Skip to main content
Erschienen in: Herz 3/2014

01.05.2014 | e-Herz: Original article

Sulforaphane protects H9c2 cardiomyocytes from angiotensin II-induced hypertrophy

verfasst von: Q.-Q. Wu, J. Zong, L. Gao, J. Dai, Z. Yang, M. Xu, Y. Fang, Z.-G. Ma, Q.-Z. Tang

Erschienen in: Herz | Ausgabe 3/2014

Einloggen, um Zugang zu erhalten

Abstract

Background

Cardiac hypertrophy is an adaptive process of the heart in response to various stimuli, but sustained cardiac hypertrophy will finally lead to heart failure. Sulforaphane—extracted from cruciferous vegetables of the genus Brassica such as broccoli, brussels sprouts, and cabbage—has been evaluated for its anticarcinogenic and antioxidant effects.

Aims

To investigate the effect of sulforaphane on angiotensin II (Ang II)-induced cardiac hypertrophy in vitro.

Methods

Embryonic rat heart-derived H9c2 cells were co-incubated with sulforaphane and Ang II. The cell surface area and mRNA levels of hypertrophic markers were measured to clarify the effect of sulforaphane on cardiac hypertrophy. The underlying mechanism was further investigated by detecting the activation of Akt and NF-κB signaling pathways.

Results

We found that H9c2 cells pretreated with sulforaphane were protected from Ang II-induced hypertrophy. The increasing mRNA levels of ANP, BNP, and β-MHC in Ang II-stimulated cells were also down-regulated after sulforaphane treatment. Moreover, sulforaphane repressed the Ang II-induced phosphorylation of Akt, GSK3β, mTOR, eIF4e, as well as of IκBα and NF-κB.

