Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 4/2017

10.04.2017 | Original Article

Sustained Placental Growth Factor-2 Treatment Does Not Aggravate Advanced Atherosclerosis in Ischemic Cardiomyopathy

verfasst von: Ming Wu, Peter Pokreisz, Melissa Swinnen, Ellen Caluwe, Hilde Gillijns, Nina Vanden Driessche, Andrea Casazza, Erik Verbeken, Desire Collen, Stefan Janssens

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

Angiogenic growth factor therapy for ischemic cardiovascular disease carries a risk of stimulating atherosclerotic plaque growth. We evaluated risk benefit ratio of sustained administration of recombinant human placental growth factor (rhPlGF)-2 in mice with advanced atherosclerosis and chronic ischemic cardiomyopathy. We maintained apolipoprotein E-deficient mice on a high cholesterol diet and induced myocardial infarction by transient ligation at 4 weeks. At 8 weeks, we assessed left ventricular (LV) function and randomized mice to receive rhPlGF-2 or vehicle (VEH) subcutaneously for 28 days. Administration of rhPlGF-2 significantly increased PlGF plasma levels without adverse hemodynamic or systemic inflammatory effects. RhPlGF-2 did not increase plaque area, composition, or vulnerability in the aortic arch. RhPlGF-2 significantly improved contractile function and reduced LV end-systolic and end-diastolic volume indices with a concomitant increase in capillary and arteriolar density in ischemic myocardium. RhPlGF-2 may represent a promising therapeutic strategy in chronic ischemic cardiomyopathy.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
3.
Zurück zum Zitat Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., Cushman, M., et al. (2015). Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation, 131(4), e29–322. doi:10.1161/CIR.0000000000000152.CrossRefPubMed Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., Cushman, M., et al. (2015). Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation, 131(4), e29–322. doi:10.​1161/​CIR.​0000000000000152​.CrossRefPubMed
4.
Zurück zum Zitat Mack, C. A., Patel, S. R., Schwarz, E. A., Zanzonico, P., Hahn, R. T., Ilercil, A., et al. (1998). Biologic bypass with the use of adenovirus-mediated gene transfer of the complementary deoxyribonucleic acid for vascular endothelial growth factor 121 improves myocardial perfusion and function in the ischemic porcine heart. The Journal of Thoracic and Cardiovascular Surgery, 115(1), 168–176. doi:10.1016/S0022-5223(98)70455-6.CrossRefPubMed Mack, C. A., Patel, S. R., Schwarz, E. A., Zanzonico, P., Hahn, R. T., Ilercil, A., et al. (1998). Biologic bypass with the use of adenovirus-mediated gene transfer of the complementary deoxyribonucleic acid for vascular endothelial growth factor 121 improves myocardial perfusion and function in the ischemic porcine heart. The Journal of Thoracic and Cardiovascular Surgery, 115(1), 168–176. doi:10.​1016/​S0022-5223(98)70455-6.CrossRefPubMed
5.
Zurück zum Zitat Rajanayagam, M. A., Shou, M., Thirumurti, V., Lazarous, D. F., Quyyumi, A. A., Goncalves, L., et al. (2000). Intracoronary basic fibroblast growth factor enhances myocardial collateral perfusion in dogs. Journal of the American College of Cardiology, 35(2), 519–526. doi:10.1016/S0735-1097(99)00550-1.CrossRefPubMed Rajanayagam, M. A., Shou, M., Thirumurti, V., Lazarous, D. F., Quyyumi, A. A., Goncalves, L., et al. (2000). Intracoronary basic fibroblast growth factor enhances myocardial collateral perfusion in dogs. Journal of the American College of Cardiology, 35(2), 519–526. doi:10.​1016/​S0735-1097(99)00550-1.CrossRefPubMed
