed
Zurück zum Zitat Rauschecker JP (1998a) Cortical processing of complex sounds. Curr Opin Neurobiol 8:516–521PubMed Rauschecker JP (1998a) Cortical processing of complex sounds. Curr Opin Neurobiol 8:516–521PubMed
Zurück zum Zitat Rauschecker JP (1998b) Parallel processing in the auditory cortex of primates. Audio Neurootol 3:86–103CrossRef Rauschecker JP (1998b) Parallel processing in the auditory cortex of primates. Audio Neurootol 3:86–103CrossRef
Zurück zum Zitat Rauschecker JP, Tian B (2000) Mechanisms and streams for processing of “what” and “where” in the auditory cortex. Proc Natl Acad Sci USA 97(22):11800–11806CrossRefPubMed Rauschecker JP, Tian B (2000) Mechanisms and streams for processing of “what” and “where” in the auditory cortex. Proc Natl Acad Sci USA 97(22):11800–11806CrossRefPubMed
Zurück zum Zitat Rauschecker JP, Tian B, Hauser M (1995) Processing of complex sounds in the macaque nonprimary auditory cortex. Science 268:111–114PubMed Rauschecker JP, Tian B, Hauser M (1995) Processing of complex sounds in the macaque nonprimary auditory cortex. Science 268:111–114PubMed
Zurück zum Zitat Rauschecker JP, Tian B, Pons T, Mishkin M (1997) Serial and parallel processing in rhesus monkey auditory cortex. J Comp Neurol 382:89–103PubMed Rauschecker JP, Tian B, Pons T, Mishkin M (1997) Serial and parallel processing in rhesus monkey auditory cortex. J Comp Neurol 382:89–103PubMed
Zurück zum Zitat Reale RA, Imig TJ (1980) Tonotopic organization in auditory cortex of the cat. J Comp Neurol 192:265–291PubMed Reale RA, Imig TJ (1980) Tonotopic organization in auditory cortex of the cat. J Comp Neurol 192:265–291PubMed
Zurück zum Zitat Recanzone GH (2000a) Response profiles of auditory cortical neurons to tones and noise in behaving macaque monkeys. Hear Res 150:104–118CrossRefPubMed Recanzone GH (2000a) Response profiles of auditory cortical neurons to tones and noise in behaving macaque monkeys. Hear Res 150:104–118CrossRefPubMed
Zurück zum Zitat Recanzone GH (2000b) Spatial processing in the auditory cortex of the macaque monkey. PNAS 97:11829–11835CrossRefPubMed Recanzone GH (2000b) Spatial processing in the auditory cortex of the macaque monkey. PNAS 97:11829–11835CrossRefPubMed
Zurück zum Zitat Recanzone GH, Schreiner CE, Sutter ML, Beitel RE, Merzenich MM (1999) Functional organization of spectral receptive fields in the primary auditory cortex of the owl monkey. J Comp Neurol 415:460–481CrossRefPubMed Recanzone GH, Schreiner CE, Sutter ML, Beitel RE, Merzenich MM (1999) Functional organization of spectral receptive fields in the primary auditory cortex of the owl monkey. J Comp Neurol 415:460–481CrossRefPubMed
Zurück zum Zitat Recanzone GH, Guard DC, Phan ML (2000a) Frequency and intensity response properties of single neurons in the auditory cortex of the behaving macaque monkey. J Neurophysiol 83:2315–2331PubMed Recanzone GH, Guard DC, Phan ML (2000a) Frequency and intensity response properties of single neurons in the auditory cortex of the behaving macaque monkey. J Neurophysiol 83:2315–2331PubMed
Zurück zum Zitat Recanzone GH, Guard DC, Phan ML, Su T-I K (2000b) Correlation between the activity of single auditory cortical neurons and sound-localization behavior in the macaque monkey. J Neurophysiol 83:2723–2739PubMed Recanzone GH, Guard DC, Phan ML, Su T-I K (2000b) Correlation between the activity of single auditory cortical neurons and sound-localization behavior in the macaque monkey. J Neurophysiol 83:2723–2739PubMed
Zurück zum Zitat Rhode WS, Kettner RE (1987) Physiological study of neurons in the dorsal and posteroventral cochlear nucleus of the unanesthetized cat. J Neurophysiol 57:414–442 Rhode WS, Kettner RE (1987) Physiological study of neurons in the dorsal and posteroventral cochlear nucleus of the unanesthetized cat. J Neurophysiol 57:414–442
Zurück zum Zitat Romanski LM, Bates JF, Goldman-Rakic PS (1999a) Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey. J Comp Neurol 403:141–157CrossRefPubMed Romanski LM, Bates JF, Goldman-Rakic PS (1999a) Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey. J Comp Neurol 403:141–157CrossRefPubMed
Zurück zum Zitat Romanski LM, Tian B, Fritz J et al. (1999b) Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nat Neurosci 2:1131–1136PubMed Romanski LM, Tian B, Fritz J et al. (1999b) Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nat Neurosci 2:1131–1136PubMed
Zurück zum Zitat Ryan A, Miller J (1977) Effects of behavioral performance on single-unit firing patterns in inferior colliculus of the rhesus monkey. J Neurophysiol 40:943–956PubMed Ryan A, Miller J (1977) Effects of behavioral performance on single-unit firing patterns in inferior colliculus of the rhesus monkey. J Neurophysiol 40:943–956PubMed
Zurück zum Zitat Ryan A, Miller J (1978) Single-unit responses in the inferior colliculus of the awake and performing rhesus monkey. Exp Brain Res 32:389–407 Ryan A, Miller J (1978) Single-unit responses in the inferior colliculus of the awake and performing rhesus monkey. Exp Brain Res 32:389–407
