Skip to main content
Erschienen in: Neurological Sciences 8/2022

18.05.2022 | Review Article

Space neuroscience: current understanding and future research

verfasst von: Bader H. Shirah, Bader M. Ibrahim, Yasser Aladdin, Jon Sen

Erschienen in: Neurological Sciences | Ausgabe 8/2022

Einloggen, um Zugang zu erhalten

Abstract

Space exploration is crucial for understanding our surroundings and establishing scientific concepts to explore, monitor, and save our planet’s environment. However, the response of the human nervous system in the environment of space poses numerous challenges. Brain complexity explains the vulnerability and intrinsic difficulty of recalibration after disturbance. Over the millennia, the brain has evolved to function at 1-G. Studying the brain and its physiology in different environments may shed light on multiple conditions encountered on Earth that are yet to be solved and dictate collaboration at international levels. The nervous system is affected by several stressors due to microgravity, radiation, isolation, disruption of circadian rhythm, impaired sleep dynamics, and hypercapnia associated with space travel. In this article, we aim to review several aspects related to the nervous system in weightless conditions, as well as the development and future of the emerging field of “space neuroscience.” Space neuroscience is a fascinating, embryonic field that requires significant development. The establishment of frameworks for the strategic development of space neuroscience is vital, as more research and collaboration are required to overcome these numerous and diverse challenges, minimize risks, and optimize crew performance during planetary operations.
Literatur
1.
Zurück zum Zitat Ruyters G, Stang K (2016) Space medicine 2025 – a vision: space medicine driving terrestrial medicine for the benefit of people on Earth. REACH 1:55–62CrossRef Ruyters G, Stang K (2016) Space medicine 2025 – a vision: space medicine driving terrestrial medicine for the benefit of people on Earth. REACH 1:55–62CrossRef
2.
Zurück zum Zitat Hughes-Fulford M (2011) To infinity ... and beyond! Human spaceflight and life science. FASEB J 25(9):2858–2864CrossRef Hughes-Fulford M (2011) To infinity ... and beyond! Human spaceflight and life science. FASEB J 25(9):2858–2864CrossRef
3.
Zurück zum Zitat Shirah BH, Ahmed MM (2021) Patents in space medicine: an immediate call for innovations in the field. REACH 23–24:100045CrossRef Shirah BH, Ahmed MM (2021) Patents in space medicine: an immediate call for innovations in the field. REACH 23–24:100045CrossRef
4.
Zurück zum Zitat Grenon SM, Saary J, Gray G, Vanderploeg JM, Hughes-Fulford M (2012) Can I take a space flight? Considerations for doctors. BMJ 345:e8124CrossRef Grenon SM, Saary J, Gray G, Vanderploeg JM, Hughes-Fulford M (2012) Can I take a space flight? Considerations for doctors. BMJ 345:e8124CrossRef
5.
Zurück zum Zitat Ghidini T (2018) Regenerative medicine and 3D bioprinting for human space exploration and planet colonisation. J Thorac Dis 10(Suppl 20):S2363–S2375CrossRef Ghidini T (2018) Regenerative medicine and 3D bioprinting for human space exploration and planet colonisation. J Thorac Dis 10(Suppl 20):S2363–S2375CrossRef
6.
Zurück zum Zitat Koppelmans V, Bloomberg JJ, Mulavara AP, Seidler RD (2016) Brain structural plasticity with spaceflight. npj Microgravity 2(1):2CrossRef Koppelmans V, Bloomberg JJ, Mulavara AP, Seidler RD (2016) Brain structural plasticity with spaceflight. npj Microgravity 2(1):2CrossRef
7.
Zurück zum Zitat Clément G, Reschke MF (2008) Space neuroscience: what is it? In: Clément G, Reschke MF (eds) Neuroscience in Space. Springer New York, New York, NY, pp 1–32CrossRef Clément G, Reschke MF (2008) Space neuroscience: what is it? In: Clément G, Reschke MF (eds) Neuroscience in Space. Springer New York, New York, NY, pp 1–32CrossRef
