Skip to main content
Erschienen in: Heart Failure Reviews 2/2017

05.11.2016

Skeletal muscle bioenergetics in aging and heart failure

verfasst von: Sophia Z. Liu, David J. Marcinek

Erschienen in: Heart Failure Reviews | Ausgabe 2/2017

Einloggen, um Zugang zu erhalten

Abstract

Changes in mitochondrial capacity and quality play a critical role in skeletal and cardiac muscle dysfunction. In vivo measurements of mitochondrial capacity provide a clear link between physical activity and mitochondrial function in aging and heart failure, although the cause and effect relationship remains unclear. Age-related decline in mitochondrial quality leads to mitochondrial defects that affect redox, calcium, and energy-sensitive signaling by altering the cellular environment that can result in skeletal muscle dysfunction independent of reduced mitochondrial capacity. This reduced mitochondrial quality with age is also likely to sensitize skeletal muscle mitochondria to elevated angiotensin or beta-adrenergic signaling associated with heart failure. This synergy between aging and heart failure could further disrupt cell energy and redox homeostasis and contribute to exercise intolerance in this patient population. Therefore, the interaction between aging and heart failure, particularly with respect to mitochondrial dysfunction, should be a consideration when developing strategies to improve quality of life in heart failure patients. Given the central role of the mitochondria in skeletal and cardiac muscle dysfunction, mitochondrial quality may provide a common link for targeted interventions in these populations.
Literatur
1.
Zurück zum Zitat Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott MM, Meigs J, Mozaffarian D, Mussolino M, Nichol G, Roger VL, Rosamond W, Sacco R, Sorlie P, Stafford R, Thom T, Wasserthiel-Smoller S, Wong ND, Wylie-Rosett J, American Heart Association Statistics C, Stroke Statistics S (2010) Executive summary: heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 121(7):948–954PubMedCrossRef Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott MM, Meigs J, Mozaffarian D, Mussolino M, Nichol G, Roger VL, Rosamond W, Sacco R, Sorlie P, Stafford R, Thom T, Wasserthiel-Smoller S, Wong ND, Wylie-Rosett J, American Heart Association Statistics C, Stroke Statistics S (2010) Executive summary: heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 121(7):948–954PubMedCrossRef
2.
Zurück zum Zitat Hughes VA, Frontera WR, Wood M, Evans WJ, Dallal GE, Roubenoff R, Fiatarone Singh MA (2001) Longitudinal muscle strength changes in older adults: influence of muscle mass, physical activity, and health. J Gerontol A Biol Sci Med Sci 56(5):B209–B217PubMedCrossRef Hughes VA, Frontera WR, Wood M, Evans WJ, Dallal GE, Roubenoff R, Fiatarone Singh MA (2001) Longitudinal muscle strength changes in older adults: influence of muscle mass, physical activity, and health. J Gerontol A Biol Sci Med Sci 56(5):B209–B217PubMedCrossRef
4.
Zurück zum Zitat Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N (2004) Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 37(6):755–767PubMedCrossRef Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N (2004) Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 37(6):755–767PubMedCrossRef
5.
Zurück zum Zitat Fisher-Wellman KH, Neufer PD (2012) Linking mitochondrial bioenergetics to insulin resistance via redox biology. Trends Endocrinol Metab 23(3):142–153PubMedPubMedCentralCrossRef Fisher-Wellman KH, Neufer PD (2012) Linking mitochondrial bioenergetics to insulin resistance via redox biology. Trends Endocrinol Metab 23(3):142–153PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Jiang P, Du W, Mancuso A, Wellen KE, Yang X (2013) Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature 493(7434):689–693PubMedPubMedCentralCrossRef Jiang P, Du W, Mancuso A, Wellen KE, Yang X (2013) Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature 493(7434):689–693PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Merritt TJ, Kuczynski C, Sezgin E, Zhu CT, Kumagai S, Eanes WF (2009) Quantifying interactions within the NADP(H) enzyme network in Drosophila melanogaster. Genetics 182(2):565–574PubMedPubMedCentralCrossRef Merritt TJ, Kuczynski C, Sezgin E, Zhu CT, Kumagai S, Eanes WF (2009) Quantifying interactions within the NADP(H) enzyme network in Drosophila melanogaster. Genetics 182(2):565–574PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Gameiro PA, Laviolette LA, Kelleher JK, Iliopoulos O, Stephanopoulos G (2013) Cofactor balance by nicotinamide nucleotide transhydrogenase (NNT) coordinates reductive carboxylation and glucose catabolism in the tricarboxylic acid (TCA) cycle. J Biol Chem 288(18):12967–12977PubMedPubMedCentralCrossRef Gameiro PA, Laviolette LA, Kelleher JK, Iliopoulos O, Stephanopoulos G (2013) Cofactor balance by nicotinamide nucleotide transhydrogenase (NNT) coordinates reductive carboxylation and glucose catabolism in the tricarboxylic acid (TCA) cycle. J Biol Chem 288(18):12967–12977PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Anderson EJ, Kypson AP, Rodriguez E, Anderson CA, Lehr EJ, Neufer PD (2009) Substrate-specific derangements in mitochondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart. J Am Coll Cardiol 54(20):1891–1898PubMedPubMedCentralCrossRef Anderson EJ, Kypson AP, Rodriguez E, Anderson CA, Lehr EJ, Neufer PD (2009) Substrate-specific derangements in mitochondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart. J Am Coll Cardiol 54(20):1891–1898PubMedPubMedCentralCrossRef
10.
11.
Zurück zum Zitat Feissner RF, Skalska J, Gaum WE, Sheu SS (2009) Crosstalk signaling between mitochondrial Ca2+ and ROS. Front Biosci (Landmark Ed) 14:1197–1218CrossRef Feissner RF, Skalska J, Gaum WE, Sheu SS (2009) Crosstalk signaling between mitochondrial Ca2+ and ROS. Front Biosci (Landmark Ed) 14:1197–1218CrossRef
12.
Zurück zum Zitat Brookes PS, Levonen AL, Shiva S, Sarti P, Darley-Usmar VM (2002) Mitochondria: regulators of signal transduction by reactive oxygen and nitrogen species. Free Radic Biol Med 33(6):755–764PubMedCrossRef Brookes PS, Levonen AL, Shiva S, Sarti P, Darley-Usmar VM (2002) Mitochondria: regulators of signal transduction by reactive oxygen and nitrogen species. Free Radic Biol Med 33(6):755–764PubMedCrossRef
13.
Zurück zum Zitat Kramer PA, Duan J, Qian WJ, Marcinek DJ (2015) The measurement of reversible redox dependent post-translational modifications and their regulation of mitochondrial and skeletal muscle function. Front Physiol 6:347PubMedPubMedCentralCrossRef Kramer PA, Duan J, Qian WJ, Marcinek DJ (2015) The measurement of reversible redox dependent post-translational modifications and their regulation of mitochondrial and skeletal muscle function. Front Physiol 6:347PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Fitts RH (1994) Cellular mechanisms of muscle fatigue. Physiol Rev 74(1):49–94PubMed Fitts RH (1994) Cellular mechanisms of muscle fatigue. Physiol Rev 74(1):49–94PubMed
15.
Zurück zum Zitat Okamoto K, Wang W, Rounds J, Chambers EA, Jacobs DO (2001) ATP from glycolysis is required for normal sodium homeostasis in resting fast-twitch rodent skeletal muscle. Am J Physiol Endocrinol Metab 281(3):E479–E488PubMed Okamoto K, Wang W, Rounds J, Chambers EA, Jacobs DO (2001) ATP from glycolysis is required for normal sodium homeostasis in resting fast-twitch rodent skeletal muscle. Am J Physiol Endocrinol Metab 281(3):E479–E488PubMed
16.
Zurück zum Zitat Homsher E, Kean CJ (1978) Skeletal muscle energetics and metabolism. Annu Rev Physiol 40:93–131PubMedCrossRef Homsher E, Kean CJ (1978) Skeletal muscle energetics and metabolism. Annu Rev Physiol 40:93–131PubMedCrossRef
17.