Zurück zum Zitat Schultz W, Tremblay L, Hollerman JR (2000) Reward processing in primate orbitofrontal cortex and basal ganglia. Cereb Cortex 10:272–283CrossRefPubMed Schultz W, Tremblay L, Hollerman JR (2000) Reward processing in primate orbitofrontal cortex and basal ganglia. Cereb Cortex 10:272–283CrossRefPubMed
Zurück zum Zitat Schwarz DWF, Tomlinson RWW (1990) Spectral response patterns of auditory cortex neurons to harmonic complex tones in alert monkey (Macaca mulatta). J Neurophysiol 64:282–298PubMed Schwarz DWF, Tomlinson RWW (1990) Spectral response patterns of auditory cortex neurons to harmonic complex tones in alert monkey (Macaca mulatta). J Neurophysiol 64:282–298PubMed
Zurück zum Zitat Shima K, Tanji J (1998) Role for cingulate motor area cells in voluntary movement selection based on reward. Science 282:1335–1338CrossRefPubMed Shima K, Tanji J (1998) Role for cingulate motor area cells in voluntary movement selection based on reward. Science 282:1335–1338CrossRefPubMed
Zurück zum Zitat Sutter ML (2000) Shapes and level tolerances of frequency tuning curves in primary auditory cortex: quantitative measures and population codes. J Neurophysiol 84:1012–1025PubMed Sutter ML (2000) Shapes and level tolerances of frequency tuning curves in primary auditory cortex: quantitative measures and population codes. J Neurophysiol 84:1012–1025PubMed
Zurück zum Zitat Tian B, Reser D, Durham A, Kustov A, Rauschecker JP (2001) Functional specialization in rhesus monkey auditory cortex. Science 292:290–293 Tian B, Reser D, Durham A, Kustov A, Rauschecker JP (2001) Functional specialization in rhesus monkey auditory cortex. Science 292:290–293
Zurück zum Zitat Vaadia E, Gottlieb Y, Abeles M (1982) Single-unit activity related to sensorimotor association in auditory cortex of a monkey. J Neurophysiol 48:1210–1213 Vaadia E, Gottlieb Y, Abeles M (1982) Single-unit activity related to sensorimotor association in auditory cortex of a monkey. J Neurophysiol 48:1210–1213
Zurück zum Zitat Wang X, Kadia SC (2001) Differential representation of species-specific primate vocalizations in the auditory cortices of marmoset and cat. J Neurophysiol 86:2616–2620PubMed Wang X, Kadia SC (2001) Differential representation of species-specific primate vocalizations in the auditory cortices of marmoset and cat. J Neurophysiol 86:2616–2620PubMed
Zurück zum Zitat Wang X, Merzenich MM, Beitel R, Schreiner CE (1995) Representation of a species-specific vocalization in the primary auditory cortex of the common marmoset: temporal and spectral characteristics. J Neurophysiol 74:2685–2706PubMed Wang X, Merzenich MM, Beitel R, Schreiner CE (1995) Representation of a species-specific vocalization in the primary auditory cortex of the common marmoset: temporal and spectral characteristics. J Neurophysiol 74:2685–2706PubMed
Zurück zum Zitat Wannier T, Liu J, Morel A, Jouffrais C, Rouiller EM (2002) Neuronal activity in primate striatum and pallidum related to bimanual motor actions. Neuroreport 13:143–147PubMed Wannier T, Liu J, Morel A, Jouffrais C, Rouiller EM (2002) Neuronal activity in primate striatum and pallidum related to bimanual motor actions. Neuroreport 13:143–147PubMed
Zurück zum Zitat Weinberger NM, Javid R, Lepan B (1993) Long-term retention of learning-induced receptive-field plasticity in the auditory cortex. Proc Natl Acad Sci USA 90:2394–2398PubMed Weinberger NM, Javid R, Lepan B (1993) Long-term retention of learning-induced receptive-field plasticity in the auditory cortex. Proc Natl Acad Sci USA 90:2394–2398PubMed
Zurück zum Zitat Werner-Reiss U, Kelly AK, Trause AS, Underhill AM, Groh JM (2003) Eye position affects activity in primary auditory cortex of primates. Curr Biol 13:554–562CrossRefPubMed Werner-Reiss U, Kelly AK, Trause AS, Underhill AM, Groh JM (2003) Eye position affects activity in primary auditory cortex of primates. Curr Biol 13:554–562CrossRefPubMed
Zurück zum Zitat Young ED, Robert J-M, Shofner WP (1988) Regularity and latency of units in ventral cochlear nucleus: implications for unit classification and generation of response properties. J Neurophysiol 60:1–29PubMed Young ED, Robert J-M, Shofner WP (1988) Regularity and latency of units in ventral cochlear nucleus: implications for unit classification and generation of response properties. J Neurophysiol 60:1–29PubMed
Zurück zum Zitat Zurita P, Villa AEP, Ribaupierre Y de, Ribaupierre F de, Rouiller EM (1994) Changes of single unit activity in the cat’s auditory thalamus and cortex associated to different anesthetic conditions. Neurosci Res 19:303–316PubMed Zurita P, Villa AEP, Ribaupierre Y de, Ribaupierre F de, Rouiller EM (1994) Changes of single unit activity in the cat’s auditory thalamus and cortex associated to different anesthetic conditions. Neurosci Res 19:303–316PubMed
Metadaten
Titel
Single-unit responses in the auditory cortex of monkeys performing a conditional acousticomotor task
verfasst von
Caroline Durif
Christophe Jouffrais
Eric M. Rouiller
Publikationsdatum
01.12.2003
Erschienen in
Experimental Brain Research / Ausgabe 4/2003
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-003-1613-3

Weitere Artikel der Ausgabe 4/2003

Experimental Brain Research 4/2003 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.