8.
Zurück zum Zitat Clément G (2017) International roadmap for artificial gravity research. npj Microgravity 3(1):29CrossRef Clément G (2017) International roadmap for artificial gravity research. npj Microgravity 3(1):29CrossRef
9.
Zurück zum Zitat Clément GR, Boyle RD, George KA et al (2020) Challenges to the central nervous system during human spaceflight missions to Mars. J Neurophysiol 123(5):2037–2063CrossRef Clément GR, Boyle RD, George KA et al (2020) Challenges to the central nervous system during human spaceflight missions to Mars. J Neurophysiol 123(5):2037–2063CrossRef
10.
Zurück zum Zitat Roy-O’Reilly M, Mulavara A, Williams T (2021) A review of alterations to the brain during spaceflight and the potential relevance to crew in long-duration space exploration. npj Microgravity 7(1):1–9CrossRef Roy-O’Reilly M, Mulavara A, Williams T (2021) A review of alterations to the brain during spaceflight and the potential relevance to crew in long-duration space exploration. npj Microgravity 7(1):1–9CrossRef
11.
Zurück zum Zitat Shinojima A, Kakeya I, Tada S (2018) Association of space flight with problems of the brain and eyes. JAMA Ophthalmol 136(9):1075CrossRef Shinojima A, Kakeya I, Tada S (2018) Association of space flight with problems of the brain and eyes. JAMA Ophthalmol 136(9):1075CrossRef
12.
Zurück zum Zitat Zhang LF, Hargens AR (2018) Spaceflight-induced intracranial hypertension and visual impairment: pathophysiology and countermeasures. Physiol Rev 98(1):59–87CrossRef Zhang LF, Hargens AR (2018) Spaceflight-induced intracranial hypertension and visual impairment: pathophysiology and countermeasures. Physiol Rev 98(1):59–87CrossRef
13.
Zurück zum Zitat Taibbi G, Cromwell RL, Kapoor KG, Godley BF, Vizzeri G (2013) The effect of microgravity on ocular structures and visual function: a review. Surv Ophthalmol 58(2):155–163CrossRef Taibbi G, Cromwell RL, Kapoor KG, Godley BF, Vizzeri G (2013) The effect of microgravity on ocular structures and visual function: a review. Surv Ophthalmol 58(2):155–163CrossRef
14.
Zurück zum Zitat Lee AG, Tarver WJ, Mader TH, Gibson CR, Hart SF, Otto CA (2016) Neuro-ophthalmology of space flight. J Neuro-Ophthalmol 36(1):85–91CrossRef Lee AG, Tarver WJ, Mader TH, Gibson CR, Hart SF, Otto CA (2016) Neuro-ophthalmology of space flight. J Neuro-Ophthalmol 36(1):85–91CrossRef
15.
Zurück zum Zitat Lee AG, Mader TH, Gibson CR et al (2020) Spaceflight associated neuro-ocular syndrome (Sans) and the neuro-ophthalmologic effects of microgravity: a review and an update. npj Microgravity 6(1):7CrossRef Lee AG, Mader TH, Gibson CR et al (2020) Spaceflight associated neuro-ocular syndrome (Sans) and the neuro-ophthalmologic effects of microgravity: a review and an update. npj Microgravity 6(1):7CrossRef
16.
Zurück zum Zitat Kramer LA, Hasan KM, Stenger MB et al (2020) Intracranial effects of microgravity: a prospective longitudinal mri study. Radiology 295(3):640–648CrossRef Kramer LA, Hasan KM, Stenger MB et al (2020) Intracranial effects of microgravity: a prospective longitudinal mri study. Radiology 295(3):640–648CrossRef
17.
Zurück zum Zitat Van Ombergen A, Jillings S, Jeurissen B et al (2018) Brain tissue–volume changes in cosmonauts. N Engl J Med 379(17):1678–1680CrossRef Van Ombergen A, Jillings S, Jeurissen B et al (2018) Brain tissue–volume changes in cosmonauts. N Engl J Med 379(17):1678–1680CrossRef
18.
Zurück zum Zitat Li K, Guo X, Jin Z et al (2015) Effect of simulated microgravity on human brain gray matter and white matter--evidence from mri. PLoS ONE 10(8):e0135835CrossRef Li K, Guo X, Jin Z et al (2015) Effect of simulated microgravity on human brain gray matter and white matter--evidence from mri. PLoS ONE 10(8):e0135835CrossRef