Zurück zum Zitat Rall JA (1985) Energetic aspects of skeletal muscle contraction: implications of fiber types. Exerc Sport Sci Rev 13:33–74PubMed Rall JA (1985) Energetic aspects of skeletal muscle contraction: implications of fiber types. Exerc Sport Sci Rev 13:33–74PubMed
18.
20.
Zurück zum Zitat Siegel MP, Kruse SE, Knowels G, Salmon A, Beyer R, Xie H, Van Remmen H, Smith SR, Marcinek DJ (2011) Reduced coupling of oxidative phosphorylation in vivo precedes electron transport chain defects due to mild oxidative stress in mice. PLoS One 6(11):e26963PubMedPubMedCentralCrossRef Siegel MP, Kruse SE, Knowels G, Salmon A, Beyer R, Xie H, Van Remmen H, Smith SR, Marcinek DJ (2011) Reduced coupling of oxidative phosphorylation in vivo precedes electron transport chain defects due to mild oxidative stress in mice. PLoS One 6(11):e26963PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Siegel MP, Wilbur T, Mathis M, Shankland EG, Trieu A, Harper ME, Marcinek DJ (2012) Impaired adaptability of in vivo mitochondrial energetics to acute oxidative insult in aged skeletal muscle. Mech Ageing Dev 133(9–10):620–628PubMedPubMedCentralCrossRef Siegel MP, Wilbur T, Mathis M, Shankland EG, Trieu A, Harper ME, Marcinek DJ (2012) Impaired adaptability of in vivo mitochondrial energetics to acute oxidative insult in aged skeletal muscle. Mech Ageing Dev 133(9–10):620–628PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Marcinek DJ, Schenkman KA, Ciesielski WA, Lee D, Conley KE (2005) Reduced mitochondrial coupling in vivo alters cellular energetics in aged mouse skeletal muscle. J Physiol 569(Pt 2):467–473PubMedPubMedCentralCrossRef Marcinek DJ, Schenkman KA, Ciesielski WA, Lee D, Conley KE (2005) Reduced mitochondrial coupling in vivo alters cellular energetics in aged mouse skeletal muscle. J Physiol 569(Pt 2):467–473PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE (2002) Exercise capacity and mortality among men referred for exercise testing. N Engl J Med 346(11):793–801PubMedCrossRef Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE (2002) Exercise capacity and mortality among men referred for exercise testing. N Engl J Med 346(11):793–801PubMedCrossRef
24.
Zurück zum Zitat Fleg JL, Morrell CH, Bos AG, Brant LJ, Talbot LA, Wright JG, Lakatta EG (2005) Accelerated longitudinal decline of aerobic capacity in healthy older adults. Circulation 112(5):674–682PubMedCrossRef Fleg JL, Morrell CH, Bos AG, Brant LJ, Talbot LA, Wright JG, Lakatta EG (2005) Accelerated longitudinal decline of aerobic capacity in healthy older adults. Circulation 112(5):674–682PubMedCrossRef
25.
Zurück zum Zitat Upadhya B, Haykowsky MJ, Eggebeen J, Kitzman DW (2015) Exercise intolerance in heart failure with preserved ejection fraction: more than a heart problem. J Geriatr Cardiol 12(3):294–304PubMedPubMedCentral Upadhya B, Haykowsky MJ, Eggebeen J, Kitzman DW (2015) Exercise intolerance in heart failure with preserved ejection fraction: more than a heart problem. J Geriatr Cardiol 12(3):294–304PubMedPubMedCentral
26.
Zurück zum Zitat Molina AJ, Bharadwaj MS, Van Horn C, Nicklas BJ, Lyles MF, Eggebeen J, Haykowsky MJ, Brubaker PH, Kitzman DW (2016) Skeletal muscle mitochondrial content, oxidative capacity, and Mfn2 expression are reduced in older patients with heart failure and preserved ejection fraction and are related to exercise intolerance. JACC Heart Fail 4(8):636–645PubMedCrossRef Molina AJ, Bharadwaj MS, Van Horn C, Nicklas BJ, Lyles MF, Eggebeen J, Haykowsky MJ, Brubaker PH, Kitzman DW (2016) Skeletal muscle mitochondrial content, oxidative capacity, and Mfn2 expression are reduced in older patients with heart failure and preserved ejection fraction and are related to exercise intolerance. JACC Heart Fail 4(8):636–645PubMedCrossRef
27.
Zurück zum Zitat Hoppeler H (1990) The different relationship of VO2max to muscle mitochondria in humans and quadrupedal animals. Respir Physiol 80(2–3):137–145PubMedCrossRef Hoppeler H (1990) The different relationship of VO2max to muscle mitochondria in humans and quadrupedal animals. Respir Physiol 80(2–3):137–145PubMedCrossRef
28.
Zurück zum Zitat Heath GW, Hagberg JM, Ehsani AA, Holloszy JO (1981) A physiological comparison of young and older endurance athletes. J Appl Physiol Respir Environ Exerc Physiol 51(3):634–640PubMed Heath GW, Hagberg JM, Ehsani AA, Holloszy JO (1981) A physiological comparison of young and older endurance athletes. J Appl Physiol Respir Environ Exerc Physiol 51(3):634–640PubMed
29.
Zurück zum Zitat Rogers MA, Hagberg JM, Martin WH 3rd, Ehsani AA, Holloszy JO (1990) Decline in VO2max with aging in master athletes and sedentary men. J Appl Physiol (1985) 68(5):2195–2199 Rogers MA, Hagberg JM, Martin WH 3rd, Ehsani AA, Holloszy JO (1990) Decline in VO2max with aging in master athletes and sedentary men. J Appl Physiol (1985) 68(5):2195–2199
31.
Zurück zum Zitat Mancini DM, Ferraro N, Tuchler M, Chance B, Wilson JR (1988) Detection of abnormal calf muscle metabolism in patients with heart failure using phosphorus-31 nuclear magnetic resonance. Am J Cardiol 62(17):1234–1240PubMedCrossRef Mancini DM, Ferraro N, Tuchler M, Chance B, Wilson JR (1988) Detection of abnormal calf muscle metabolism in patients with heart failure using phosphorus-31 nuclear magnetic resonance. Am J Cardiol 62(17):1234–1240PubMedCrossRef
32.
Zurück zum Zitat Dudley GA, Tullson PC, Terjung RL (1987) Influence of mitochondrial content on the sensitivity of respiratory control. J Biol Chem 262(19):9109–9114PubMed Dudley GA, Tullson PC, Terjung RL (1987) Influence of mitochondrial content on the sensitivity of respiratory control. J Biol Chem 262(19):9109–9114PubMed
33.
Zurück zum Zitat Cadenas E (2004) Mitochondrial free radical production and cell signaling. Mol Asp Med 25(1–2):17–26CrossRef Cadenas E (2004) Mitochondrial free radical production and cell signaling. Mol Asp Med 25(1–2):17–26CrossRef
34.
Zurück zum Zitat Garcia J, Han D, Sancheti H, Yap LP, Kaplowitz N, Cadenas E (2010) Regulation of mitochondrial glutathione redox status and protein glutathionylation by respiratory substrates. J Biol Chem 285(51):39646–39654PubMedPubMedCentralCrossRef Garcia J, Han D, Sancheti H, Yap LP, Kaplowitz N, Cadenas E (2010) Regulation of mitochondrial glutathione redox status and protein glutathionylation by respiratory substrates. J Biol Chem 285(51):39646–39654PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Pan X, Liu J, Nguyen T, Liu C, Sun J, Teng Y, Fergusson MM, Rovira II, Allen M, Springer DA, Aponte AM, Gucek M, Balaban RS, Murphy E, Finkel T (2013) The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat Cell Biol 15(12):1464–1472PubMedPubMedCentralCrossRef Pan X, Liu J, Nguyen T, Liu C, Sun J, Teng Y, Fergusson MM, Rovira II, Allen M, Springer DA, Aponte AM, Gucek M, Balaban RS, Murphy E, Finkel T (2013) The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat Cell Biol 15(12):1464–1472PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Jouaville LS, Pinton P, Bastianutto C, Rutter GA, Rizzuto R (1999) Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc Natl Acad Sci U S A 96(24):13807–13812PubMedPubMedCentralCrossRef Jouaville LS, Pinton P, Bastianutto C, Rutter GA, Rizzuto R (1999) Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc Natl Acad Sci U S A 96(24):13807–13812PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Szalai G, Csordas G, Hantash BM, Thomas AP, Hajnoczky G (2000) Calcium signal transmission between ryanodine receptors and mitochondria. J Biol Chem 275(20):15305–15313PubMedCrossRef Szalai G, Csordas G, Hantash BM, Thomas AP, Hajnoczky G (2000) Calcium signal transmission between ryanodine receptors and mitochondria. J Biol Chem 275(20):15305–15313PubMedCrossRef
38.