6.
Zurück zum Zitat Lopez, J. J., Edelman, E. R., Stamler, A., Hibberd, M. G., Prasad, P., Caputo, R. P., et al. (1997). Basic fibroblast growth factor in a porcine model of chronic myocardial ischemia: a comparison of angiographic, echocardiographic and coronary flow parameters. The Journal of Pharmacology and Experimental Therapeutics, 282(1), 385–390.PubMed Lopez, J. J., Edelman, E. R., Stamler, A., Hibberd, M. G., Prasad, P., Caputo, R. P., et al. (1997). Basic fibroblast growth factor in a porcine model of chronic myocardial ischemia: a comparison of angiographic, echocardiographic and coronary flow parameters. The Journal of Pharmacology and Experimental Therapeutics, 282(1), 385–390.PubMed
7.
Zurück zum Zitat Harada, K., Grossman, W., Friedman, M., Edelman, E. R., Prasad, P. V., Keighley, C. S., et al. (1994). Basic fibroblast growth factor improves myocardial function in chronically ischemic porcine hearts. The Journal of Clinical Investigation, 94(2), 623–630. doi:10.1172/JCI117378.CrossRefPubMedPubMedCentral Harada, K., Grossman, W., Friedman, M., Edelman, E. R., Prasad, P. V., Keighley, C. S., et al. (1994). Basic fibroblast growth factor improves myocardial function in chronically ischemic porcine hearts. The Journal of Clinical Investigation, 94(2), 623–630. doi:10.​1172/​JCI117378.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Lynch, P., Lee, T. C., Fallavollita, J. A., Canty Jr., J. M., & Suzuki, G. (2007). Intracoronary administration of AdvFGF-5 (fibroblast growth factor-5) ameliorates left ventricular dysfunction and prevents myocyte loss in swine with developing collaterals and ischemic cardiomyopathy. Circulation, 116(11 Suppl), I71–I76. doi:10.1161/CIRCULATIONAHA.106.681866.PubMed Lynch, P., Lee, T. C., Fallavollita, J. A., Canty Jr., J. M., & Suzuki, G. (2007). Intracoronary administration of AdvFGF-5 (fibroblast growth factor-5) ameliorates left ventricular dysfunction and prevents myocyte loss in swine with developing collaterals and ischemic cardiomyopathy. Circulation, 116(11 Suppl), I71–I76. doi:10.​1161/​CIRCULATIONAHA.​106.​681866.PubMed
10.
Zurück zum Zitat Stewart, D. J., Hilton, J. D., Arnold, J. M., Gregoire, J., Rivard, A., Archer, S. L., et al. (2006). Angiogenic gene therapy in patients with nonrevascularizable ischemic heart disease: a phase 2 randomized, controlled trial of AdVEGF(121) (AdVEGF121) versus maximum medical treatment. Gene Therapy, 13(21), 1503–1511. doi:10.1038/sj.gt.3302802.CrossRefPubMed Stewart, D. J., Hilton, J. D., Arnold, J. M., Gregoire, J., Rivard, A., Archer, S. L., et al. (2006). Angiogenic gene therapy in patients with nonrevascularizable ischemic heart disease: a phase 2 randomized, controlled trial of AdVEGF(121) (AdVEGF121) versus maximum medical treatment. Gene Therapy, 13(21), 1503–1511. doi:10.​1038/​sj.​gt.​3302802.CrossRefPubMed
11.
Zurück zum Zitat Losordo, D. W., Vale, P. R., Hendel, R. C., Milliken, C. E., Fortuin, F. D., Cummings, N., et al. (2002). Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation, 105(17), 2012–2018. doi:10.1161/01.CIR.0000015982.70785.B7.CrossRefPubMed Losordo, D. W., Vale, P. R., Hendel, R. C., Milliken, C. E., Fortuin, F. D., Cummings, N., et al. (2002). Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation, 105(17), 2012–2018. doi:10.​1161/​01.​CIR.​0000015982.​70785.​B7.CrossRefPubMed