Conclusion

Based on our results, sulforaphane attenuates Ang II-induced hypertrophy of H9c2 cardiomyocytes mediated by the inhibition of intracellular signaling pathways including Akt and NF-κB.
Literatur
1.
Zurück zum Zitat Izzo JL Jr, Gradman AH (2004) Mechanisms and management of hypertensive heart disease: from left ventricular hypertrophy to heart failure. Med Clin North Am 88:1257–1271PubMedCrossRef Izzo JL Jr, Gradman AH (2004) Mechanisms and management of hypertensive heart disease: from left ventricular hypertrophy to heart failure. Med Clin North Am 88:1257–1271PubMedCrossRef
2.
Zurück zum Zitat Rohini A, Agrawal N, Koyani CN, Singh R (2010) Molecular targets and regulators of cardiac hypertrophy. Pharmacol Res 61:269–280PubMedCrossRef Rohini A, Agrawal N, Koyani CN, Singh R (2010) Molecular targets and regulators of cardiac hypertrophy. Pharmacol Res 61:269–280PubMedCrossRef
3.
Zurück zum Zitat Barry SP, Davidson SM, Townsend PA (2008) Molecular regulation of cardiac hypertrophy. Int J Biochem Cell Biol 40:2023–2039PubMedCrossRef Barry SP, Davidson SM, Townsend PA (2008) Molecular regulation of cardiac hypertrophy. Int J Biochem Cell Biol 40:2023–2039PubMedCrossRef
4.
Zurück zum Zitat Empel VP van, De Windt LJ (2004) Myocyte hypertrophy and apoptosis: a balancing act. Cardiovasc Res 63:487–499PubMedCrossRef Empel VP van, De Windt LJ (2004) Myocyte hypertrophy and apoptosis: a balancing act. Cardiovasc Res 63:487–499PubMedCrossRef
5.
Zurück zum Zitat Clerk A, Cullingford TE, Fuller SJ et al (2007) Signaling pathways mediating cardiac myocyte gene expression in physiological and stress responses. J Cell Physiol 212:311–322PubMedCrossRef Clerk A, Cullingford TE, Fuller SJ et al (2007) Signaling pathways mediating cardiac myocyte gene expression in physiological and stress responses. J Cell Physiol 212:311–322PubMedCrossRef
7.
Zurück zum Zitat Purcell NH, Tang G, Yu C et al (2001) Activation of NF-kappa B is required for hypertrophic growth of primary rat neonatal ventricular cardiomyocytes. Proc Natl Acad Sci U S A 98:6668–6673PubMedCentralPubMedCrossRef Purcell NH, Tang G, Yu C et al (2001) Activation of NF-kappa B is required for hypertrophic growth of primary rat neonatal ventricular cardiomyocytes. Proc Natl Acad Sci U S A 98:6668–6673PubMedCentralPubMedCrossRef
8.
Zurück zum Zitat Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51PubMedCrossRef Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51PubMedCrossRef
9.
Zurück zum Zitat Poppel G van, Verhoeven DT, Verhagen H, Goldbohm RA (1999) Brassica vegetables and cancer prevention. Epidemiology and mechanisms. Adv Exp Med Biol 472:159–168PubMedCrossRef Poppel G van, Verhoeven DT, Verhagen H, Goldbohm RA (1999) Brassica vegetables and cancer prevention. Epidemiology and mechanisms. Adv Exp Med Biol 472:159–168PubMedCrossRef
10.
Zurück zum Zitat Xu T, Ren D, Sun X, Yang G (2012) Dual roles of sulforaphane in cancer treatment. Anticancer Agents Med Chem Xu T, Ren D, Sun X, Yang G (2012) Dual roles of sulforaphane in cancer treatment. Anticancer Agents Med Chem
11.
Zurück zum Zitat Chew YC, Adhikary G, Wilson GM et al (2012) Sulforaphane induction of p21(Cip1) cyclin-dependent kinase inhibitor expression requires p53 and Sp1 transcription factors and is p53-dependent. J Biol Chem 287:16168–16178PubMedCentralPubMedCrossRef Chew YC, Adhikary G, Wilson GM et al (2012) Sulforaphane induction of p21(Cip1) cyclin-dependent kinase inhibitor expression requires p53 and Sp1 transcription factors and is p53-dependent. J Biol Chem 287:16168–16178PubMedCentralPubMedCrossRef
12.
Zurück zum Zitat Guerrero-Beltran CE, Calderon-Oliver M, Pedraza-Chaverri J, Chirino YI (2012) Protective effect of sulforaphane against oxidative stress: recent advances. Exp Toxicol Pathol 64:503–508PubMedCrossRef Guerrero-Beltran CE, Calderon-Oliver M, Pedraza-Chaverri J, Chirino YI (2012) Protective effect of sulforaphane against oxidative stress: recent advances. Exp Toxicol Pathol 64:503–508PubMedCrossRef
13.