Zurück zum Zitat Kemp GJ, Ahmad RE, Nicolay K, Prompers JJ (2015) Quantification of skeletal muscle mitochondrial function by 31P magnetic resonance spectroscopy techniques: a quantitative review. Acta Physiol (Oxf) 213(1):107–144CrossRef Kemp GJ, Ahmad RE, Nicolay K, Prompers JJ (2015) Quantification of skeletal muscle mitochondrial function by 31P magnetic resonance spectroscopy techniques: a quantitative review. Acta Physiol (Oxf) 213(1):107–144CrossRef
39.
Zurück zum Zitat Campbell MD, Marcinek DJ (2016) Evaluation of in vivo mitochondrial bioenergetics in skeletal muscle using NMR and optical methods. Biochim Biophys Acta 1862(4):716–724PubMedCrossRef Campbell MD, Marcinek DJ (2016) Evaluation of in vivo mitochondrial bioenergetics in skeletal muscle using NMR and optical methods. Biochim Biophys Acta 1862(4):716–724PubMedCrossRef
40.
Zurück zum Zitat Lanza IR, Bhagra S, Nair KS, Port JD (2011) Measurement of human skeletal muscle oxidative capacity by 31P-MR spectroscopy: a cross-validation with in vitro measurements. J Magn Reson Imaging 34(5):1143–1150PubMedPubMedCentralCrossRef Lanza IR, Bhagra S, Nair KS, Port JD (2011) Measurement of human skeletal muscle oxidative capacity by 31P-MR spectroscopy: a cross-validation with in vitro measurements. J Magn Reson Imaging 34(5):1143–1150PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Percival JM, Siegel MP, Knowels G, Marcinek DJ (2013) Defects in mitochondrial localization and ATP synthesis in the mdx mouse model of Duchenne muscular dystrophy are not alleviated by PDE5 inhibition. Hum Mol Genet 22(1):153–167PubMedCrossRef Percival JM, Siegel MP, Knowels G, Marcinek DJ (2013) Defects in mitochondrial localization and ATP synthesis in the mdx mouse model of Duchenne muscular dystrophy are not alleviated by PDE5 inhibition. Hum Mol Genet 22(1):153–167PubMedCrossRef
42.
Zurück zum Zitat Broskey NT, Boss A, Fares EJ, Greggio C, Gremion G, Schluter L, Hans D, Kreis R, Boesch C, Amati F (2015) Exercise efficiency relates with mitochondrial content and function in older adults. Physiol Rep 3(6) Broskey NT, Boss A, Fares EJ, Greggio C, Gremion G, Schluter L, Hans D, Kreis R, Boesch C, Amati F (2015) Exercise efficiency relates with mitochondrial content and function in older adults. Physiol Rep 3(6)
43.
Zurück zum Zitat Coen PM, Jubrias SA, Distefano G, Amati F, Mackey DC, Glynn NW, Manini TM, Wohlgemuth SE, Leeuwenburgh C, Cummings SR, Newman AB, Ferrucci L, Toledo FG, Shankland E, Conley KE, Goodpaster BH (2013) Skeletal muscle mitochondrial energetics are associated with maximal aerobic capacity and walking speed in older adults. J Gerontol A Biol Sci Med Sci 68(4):447–455PubMedCrossRef Coen PM, Jubrias SA, Distefano G, Amati F, Mackey DC, Glynn NW, Manini TM, Wohlgemuth SE, Leeuwenburgh C, Cummings SR, Newman AB, Ferrucci L, Toledo FG, Shankland E, Conley KE, Goodpaster BH (2013) Skeletal muscle mitochondrial energetics are associated with maximal aerobic capacity and walking speed in older adults. J Gerontol A Biol Sci Med Sci 68(4):447–455PubMedCrossRef
44.
Zurück zum Zitat Ryan TE, Erickson ML, Brizendine JT, Young HJ, McCully KK (2012) Noninvasive evaluation of skeletal muscle mitochondrial capacity with near-infrared spectroscopy: correcting for blood volume changes. J Appl Physiol (1985) 113(2):175–183CrossRef Ryan TE, Erickson ML, Brizendine JT, Young HJ, McCully KK (2012) Noninvasive evaluation of skeletal muscle mitochondrial capacity with near-infrared spectroscopy: correcting for blood volume changes. J Appl Physiol (1985) 113(2):175–183CrossRef
45.
Zurück zum Zitat Ryan TE, Southern WM, Brizendine JT, McCully KK (2013) Activity-induced changes in skeletal muscle metabolism measured with optical spectroscopy. Med Sci Sports Exerc 45(12):2346–2352PubMedCrossRef Ryan TE, Southern WM, Brizendine JT, McCully KK (2013) Activity-induced changes in skeletal muscle metabolism measured with optical spectroscopy. Med Sci Sports Exerc 45(12):2346–2352PubMedCrossRef
46.
Zurück zum Zitat Ryan TE, Southern WM, Reynolds MA, McCully KK (2013) A cross-validation of near-infrared spectroscopy measurements of skeletal muscle oxidative capacity with phosphorus magnetic resonance spectroscopy. J Appl Physiol (1985) 115(12):1757–1766CrossRef Ryan TE, Southern WM, Reynolds MA, McCully KK (2013) A cross-validation of near-infrared spectroscopy measurements of skeletal muscle oxidative capacity with phosphorus magnetic resonance spectroscopy. J Appl Physiol (1985) 115(12):1757–1766CrossRef
47.
Zurück zum Zitat De Blasi RA, Almenrader N, Aurisicchio P, Ferrari M (1997) Comparison of two methods of measuring forearm oxygen consumption (VO2) by near infrared spectroscopy. J Biomed Opt 2(2):171–175PubMedCrossRef De Blasi RA, Almenrader N, Aurisicchio P, Ferrari M (1997) Comparison of two methods of measuring forearm oxygen consumption (VO2) by near infrared spectroscopy. J Biomed Opt 2(2):171–175PubMedCrossRef
48.
Zurück zum Zitat Van Beekvelt MCP, Colier WNJM, Wevers RA, Van Engelen BGM (2001) Performance of near-infrared spectroscopy in measuring local O2 consumption and blood flow in skeletal muscle, vol 90. vol 2 Van Beekvelt MCP, Colier WNJM, Wevers RA, Van Engelen BGM (2001) Performance of near-infrared spectroscopy in measuring local O2 consumption and blood flow in skeletal muscle, vol 90. vol 2
49.