19.
Zurück zum Zitat Hupfeld KE, McGregor HR, Koppelmans V et al (2022) Brain and behavioral evidence for reweighting of vestibular inputs with long-duration spaceflight. Cereb Cortex 32(4):755–769CrossRef Hupfeld KE, McGregor HR, Koppelmans V et al (2022) Brain and behavioral evidence for reweighting of vestibular inputs with long-duration spaceflight. Cereb Cortex 32(4):755–769CrossRef
20.
Zurück zum Zitat Carriot J, Mackrous I, Cullen KE (2021) Challenges to the vestibular system in space: how the brain responds and adapts to microgravity. Front Neural Circuits 15:760313CrossRef Carriot J, Mackrous I, Cullen KE (2021) Challenges to the vestibular system in space: how the brain responds and adapts to microgravity. Front Neural Circuits 15:760313CrossRef
21.
Zurück zum Zitat Garrett-Bakelman FE, Darshi M, Green SJ et al (2019) The NASA Twins Study: a multidimensional analysis of a year-long human spaceflight. Science 364(6436):eaau8650CrossRef Garrett-Bakelman FE, Darshi M, Green SJ et al (2019) The NASA Twins Study: a multidimensional analysis of a year-long human spaceflight. Science 364(6436):eaau8650CrossRef
22.
Zurück zum Zitat Aubert G, Lansdorp PM (2008) Telomeres and aging. Physiol Rev 88(2):557–579CrossRef Aubert G, Lansdorp PM (2008) Telomeres and aging. Physiol Rev 88(2):557–579CrossRef
23.
Zurück zum Zitat Stone RC, Horvath K, Kark JD, Susser E, Tishkoff SA, Aviv A (2016) Telomere length and the cancer-atherosclerosis trade-off. PLoS Genet 12(7):e1006144CrossRef Stone RC, Horvath K, Kark JD, Susser E, Tishkoff SA, Aviv A (2016) Telomere length and the cancer-atherosclerosis trade-off. PLoS Genet 12(7):e1006144CrossRef
24.
Zurück zum Zitat Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621CrossRef Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621CrossRef
25.
Zurück zum Zitat Luxton JJ, McKenna MJ, Taylor LE et al (2020) Temporal telomere and DNA damage responses in the space radiation environment. Cell Rep 33(10):108435CrossRef Luxton JJ, McKenna MJ, Taylor LE et al (2020) Temporal telomere and DNA damage responses in the space radiation environment. Cell Rep 33(10):108435CrossRef
26.
Zurück zum Zitat Norsk P (2020) Adaptation of the cardiovascular system to weightlessness: surprises, paradoxes and implications for deep space missions. Acta Physiol 228(3):e13434CrossRef Norsk P (2020) Adaptation of the cardiovascular system to weightlessness: surprises, paradoxes and implications for deep space missions. Acta Physiol 228(3):e13434CrossRef
27.
Zurück zum Zitat Cox JF, Tahvanainen KUO, Kuusela TA et al (2002) Influence of microgravity on astronauts’ sympathetic and vagal responses to Valsalva’s manoeuvre. J Physiol 538(Pt 1):309–320CrossRef Cox JF, Tahvanainen KUO, Kuusela TA et al (2002) Influence of microgravity on astronauts’ sympathetic and vagal responses to Valsalva’s manoeuvre. J Physiol 538(Pt 1):309–320CrossRef
29.
Zurück zum Zitat Yaribeygi H, Panahi Y, Sahraei H, Johnston TP, Sahebkar A (2017) The impact of stress on body function: a review. EXCLI J 16:1057–1072PubMedPubMedCentral Yaribeygi H, Panahi Y, Sahraei H, Johnston TP, Sahebkar A (2017) The impact of stress on body function: a review. EXCLI J 16:1057–1072PubMedPubMedCentral
30.
Zurück zum Zitat Acharya MM, Baulch JE, Klein PM et al (2019) New concerns for neurocognitive function during deep space exposures to chronic, low dose-rate, neutron radiation. eNeuro 6(4) ENEURO 0094-19.2019 Acharya MM, Baulch JE, Klein PM et al (2019) New concerns for neurocognitive function during deep space exposures to chronic, low dose-rate, neutron radiation. eNeuro 6(4) ENEURO 0094-19.2019