Zurück zum Zitat Zhu H, Jia Z, Strobl JS et al (2008) Potent induction of total cellular and mitochondrial antioxidants and phase 2 enzymes by cruciferous sulforaphane in rat aortic smooth muscle cells: cytoprotection against oxidative and electrophilic stress. Cardiovasc Toxicol 8:115–125PubMedCrossRef Zhu H, Jia Z, Strobl JS et al (2008) Potent induction of total cellular and mitochondrial antioxidants and phase 2 enzymes by cruciferous sulforaphane in rat aortic smooth muscle cells: cytoprotection against oxidative and electrophilic stress. Cardiovasc Toxicol 8:115–125PubMedCrossRef
14.
Zurück zum Zitat Angeloni C, Leoncini E, Malaguti M et al (2009) Modulation of phase II enzymes by sulforaphane: implications for its cardioprotective potential. J Agric Food Chem 57:5615–5622PubMedCrossRef Angeloni C, Leoncini E, Malaguti M et al (2009) Modulation of phase II enzymes by sulforaphane: implications for its cardioprotective potential. J Agric Food Chem 57:5615–5622PubMedCrossRef
15.
Zurück zum Zitat Piao CS, Gao S, Lee GH et al (2010) Sulforaphane protects ischemic injury of hearts through antioxidant pathway and mitochondrial K(ATP) channels. Pharmacol Res 61:342–348PubMedCrossRef Piao CS, Gao S, Lee GH et al (2010) Sulforaphane protects ischemic injury of hearts through antioxidant pathway and mitochondrial K(ATP) channels. Pharmacol Res 61:342–348PubMedCrossRef
16.
Zurück zum Zitat Vojdani Z, Tavakolinejad S, Talaei-Khozani T et al (2011) Cardiomyocyte marker expression in a human lymphocyte cell line using mouse cardiomyocyte extract. Hum Cell 24:35–42PubMedCrossRef Vojdani Z, Tavakolinejad S, Talaei-Khozani T et al (2011) Cardiomyocyte marker expression in a human lymphocyte cell line using mouse cardiomyocyte extract. Hum Cell 24:35–42PubMedCrossRef
17.
Zurück zum Zitat Kim S, Ohta K, Hamaguchi A et al (1995) Angiotensin II induces cardiac phenotypic modulation and remodeling in vivo in rats. Hypertension 25:1252–1259PubMedCrossRef Kim S, Ohta K, Hamaguchi A et al (1995) Angiotensin II induces cardiac phenotypic modulation and remodeling in vivo in rats. Hypertension 25:1252–1259PubMedCrossRef
18.
Zurück zum Zitat Hardt SE, Sadoshima J (2002) Glycogen synthase kinase-3beta: a novel regulator of cardiac hypertrophy and development. Circ Res 90:1055–1063PubMedCrossRef Hardt SE, Sadoshima J (2002) Glycogen synthase kinase-3beta: a novel regulator of cardiac hypertrophy and development. Circ Res 90:1055–1063PubMedCrossRef
19.
Zurück zum Zitat Antos CL, McKinsey TA, Frey N et al (2002) Activated glycogen synthase-3 beta suppresses cardiac hypertrophy in vivo. Proc Natl Acad Sci U S A 99:907–912PubMedCentralPubMedCrossRef Antos CL, McKinsey TA, Frey N et al (2002) Activated glycogen synthase-3 beta suppresses cardiac hypertrophy in vivo. Proc Natl Acad Sci U S A 99:907–912PubMedCentralPubMedCrossRef
20.
21.
Zurück zum Zitat Jones WK, Brown M, Ren X et al (2003) NF-kappaB as an integrator of diverse signaling pathways: the heart of myocardial signaling? Cardiovasc Toxicol 3:229–254PubMedCrossRef Jones WK, Brown M, Ren X et al (2003) NF-kappaB as an integrator of diverse signaling pathways: the heart of myocardial signaling? Cardiovasc Toxicol 3:229–254PubMedCrossRef
22.
Zurück zum Zitat Van der Heiden K, Cuhlmann S, Luong le A et al (2010) Role of nuclear factor kappaB in cardiovascular health and disease. Clin Sci (Lond) 118:593–605 Van der Heiden K, Cuhlmann S, Luong le A et al (2010) Role of nuclear factor kappaB in cardiovascular health and disease. Clin Sci (Lond) 118:593–605
Metadaten
Titel
Sulforaphane protects H9c2 cardiomyocytes from angiotensin II-induced hypertrophy
verfasst von
Q.-Q. Wu
J. Zong
L. Gao
J. Dai
Z. Yang
M. Xu
Y. Fang
Z.-G. Ma
Q.-Z. Tang
Publikationsdatum
01.05.2014
Verlag
Urban & Vogel
Erschienen in
Herz / Ausgabe 3/2014
Print ISSN: 0340-9937
Elektronische ISSN: 1615-6692
DOI
https://doi.org/10.1007/s00059-013-3849-4

Weitere Artikel der Ausgabe 3/2014

Herz 3/2014 Zur Ausgabe

Schwerpunkt

Herzinsuffizienz

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.