Zurück zum Zitat Larsen RG, Callahan DM, Foulis SA, Kent-Braun JA (2012) Age-related changes in oxidative capacity differ between locomotory muscles and are associated with physical activity behavior. Appl Physiol Nutr Metab 37(1):88–99PubMedPubMedCentralCrossRef Larsen RG, Callahan DM, Foulis SA, Kent-Braun JA (2012) Age-related changes in oxidative capacity differ between locomotory muscles and are associated with physical activity behavior. Appl Physiol Nutr Metab 37(1):88–99PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Amara CE, Shankland EG, Jubrias SA, Marcinek DJ, Kushmerick MJ, Conley KE (2007) Mild mitochondrial uncoupling impacts cellular aging in human muscles in vivo. Proc Natl Acad Sci U S A 104(3):1057–1062PubMedPubMedCentralCrossRef Amara CE, Shankland EG, Jubrias SA, Marcinek DJ, Kushmerick MJ, Conley KE (2007) Mild mitochondrial uncoupling impacts cellular aging in human muscles in vivo. Proc Natl Acad Sci U S A 104(3):1057–1062PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Siegel MP, Kruse SE, Percival JM, Goh J, White CC, Hopkins HC, Kavanagh TJ, Szeto HH, Rabinovitch PS, Marcinek DJ (2013) Mitochondrial-targeted peptide rapidly improves mitochondrial energetics and skeletal muscle performance in aged mice. Aging Cell 12(5):763–771PubMedPubMedCentralCrossRef Siegel MP, Kruse SE, Percival JM, Goh J, White CC, Hopkins HC, Kavanagh TJ, Szeto HH, Rabinovitch PS, Marcinek DJ (2013) Mitochondrial-targeted peptide rapidly improves mitochondrial energetics and skeletal muscle performance in aged mice. Aging Cell 12(5):763–771PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Southern WM, Ryan TE, Kepple K, Murrow JR, Nilsson KR, McCully KK (2015) Reduced skeletal muscle oxidative capacity and impaired training adaptations in heart failure. Physiol Rep 3(4) Southern WM, Ryan TE, Kepple K, Murrow JR, Nilsson KR, McCully KK (2015) Reduced skeletal muscle oxidative capacity and impaired training adaptations in heart failure. Physiol Rep 3(4)
53.
Zurück zum Zitat Bhella PS, Prasad A, Heinicke K, Hastings JL, Arbab-Zadeh A, Adams-Huet B, Pacini EL, Shibata S, Palmer MD, Newcomer BR, Levine BD (2011) Abnormal haemodynamic response to exercise in heart failure with preserved ejection fraction. Eur J Heart Fail 13(12):1296–1304PubMedPubMedCentralCrossRef Bhella PS, Prasad A, Heinicke K, Hastings JL, Arbab-Zadeh A, Adams-Huet B, Pacini EL, Shibata S, Palmer MD, Newcomer BR, Levine BD (2011) Abnormal haemodynamic response to exercise in heart failure with preserved ejection fraction. Eur J Heart Fail 13(12):1296–1304PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Mancini DM, Henson D, LaManca J, Levine S (1994) Evidence of reduced respiratory muscle endurance in patients with heart failure. J Am Coll Cardiol 24(4):972–981PubMedCrossRef Mancini DM, Henson D, LaManca J, Levine S (1994) Evidence of reduced respiratory muscle endurance in patients with heart failure. J Am Coll Cardiol 24(4):972–981PubMedCrossRef
55.
Zurück zum Zitat Wiener DH, Fink LI, Maris J, Jones RA, Chance B, Wilson JR (1986) Abnormal skeletal muscle bioenergetics during exercise in patients with heart failure: role of reduced muscle blood flow. Circulation 73(6):1127–1136PubMedCrossRef Wiener DH, Fink LI, Maris J, Jones RA, Chance B, Wilson JR (1986) Abnormal skeletal muscle bioenergetics during exercise in patients with heart failure: role of reduced muscle blood flow. Circulation 73(6):1127–1136PubMedCrossRef
56.
Zurück zum Zitat Mancini DM, Coyle E, Coggan A, Beltz J, Ferraro N, Montain S, Wilson JR (1989) Contribution of intrinsic skeletal muscle changes to 31P NMR skeletal muscle metabolic abnormalities in patients with chronic heart failure. Circulation 80(5):1338–1346PubMedCrossRef Mancini DM, Coyle E, Coggan A, Beltz J, Ferraro N, Montain S, Wilson JR (1989) Contribution of intrinsic skeletal muscle changes to 31P NMR skeletal muscle metabolic abnormalities in patients with chronic heart failure. Circulation 80(5):1338–1346PubMedCrossRef
57.
Zurück zum Zitat Hart CR, Layec G, Trinity JD, Liu X, Kim SE, Groot HJ, Le Fur Y, Sorensen JR, Jeong EK, Richardson RS (2015) Evidence of preserved oxidative capacity and oxygen delivery in the plantar flexor muscles with age. J Gerontol A Biol Sci Med Sci 70(9):1067–1076PubMedCrossRef Hart CR, Layec G, Trinity JD, Liu X, Kim SE, Groot HJ, Le Fur Y, Sorensen JR, Jeong EK, Richardson RS (2015) Evidence of preserved oxidative capacity and oxygen delivery in the plantar flexor muscles with age. J Gerontol A Biol Sci Med Sci 70(9):1067–1076PubMedCrossRef
58.
Zurück zum Zitat Layec G, Trinity JD, Hart CR, Kim SE, Groot HJ, Le Fur Y, Sorensen JR, Jeong EK, Richardson RS (2015) Impact of age on exercise-induced ATP supply during supramaximal plantar flexion in humans. Am J Physiol Regul Integr Comp Physiol 309(4):R378–R388PubMedPubMedCentralCrossRef Layec G, Trinity JD, Hart CR, Kim SE, Groot HJ, Le Fur Y, Sorensen JR, Jeong EK, Richardson RS (2015) Impact of age on exercise-induced ATP supply during supramaximal plantar flexion in humans. Am J Physiol Regul Integr Comp Physiol 309(4):R378–R388PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Lanza IR, Towse TF, Caldwell GE, Wigmore DM, Kent-Braun JA (2003) Effects of age on human muscle torque, velocity, and power in two muscle groups. J Appl Physiol (1985) 95(6):2361–2369CrossRef Lanza IR, Towse TF, Caldwell GE, Wigmore DM, Kent-Braun JA (2003) Effects of age on human muscle torque, velocity, and power in two muscle groups. J Appl Physiol (1985) 95(6):2361–2369CrossRef
60.
Zurück zum Zitat Conley KE, Amara CE, Bajpeyi S, Costford SR, Murray K, Jubrias SA, Arakaki L, Marcinek DJ, Smith SR (2013) Higher mitochondrial respiration and uncoupling with reduced electron transport chain content in vivo in muscle of sedentary versus active subjects. J Clin Endocrinol Metab 98(1):129–136PubMedCrossRef Conley KE, Amara CE, Bajpeyi S, Costford SR, Murray K, Jubrias SA, Arakaki L, Marcinek DJ, Smith SR (2013) Higher mitochondrial respiration and uncoupling with reduced electron transport chain content in vivo in muscle of sedentary versus active subjects. J Clin Endocrinol Metab 98(1):129–136PubMedCrossRef
61.
Zurück zum Zitat Santanasto AJ, Glynn NW, Jubrias SA, Conley KE, Boudreau RM, Amati F, Mackey DC, Simonsick EM, Strotmeyer ES, Coen PM, Goodpaster BH, Newman AB (2015) Skeletal muscle mitochondrial function and fatigability in older adults. J Gerontol A Biol Sci Med Sci 70(11):1379–1385PubMedCrossRef Santanasto AJ, Glynn NW, Jubrias SA, Conley KE, Boudreau RM, Amati F, Mackey DC, Simonsick EM, Strotmeyer ES, Coen PM, Goodpaster BH, Newman AB (2015) Skeletal muscle mitochondrial function and fatigability in older adults. J Gerontol A Biol Sci Med Sci 70(11):1379–1385PubMedCrossRef
62.
Zurück zum Zitat Amara CE, Marcinek DJ, Shankland EG, Schenkman KA, Arakaki LS, Conley KE (2008) Mitochondrial function in vivo: spectroscopy provides window on cellular energetics. Methods 46(4):312–318PubMedCrossRef Amara CE, Marcinek DJ, Shankland EG, Schenkman KA, Arakaki LS, Conley KE (2008) Mitochondrial function in vivo: spectroscopy provides window on cellular energetics. Methods 46(4):312–318PubMedCrossRef
63.