31.
Zurück zum Zitat Goel N, Bale TL, Epperson CN et al (2014) Effects of sex and gender on adaptation to space: behavioral health. J Womens Health (Larchmt) 23(11):975–986CrossRef Goel N, Bale TL, Epperson CN et al (2014) Effects of sex and gender on adaptation to space: behavioral health. J Womens Health (Larchmt) 23(11):975–986CrossRef
32.
Zurück zum Zitat Badran BW, Caulfield KA, Cox C et al (2020) Brain stimulation in zero gravity: transcranial magnetic stimulation (Tms) motor threshold decreases during zero gravity induced by parabolic flight. npj Microgravity 6(1):1–7CrossRef Badran BW, Caulfield KA, Cox C et al (2020) Brain stimulation in zero gravity: transcranial magnetic stimulation (Tms) motor threshold decreases during zero gravity induced by parabolic flight. npj Microgravity 6(1):1–7CrossRef
33.
Zurück zum Zitat Larson MD, Behrends M (2015) Portable infrared pupillometry: a review. Anesth Analg 120(6):1242–1253CrossRef Larson MD, Behrends M (2015) Portable infrared pupillometry: a review. Anesth Analg 120(6):1242–1253CrossRef
34.
Zurück zum Zitat Hall CA, Chilcott RP (2018) Eyeing up the future of the pupillary light reflex in neurodiagnostics. Diagnostics (Basel) 8(1) Hall CA, Chilcott RP (2018) Eyeing up the future of the pupillary light reflex in neurodiagnostics. Diagnostics (Basel) 8(1)
35.
Zurück zum Zitat Lussier BL, Olson DM, Aiyagari V (2019) Automated pupillometry in neurocritical care: research and practice. Curr Neurol Neurosci Rep 19(10):71CrossRef Lussier BL, Olson DM, Aiyagari V (2019) Automated pupillometry in neurocritical care: research and practice. Curr Neurol Neurosci Rep 19(10):71CrossRef
36.
Zurück zum Zitat Wang KK, Yang Z, Zhu T et al (2018) An update on diagnostic and prognostic biomarkers for traumatic brain injury. Expert Rev Mol Diagn 18(2):165–180CrossRef Wang KK, Yang Z, Zhu T et al (2018) An update on diagnostic and prognostic biomarkers for traumatic brain injury. Expert Rev Mol Diagn 18(2):165–180CrossRef
37.
Zurück zum Zitat Mao XW, Nishiyama NC, Pecaut MJ et al (2016) Simulated microgravity and low-dose/low-dose-rate radiation induces oxidative damage in the mouse brain. Radiat Res 185(6):647–657CrossRef Mao XW, Nishiyama NC, Pecaut MJ et al (2016) Simulated microgravity and low-dose/low-dose-rate radiation induces oxidative damage in the mouse brain. Radiat Res 185(6):647–657CrossRef
38.
Zurück zum Zitat Iosim S, MacKay M, Westover C, Mason CE (2019) Translating current biomedical therapies for long duration, deep space missions. Precis Clin Med 2(4):259–269CrossRef Iosim S, MacKay M, Westover C, Mason CE (2019) Translating current biomedical therapies for long duration, deep space missions. Precis Clin Med 2(4):259–269CrossRef
39.
Zurück zum Zitat Löbrich M, Jeggo PA (2019) Hazards of human spaceflight. Science 364(6436):127–128CrossRef Löbrich M, Jeggo PA (2019) Hazards of human spaceflight. Science 364(6436):127–128CrossRef
40.
Zurück zum Zitat Watenpaugh DE (2016) Analogs of microgravity: head-down tilt and water immersion. J Appl Physiol (1985) 120(8):904–914CrossRef Watenpaugh DE (2016) Analogs of microgravity: head-down tilt and water immersion. J Appl Physiol (1985) 120(8):904–914CrossRef
Metadaten
Titel
Space neuroscience: current understanding and future research
verfasst von
Bader H. Shirah
Bader M. Ibrahim
Yasser Aladdin
Jon Sen
Publikationsdatum
18.05.2022
Verlag
Springer International Publishing
Erschienen in
Neurological Sciences / Ausgabe 8/2022
Print ISSN: 1590-1874
Elektronische ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-022-06146-0

Weitere Artikel der Ausgabe 8/2022

Neurological Sciences 8/2022 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.