Zurück zum Zitat Nyberg M, Mortensen SP, Cabo H, Gomez-Cabrera MC, Vina J, Hellsten Y (2014) Roles of sedentary aging and lifelong physical activity in exchange of glutathione across exercising human skeletal muscle. Free Radic Biol Med 73:166–173PubMedCrossRef Nyberg M, Mortensen SP, Cabo H, Gomez-Cabrera MC, Vina J, Hellsten Y (2014) Roles of sedentary aging and lifelong physical activity in exchange of glutathione across exercising human skeletal muscle. Free Radic Biol Med 73:166–173PubMedCrossRef
64.
Zurück zum Zitat Hutter E, Skovbro M, Lener B, Prats C, Rabol R, Dela F, Jansen-Durr P (2007) Oxidative stress and mitochondrial impairment can be separated from lipofuscin accumulation in aged human skeletal muscle. Aging Cell 6(2):245–256PubMedCrossRef Hutter E, Skovbro M, Lener B, Prats C, Rabol R, Dela F, Jansen-Durr P (2007) Oxidative stress and mitochondrial impairment can be separated from lipofuscin accumulation in aged human skeletal muscle. Aging Cell 6(2):245–256PubMedCrossRef
65.
Zurück zum Zitat Jackson MJ (2013) Interactions between reactive oxygen species generated by contractile activity and aging in skeletal muscle? Antioxid Redox Signal 19(8):804–812PubMedPubMedCentralCrossRef Jackson MJ (2013) Interactions between reactive oxygen species generated by contractile activity and aging in skeletal muscle? Antioxid Redox Signal 19(8):804–812PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Jackson MJ (2013) Monitoring of hydrogen peroxide and other reactive oxygen and nitrogen species generated by skeletal muscle. Methods Enzymol 528:279–300PubMedCrossRef Jackson MJ (2013) Monitoring of hydrogen peroxide and other reactive oxygen and nitrogen species generated by skeletal muscle. Methods Enzymol 528:279–300PubMedCrossRef
67.
Zurück zum Zitat Marcinek DJ, Siegel MP (2013) Targeting redox biology to reverse mitochondrial dysfunction. Aging (Albany NY) 5(8):588–589CrossRef Marcinek DJ, Siegel MP (2013) Targeting redox biology to reverse mitochondrial dysfunction. Aging (Albany NY) 5(8):588–589CrossRef
68.
Zurück zum Zitat Karamanlidis G, Lee CF, Garcia-Menendez L, Kolwicz SC Jr, Suthammarak W, Gong G, Sedensky MM, Morgan PG, Wang W, Tian R (2013) Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure. Cell Metab 18(2):239–250PubMedPubMedCentralCrossRef Karamanlidis G, Lee CF, Garcia-Menendez L, Kolwicz SC Jr, Suthammarak W, Gong G, Sedensky MM, Morgan PG, Wang W, Tian R (2013) Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure. Cell Metab 18(2):239–250PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat O'Rourke B, Van Eyk JE, Foster DB (2011) Mitochondrial protein phosphorylation as a regulatory modality: implications for mitochondrial dysfunction in heart failure. Congest Heart Fail 17(6):269–282PubMedPubMedCentralCrossRef O'Rourke B, Van Eyk JE, Foster DB (2011) Mitochondrial protein phosphorylation as a regulatory modality: implications for mitochondrial dysfunction in heart failure. Congest Heart Fail 17(6):269–282PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Kelly DP, Scarpulla RC (2004) Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 18(4):357–368PubMedCrossRef Kelly DP, Scarpulla RC (2004) Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 18(4):357–368PubMedCrossRef
71.
Zurück zum Zitat Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP (2000) Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 106(7):847–856PubMedPubMedCentralCrossRef Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP (2000) Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 106(7):847–856PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127(2):397–408PubMedCrossRef St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127(2):397–408PubMedCrossRef
73.
Zurück zum Zitat Lanza IR, Short DK, Short KR, Raghavakaimal S, Basu R, Joyner MJ, McConnell JP, Nair KS (2008) Endurance exercise as a countermeasure for aging. Diabetes 57(11):2933–2942PubMedPubMedCentralCrossRef Lanza IR, Short DK, Short KR, Raghavakaimal S, Basu R, Joyner MJ, McConnell JP, Nair KS (2008) Endurance exercise as a countermeasure for aging. Diabetes 57(11):2933–2942PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Knutti D, Kralli A (2001) PGC-1, a versatile coactivator. Trends Endocrinol Metab 12(8):360–365PubMedCrossRef Knutti D, Kralli A (2001) PGC-1, a versatile coactivator. Trends Endocrinol Metab 12(8):360–365PubMedCrossRef
76.
Zurück zum Zitat Wenz T, Rossi SG, Rotundo RL, Spiegelman BM, Moraes CT (2009) Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci U S A 106(48):20405–20410PubMedPubMedCentralCrossRef Wenz T, Rossi SG, Rotundo RL, Spiegelman BM, Moraes CT (2009) Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci U S A 106(48):20405–20410PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Ji LL, Kang C (2015) Role of PGC-1alpha in sarcopenia: etiology and potential intervention—a mini-review. Gerontology 61(2):139–148PubMedCrossRef Ji LL, Kang C (2015) Role of PGC-1alpha in sarcopenia: etiology and potential intervention—a mini-review. Gerontology 61(2):139–148PubMedCrossRef
78.
Zurück zum Zitat Chabi B, Ljubicic V, Menzies KJ, Huang JH, Saleem A, Hood DA (2008) Mitochondrial function and apoptotic susceptibility in aging skeletal muscle. Aging Cell 7(1):2–12PubMedCrossRef Chabi B, Ljubicic V, Menzies KJ, Huang JH, Saleem A, Hood DA (2008) Mitochondrial function and apoptotic susceptibility in aging skeletal muscle. Aging Cell 7(1):2–12PubMedCrossRef
79.
Zurück zum Zitat Ghosh S, Lertwattanarak R, Lefort N, Molina-Carrion M, Joya-Galeana J, Bowen BP, Garduno-Garcia Jde J, Abdul-Ghani M, Richardson A, DeFronzo RA, Mandarino L, Van Remmen H, Musi N (2011) Reduction in reactive oxygen species production by mitochondria from elderly subjects with normal and impaired glucose tolerance. Diabetes 60(8):2051–2060PubMedPubMedCentralCrossRef Ghosh S, Lertwattanarak R, Lefort N, Molina-Carrion M, Joya-Galeana J, Bowen BP, Garduno-Garcia Jde J, Abdul-Ghani M, Richardson A, DeFronzo RA, Mandarino L, Van Remmen H, Musi N (2011) Reduction in reactive oxygen species production by mitochondria from elderly subjects with normal and impaired glucose tolerance. Diabetes 60(8):2051–2060PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Toth MJ, Miller MS, Ward KA, Ades PA (2012) Skeletal muscle mitochondrial density, gene expression, and enzyme activities in human heart failure: minimal effects of the disease and resistance training. J Appl Physiol (1985) 112(11):1864–1874CrossRef Toth MJ, Miller MS, Ward KA, Ades PA (2012) Skeletal muscle mitochondrial density, gene expression, and enzyme activities in human heart failure: minimal effects of the disease and resistance training. J Appl Physiol (1985) 112(11):1864–1874CrossRef
81.
Zurück zum Zitat Middlekauff HR, Verity MA, Horwich TB, Fonarow GC, Hamilton MA, Shieh P (2013) Intact skeletal muscle mitochondrial enzyme activity but diminished exercise capacity in advanced heart failure patients on optimal medical and device therapy. Clin Res Cardiol 102(8):547–554PubMedPubMedCentralCrossRef Middlekauff HR, Verity MA, Horwich TB, Fonarow GC, Hamilton MA, Shieh P (2013) Intact skeletal muscle mitochondrial enzyme activity but diminished exercise capacity in advanced heart failure patients on optimal medical and device therapy. Clin Res Cardiol 102(8):547–554PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Zizola C, Kennel PJ, Akashi H, Ji R, Castillero E, George I, Homma S, Schulze PC (2015) Activation of PPARdelta signaling improves skeletal muscle oxidative metabolism and endurance function in an animal model of ischemic left ventricular dysfunction. Am J Physiol Heart Circ Physiol 308(9):H1078–H1085PubMedPubMedCentralCrossRef Zizola C, Kennel PJ, Akashi H, Ji R, Castillero E, George I, Homma S, Schulze PC (2015) Activation of PPARdelta signaling improves skeletal muscle oxidative metabolism and endurance function in an animal model of ischemic left ventricular dysfunction. Am J Physiol Heart Circ Physiol 308(9):H1078–H1085PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Schrepper A, Schwarzer M, Schope M, Amorim PA, Doenst T (2012) Biphasic response of skeletal muscle mitochondria to chronic cardiac pressure overload—role of respiratory chain complex activity. J Mol Cell Cardiol 52(1):125–135PubMedCrossRef Schrepper A, Schwarzer M, Schope M, Amorim PA, Doenst T (2012) Biphasic response of skeletal muscle mitochondria to chronic cardiac pressure overload—role of respiratory chain complex activity. J Mol Cell Cardiol 52(1):125–135PubMedCrossRef
84.
Zurück zum Zitat Dai DF, Chen T, Szeto H, Nieves-Cintron M, Kutyavin V, Santana LF, Rabinovitch PS (2011) Mitochondrial targeted antioxidant peptide ameliorates hypertensive cardiomyopathy. J Am Coll Cardiol 58(1):73–82PubMedPubMedCentralCrossRef Dai DF, Chen T, Szeto H, Nieves-Cintron M, Kutyavin V, Santana LF, Rabinovitch PS (2011) Mitochondrial targeted antioxidant peptide ameliorates hypertensive cardiomyopathy. J Am Coll Cardiol 58(1):73–82PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Kitzman DW, Nicklas B, Kraus WE, Lyles MF, Eggebeen J, Morgan TM, Haykowsky M (2014) Skeletal muscle abnormalities and exercise intolerance in older patients with heart failure and preserved ejection fraction. Am J Physiol Heart Circ Physiol 306(9):H1364–H1370PubMedPubMedCentralCrossRef Kitzman DW, Nicklas B, Kraus WE, Lyles MF, Eggebeen J, Morgan TM, Haykowsky M (2014) Skeletal muscle abnormalities and exercise intolerance in older patients with heart failure and preserved ejection fraction. Am J Physiol Heart Circ Physiol 306(9):H1364–H1370PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458(7241):1056–1060PubMedPubMedCentralCrossRef Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458(7241):1056–1060PubMedPubMedCentralCrossRef
87.
88.
Zurück zum Zitat Houtkooper RH, Canto C, Wanders RJ, Auwerx J (2010) The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev 31(2):194–223PubMedCrossRef Houtkooper RH, Canto C, Wanders RJ, Auwerx J (2010) The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev 31(2):194–223PubMedCrossRef
89.
Zurück zum Zitat Gomes AP, Price NL, Ling AJ, Moslehi JJ, Montgomery MK, Rajman L, White JP, Teodoro JS, Wrann CD, Hubbard BP, Mercken EM, Palmeira CM, de Cabo R, Rolo AP, Turner N, Bell EL, Sinclair DA (2013) Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155(7):1624–1638PubMedPubMedCentralCrossRef Gomes AP, Price NL, Ling AJ, Moslehi JJ, Montgomery MK, Rajman L, White JP, Teodoro JS, Wrann CD, Hubbard BP, Mercken EM, Palmeira CM, de Cabo R, Rolo AP, Turner N, Bell EL, Sinclair DA (2013) Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155(7):1624–1638PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Kruse SE, Karunadharma PP, Basisty N, Johnson R, Beyer RP, MacCoss MJ, Rabinovitch PS, Marcinek DJ (2016) Age modifies respiratory complex I and protein homeostasis in a muscle type-specific manner. Aging Cell 15(1):89–99PubMedCrossRef Kruse SE, Karunadharma PP, Basisty N, Johnson R, Beyer RP, MacCoss MJ, Rabinovitch PS, Marcinek DJ (2016) Age modifies respiratory complex I and protein homeostasis in a muscle type-specific manner. Aging Cell 15(1):89–99PubMedCrossRef
91.
Zurück zum Zitat Moe GW, Marin-Garcia J, Konig A, Goldenthal M, Lu X, Feng Q (2004) In vivo TNF-alpha inhibition ameliorates cardiac mitochondrial dysfunction, oxidative stress, and apoptosis in experimental heart failure. Am J Physiol Heart Circ Physiol 287(4):H1813–H1820PubMedCrossRef Moe GW, Marin-Garcia J, Konig A, Goldenthal M, Lu X, Feng Q (2004) In vivo TNF-alpha inhibition ameliorates cardiac mitochondrial dysfunction, oxidative stress, and apoptosis in experimental heart failure. Am J Physiol Heart Circ Physiol 287(4):H1813–H1820PubMedCrossRef
92.
Zurück zum Zitat Marin-Garcia J, Goldenthal MJ, Moe GW (2001) Abnormal cardiac and skeletal muscle mitochondrial function in pacing-induced cardiac failure. Cardiovasc Res 52(1):103–110PubMedCrossRef Marin-Garcia J, Goldenthal MJ, Moe GW (2001) Abnormal cardiac and skeletal muscle mitochondrial function in pacing-induced cardiac failure. Cardiovasc Res 52(1):103–110PubMedCrossRef
94.
Zurück zum Zitat Hoppel CL, Tandler B, Fujioka H, Riva A (2009) Dynamic organization of mitochondria in human heart and in myocardial disease. Int J Biochem Cell Biol 41(10):1949–1956PubMedPubMedCentralCrossRef Hoppel CL, Tandler B, Fujioka H, Riva A (2009) Dynamic organization of mitochondria in human heart and in myocardial disease. Int J Biochem Cell Biol 41(10):1949–1956PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Laitano O, Ahn B, Patel N, Coblentz PD, Smuder AJ, Yoo JK, Christou DD, Adhihetty PJ, Ferreira LF (2016) Pharmacological targeting of mitochondrial reactive oxygen species counteracts diaphragm weakness in chronic heart failure. J Appl Physiol (1985) 120(7):733–742CrossRef Laitano O, Ahn B, Patel N, Coblentz PD, Smuder AJ, Yoo JK, Christou DD, Adhihetty PJ, Ferreira LF (2016) Pharmacological targeting of mitochondrial reactive oxygen species counteracts diaphragm weakness in chronic heart failure. J Appl Physiol (1985) 120(7):733–742CrossRef
96.
Zurück zum Zitat Echtay KS, Esteves TC, Pakay JL, Jekabsons MB, Lambert AJ, Portero-Otin M, Pamplona R, Vidal-Puig AJ, Wang S, Roebuck SJ, Brand MD (2003) A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J 22(16):4103–4110PubMedPubMedCentralCrossRef Echtay KS, Esteves TC, Pakay JL, Jekabsons MB, Lambert AJ, Portero-Otin M, Pamplona R, Vidal-Puig AJ, Wang S, Roebuck SJ, Brand MD (2003) A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J 22(16):4103–4110PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Mailloux RJ, Adjeitey CN, Xuan JY, Harper ME (2012) Crucial yet divergent roles of mitochondrial redox state in skeletal muscle vs. brown adipose tissue energetics. FASEB J 26(1):363–375PubMedCrossRef Mailloux RJ, Adjeitey CN, Xuan JY, Harper ME (2012) Crucial yet divergent roles of mitochondrial redox state in skeletal muscle vs. brown adipose tissue energetics. FASEB J 26(1):363–375PubMedCrossRef
98.
Zurück zum Zitat Jackson MJ (2009) Redox regulation of adaptive responses in skeletal muscle to contractile activity. Free Radic Biol Med 47(9):1267–1275PubMedCrossRef Jackson MJ (2009) Redox regulation of adaptive responses in skeletal muscle to contractile activity. Free Radic Biol Med 47(9):1267–1275PubMedCrossRef
99.
100.
Zurück zum Zitat Forman HJ, Ursini F, Maiorino M (2014) An overview of mechanisms of redox signaling. J Mol Cell Cardiol 73:2–9PubMedCrossRef Forman HJ, Ursini F, Maiorino M (2014) An overview of mechanisms of redox signaling. J Mol Cell Cardiol 73:2–9PubMedCrossRef
101.
Zurück zum Zitat Rosca MG, Hoppel CL (2013) Mitochondrial dysfunction in heart failure. Heart Fail Rev 18(5):607–622PubMedCrossRef Rosca MG, Hoppel CL (2013) Mitochondrial dysfunction in heart failure. Heart Fail Rev 18(5):607–622PubMedCrossRef
102.
Zurück zum Zitat Miura S, Kawanaka K, Kai Y, Tamura M, Goto M, Shiuchi T, Minokoshi Y, Ezaki O (2007) An increase in murine skeletal muscle peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) mRNA in response to exercise is mediated by beta-adrenergic receptor activation. Endocrinology 148(7):3441–3448PubMedCrossRef Miura S, Kawanaka K, Kai Y, Tamura M, Goto M, Shiuchi T, Minokoshi Y, Ezaki O (2007) An increase in murine skeletal muscle peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) mRNA in response to exercise is mediated by beta-adrenergic receptor activation. Endocrinology 148(7):3441–3448PubMedCrossRef
103.
Zurück zum Zitat Benson DW, Foley-Nelson T, Chance WT, Zhang FS, James JH, Fischer JE (1991) Decreased myofibrillar protein breakdown following treatment with clenbuterol. J Surg Res 50(1):1–5PubMedCrossRef Benson DW, Foley-Nelson T, Chance WT, Zhang FS, James JH, Fischer JE (1991) Decreased myofibrillar protein breakdown following treatment with clenbuterol. J Surg Res 50(1):1–5PubMedCrossRef
104.
Zurück zum Zitat Rosca MG, Tandler B, Hoppel CL (2013) Mitochondria in cardiac hypertrophy and heart failure. J Mol Cell Cardiol 55:31–41PubMedCrossRef Rosca MG, Tandler B, Hoppel CL (2013) Mitochondria in cardiac hypertrophy and heart failure. J Mol Cell Cardiol 55:31–41PubMedCrossRef
105.
Zurück zum Zitat Rosca MG, Hoppel CL (2009) New aspects of impaired mitochondrial function in heart failure. J Bioenerg Biomembr 41(2):107–112PubMedCrossRef Rosca MG, Hoppel CL (2009) New aspects of impaired mitochondrial function in heart failure. J Bioenerg Biomembr 41(2):107–112PubMedCrossRef
106.
Zurück zum Zitat DiPilato LM, Cheng X, Zhang J (2004) Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signaling within discrete subcellular compartments. Proc Natl Acad Sci U S A 101(47):16513–16518PubMedPubMedCentralCrossRef DiPilato LM, Cheng X, Zhang J (2004) Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signaling within discrete subcellular compartments. Proc Natl Acad Sci U S A 101(47):16513–16518PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Rosca M, Minkler P, Hoppel CL (2011) Cardiac mitochondria in heart failure: normal cardiolipin profile and increased threonine phosphorylation of complex IV. Biochim Biophys Acta 1807(11):1373–1382PubMedCrossRef Rosca M, Minkler P, Hoppel CL (2011) Cardiac mitochondria in heart failure: normal cardiolipin profile and increased threonine phosphorylation of complex IV. Biochim Biophys Acta 1807(11):1373–1382PubMedCrossRef
108.
Zurück zum Zitat Brink M, Wellen J, Delafontaine P (1996) Angiotensin II causes weight loss and decreases circulating insulin-like growth factor I in rats through a pressor-independent mechanism. J Clin Invest 97(11):2509–2516PubMedPubMedCentralCrossRef Brink M, Wellen J, Delafontaine P (1996) Angiotensin II causes weight loss and decreases circulating insulin-like growth factor I in rats through a pressor-independent mechanism. J Clin Invest 97(11):2509–2516PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Wang Y, Seto SW, Golledge J (2014) Angiotensin II, sympathetic nerve activity and chronic heart failure. Heart Fail Rev 19(2):187–198PubMedCrossRef Wang Y, Seto SW, Golledge J (2014) Angiotensin II, sympathetic nerve activity and chronic heart failure. Heart Fail Rev 19(2):187–198PubMedCrossRef
110.
Zurück zum Zitat Kadoguchi T, Kinugawa S, Takada S, Fukushima A, Furihata T, Homma T, Masaki Y, Mizushima W, Nishikawa M, Takahashi M, Yokota T, Matsushima S, Okita K, Tsutsui H (2015) Angiotensin II can directly induce mitochondrial dysfunction, decrease oxidative fibre number and induce atrophy in mouse hindlimb skeletal muscle. Exp Physiol 100(3):312–322PubMedCrossRef Kadoguchi T, Kinugawa S, Takada S, Fukushima A, Furihata T, Homma T, Masaki Y, Mizushima W, Nishikawa M, Takahashi M, Yokota T, Matsushima S, Okita K, Tsutsui H (2015) Angiotensin II can directly induce mitochondrial dysfunction, decrease oxidative fibre number and induce atrophy in mouse hindlimb skeletal muscle. Exp Physiol 100(3):312–322PubMedCrossRef
111.
Zurück zum Zitat Takada S, Kinugawa S, Hirabayashi K, Suga T, Yokota T, Takahashi M, Fukushima A, Homma T, Ono T, Sobirin MA, Masaki Y, Mizushima W, Kadoguchi T, Okita K, Tsutsui H (2013) Angiotensin II receptor blocker improves the lowered exercise capacity and impaired mitochondrial function of the skeletal muscle in type 2 diabetic mice. J Appl Physiol (1985) 114(7):844–857CrossRef Takada S, Kinugawa S, Hirabayashi K, Suga T, Yokota T, Takahashi M, Fukushima A, Homma T, Ono T, Sobirin MA, Masaki Y, Mizushima W, Kadoguchi T, Okita K, Tsutsui H (2013) Angiotensin II receptor blocker improves the lowered exercise capacity and impaired mitochondrial function of the skeletal muscle in type 2 diabetic mice. J Appl Physiol (1985) 114(7):844–857CrossRef
112.
Zurück zum Zitat Dai DF, Johnson SC, Villarin JJ, Chin MT, Nieves-Cintron M, Chen T, Marcinek DJ, Dorn GW 2nd, Kang YJ, Prolla TA, Santana LF, Rabinovitch PS (2011) Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circ Res 108(7):837–846PubMedPubMedCentralCrossRef Dai DF, Johnson SC, Villarin JJ, Chin MT, Nieves-Cintron M, Chen T, Marcinek DJ, Dorn GW 2nd, Kang YJ, Prolla TA, Santana LF, Rabinovitch PS (2011) Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circ Res 108(7):837–846PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74(6):1141–1148PubMedCrossRef Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74(6):1141–1148PubMedCrossRef
114.
Zurück zum Zitat Mollnau H, Wendt M, Szocs K, Lassegue B, Schulz E, Oelze M, Li H, Bodenschatz M, August M, Kleschyov AL, Tsilimingas N, Walter U, Forstermann U, Meinertz T, Griendling K, Munzel T (2002) Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ Res 90(4):E58–E65PubMedCrossRef Mollnau H, Wendt M, Szocs K, Lassegue B, Schulz E, Oelze M, Li H, Bodenschatz M, August M, Kleschyov AL, Tsilimingas N, Walter U, Forstermann U, Meinertz T, Griendling K, Munzel T (2002) Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ Res 90(4):E58–E65PubMedCrossRef
115.
Zurück zum Zitat Semprun-Prieto LC, Sukhanov S, Yoshida T, Rezk BM, Gonzalez-Villalobos RA, Vaughn C, Michael Tabony A, Delafontaine P (2011) Angiotensin II induced catabolic effect and muscle atrophy are redox dependent. Biochem Biophys Res Commun 409(2):217–221PubMedPubMedCentralCrossRef Semprun-Prieto LC, Sukhanov S, Yoshida T, Rezk BM, Gonzalez-Villalobos RA, Vaughn C, Michael Tabony A, Delafontaine P (2011) Angiotensin II induced catabolic effect and muscle atrophy are redox dependent. Biochem Biophys Res Commun 409(2):217–221PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Wei Y, Sowers JR, Nistala R, Gong H, Uptergrove GM, Clark SE, Morris EM, Szary N, Manrique C, Stump CS (2006) Angiotensin II-induced NADPH oxidase activation impairs insulin signaling in skeletal muscle cells. J Biol Chem 281(46):35137–35146PubMedCrossRef Wei Y, Sowers JR, Nistala R, Gong H, Uptergrove GM, Clark SE, Morris EM, Szary N, Manrique C, Stump CS (2006) Angiotensin II-induced NADPH oxidase activation impairs insulin signaling in skeletal muscle cells. J Biol Chem 281(46):35137–35146PubMedCrossRef
117.
Zurück zum Zitat Dai DF, Karunadharma PP, Chiao YA, Basisty N, Crispin D, Hsieh EJ, Chen T, Gu H, Djukovic D, Raftery D, Beyer RP, MacCoss MJ, Rabinovitch PS (2014) Altered proteome turnover and remodeling by short-term caloric restriction or rapamycin rejuvenate the aging heart. Aging Cell 13(3):529–539PubMedPubMedCentralCrossRef Dai DF, Karunadharma PP, Chiao YA, Basisty N, Crispin D, Hsieh EJ, Chen T, Gu H, Djukovic D, Raftery D, Beyer RP, MacCoss MJ, Rabinovitch PS (2014) Altered proteome turnover and remodeling by short-term caloric restriction or rapamycin rejuvenate the aging heart. Aging Cell 13(3):529–539PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Andersson DC, Betzenhauser MJ, Reiken S, Meli AC, Umanskaya A, Xie W, Shiomi T, Zalk R, Lacampagne A, Marks AR (2011) Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging. Cell Metab 14(2):196–207PubMedPubMedCentralCrossRef Andersson DC, Betzenhauser MJ, Reiken S, Meli AC, Umanskaya A, Xie W, Shiomi T, Zalk R, Lacampagne A, Marks AR (2011) Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging. Cell Metab 14(2):196–207PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Rullman E, Andersson DC, Melin M, Reiken S, Mancini DM, Marks AR, Lund LH, Gustafsson T (2013) Modifications of skeletal muscle ryanodine receptor type 1 and exercise intolerance in heart failure. J Heart Lung Transplant 32(9):925–929PubMedPubMedCentralCrossRef Rullman E, Andersson DC, Melin M, Reiken S, Mancini DM, Marks AR, Lund LH, Gustafsson T (2013) Modifications of skeletal muscle ryanodine receptor type 1 and exercise intolerance in heart failure. J Heart Lung Transplant 32(9):925–929PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Umanskaya A, Santulli G, Xie W, Andersson DC, Reiken SR, Marks AR (2014) Genetically enhancing mitochondrial antioxidant activity improves muscle function in aging. Proc Natl Acad Sci U S A 111(42):15250–15255PubMedPubMedCentralCrossRef Umanskaya A, Santulli G, Xie W, Andersson DC, Reiken SR, Marks AR (2014) Genetically enhancing mitochondrial antioxidant activity improves muscle function in aging. Proc Natl Acad Sci U S A 111(42):15250–15255PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Cuervo AM, Bergamini E, Brunk UT, Droge W, Ffrench M, Terman A (2005) Autophagy and aging: the importance of maintaining "clean" cells. Autophagy 1(3):131–140PubMedCrossRef Cuervo AM, Bergamini E, Brunk UT, Droge W, Ffrench M, Terman A (2005) Autophagy and aging: the importance of maintaining "clean" cells. Autophagy 1(3):131–140PubMedCrossRef
122.
Zurück zum Zitat Terman A, Dalen H, Eaton JW, Neuzil J, Brunk UT (2003) Mitochondrial recycling and aging of cardiac myocytes: the role of autophagocytosis. Exp Gerontol 38(8):863–876PubMedCrossRef Terman A, Dalen H, Eaton JW, Neuzil J, Brunk UT (2003) Mitochondrial recycling and aging of cardiac myocytes: the role of autophagocytosis. Exp Gerontol 38(8):863–876PubMedCrossRef
123.
Zurück zum Zitat Coleman R, Silbermann M, Gershon D, Reznick AZ (1987) Giant mitochondria in the myocardium of aging and endurance-trained mice. Gerontology 33(1):34–39PubMedCrossRef Coleman R, Silbermann M, Gershon D, Reznick AZ (1987) Giant mitochondria in the myocardium of aging and endurance-trained mice. Gerontology 33(1):34–39PubMedCrossRef
124.
Zurück zum Zitat Brunk UT, Terman A (2002) The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur J Biochem 269(8):1996–2002PubMedCrossRef Brunk UT, Terman A (2002) The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur J Biochem 269(8):1996–2002PubMedCrossRef
125.
Zurück zum Zitat Dayan D, Abrahami I, Buchner A, Gorsky M, Chimovitz N (1988) Lipid pigment (lipofuscin) in human perioral muscles with aging. Exp Gerontol 23(2):97–102PubMedCrossRef Dayan D, Abrahami I, Buchner A, Gorsky M, Chimovitz N (1988) Lipid pigment (lipofuscin) in human perioral muscles with aging. Exp Gerontol 23(2):97–102PubMedCrossRef
126.
Zurück zum Zitat Dayan D, David R, Buchner A (1979) Lipofuscin in human tongue muscle. J Oral Pathol 8(2):121–125PubMedCrossRef Dayan D, David R, Buchner A (1979) Lipofuscin in human tongue muscle. J Oral Pathol 8(2):121–125PubMedCrossRef
127.
Zurück zum Zitat Dai DF, Santana LF, Vermulst M, Tomazela DM, Emond MJ, MacCoss MJ, Gollahon K, Martin GM, Loeb LA, Ladiges WC, Rabinovitch PS (2009) Overexpression of catalase targeted to mitochondria attenuates murine cardiac aging. Circulation 119(21):2789–2797PubMedPubMedCentralCrossRef Dai DF, Santana LF, Vermulst M, Tomazela DM, Emond MJ, MacCoss MJ, Gollahon K, Martin GM, Loeb LA, Ladiges WC, Rabinovitch PS (2009) Overexpression of catalase targeted to mitochondria attenuates murine cardiac aging. Circulation 119(21):2789–2797PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat Dai DF, Chen T, Wanagat J, Laflamme M, Marcinek DJ, Emond MJ, Ngo CP, Prolla TA, Rabinovitch PS (2010) Age-dependent cardiomyopathy in mitochondrial mutator mice is attenuated by overexpression of catalase targeted to mitochondria. Aging Cell 9(4):536–544PubMedPubMedCentralCrossRef Dai DF, Chen T, Wanagat J, Laflamme M, Marcinek DJ, Emond MJ, Ngo CP, Prolla TA, Rabinovitch PS (2010) Age-dependent cardiomyopathy in mitochondrial mutator mice is attenuated by overexpression of catalase targeted to mitochondria. Aging Cell 9(4):536–544PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Zalk R, Lehnart SE, Marks AR (2007) Modulation of the ryanodine receptor and intracellular calcium. Annu Rev Biochem 76:367–385PubMedCrossRef Zalk R, Lehnart SE, Marks AR (2007) Modulation of the ryanodine receptor and intracellular calcium. Annu Rev Biochem 76:367–385PubMedCrossRef
Metadaten
Titel
Skeletal muscle bioenergetics in aging and heart failure
verfasst von
Sophia Z. Liu
David J. Marcinek
Publikationsdatum
05.11.2016
Verlag
Springer US
Erschienen in
Heart Failure Reviews / Ausgabe 2/2017
Print ISSN: 1382-4147
Elektronische ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-016-9586-z

Weitere Artikel der Ausgabe 2/2017

Heart Failure Reviews 2/2017 Zur Ausgabe

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.