12.
Zurück zum Zitat Kastrup, J., Jorgensen, E., Ruck, A., Tagil, K., Glogar, D., Ruzyllo, W., et al. (2005). Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris. A randomized double-blind placebo-controlled study: the Euroinject One trial. Journal of the American College of Cardiology, 45(7), 982–988. doi:10.1016/j.jacc.2004.12.068.CrossRefPubMed Kastrup, J., Jorgensen, E., Ruck, A., Tagil, K., Glogar, D., Ruzyllo, W., et al. (2005). Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris. A randomized double-blind placebo-controlled study: the Euroinject One trial. Journal of the American College of Cardiology, 45(7), 982–988. doi:10.​1016/​j.​jacc.​2004.​12.​068.CrossRefPubMed
14.
Zurück zum Zitat Luttun, A., Tjwa, M., Moons, L., Wu, Y., Angelillo-Scherrer, A., Liao, F., et al. (2002). Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nature Medicine, 8(8), 831–840. doi:10.1038/nm731.PubMed Luttun, A., Tjwa, M., Moons, L., Wu, Y., Angelillo-Scherrer, A., Liao, F., et al. (2002). Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nature Medicine, 8(8), 831–840. doi:10.​1038/​nm731.PubMed
15.
17.
Zurück zum Zitat Wu, M., Claus, P., Vanden Driessche, N., Reyns, G., Pokreisz, P., Gillijns, H., et al. (2016). Placental growth factor 2—a potential therapeutic strategy for chronic myocardial ischemia. International Journal of Cardiology, 203, 534–542. doi:10.1016/j.ijcard.2015.10.177.CrossRefPubMed Wu, M., Claus, P., Vanden Driessche, N., Reyns, G., Pokreisz, P., Gillijns, H., et al. (2016). Placental growth factor 2—a potential therapeutic strategy for chronic myocardial ischemia. International Journal of Cardiology, 203, 534–542. doi:10.​1016/​j.​ijcard.​2015.​10.​177.CrossRefPubMed
18.
Zurück zum Zitat Celletti, F. L., Waugh, J. M., Amabile, P. G., Brendolan, A., Hilfiker, P. R., & Dake, M. D. (2001). Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nature Medicine, 7(4), 425–429. doi:10.1038/86490.CrossRefPubMed Celletti, F. L., Waugh, J. M., Amabile, P. G., Brendolan, A., Hilfiker, P. R., & Dake, M. D. (2001). Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nature Medicine, 7(4), 425–429. doi:10.​1038/​86490.CrossRefPubMed
19.
Zurück zum Zitat Roncal, C., Buysschaert, I., Gerdes, N., Georgiadou, M., Ovchinnikova, O., Fischer, C., et al. (2010). Short-term delivery of anti-PlGF antibody delays progression of atherosclerotic plaques to vulnerable lesions. Cardiovascular Research, 86(1), 29–36. doi:10.1093/cvr/cvp380.CrossRefPubMed Roncal, C., Buysschaert, I., Gerdes, N., Georgiadou, M., Ovchinnikova, O., Fischer, C., et al. (2010). Short-term delivery of anti-PlGF antibody delays progression of atherosclerotic plaques to vulnerable lesions. Cardiovascular Research, 86(1), 29–36. doi:10.​1093/​cvr/​cvp380.CrossRefPubMed
21.
Zurück zum Zitat Williams, R., Needles, A., Cherin, E., Zhou, Y. Q., Henkelman, R. M., Adamson, S. L., et al. (2007). Noninvasive ultrasonic measurement of regional and local pulse-wave velocity in mice. Ultrasound in Medicine & Biology, 33(9), 1368–1375. doi:10.1016/j.ultrasmedbio.2007.03.012.CrossRef Williams, R., Needles, A., Cherin, E., Zhou, Y. Q., Henkelman, R. M., Adamson, S. L., et al. (2007). Noninvasive ultrasonic measurement of regional and local pulse-wave velocity in mice. Ultrasound in Medicine & Biology, 33(9), 1368–1375. doi:10.​1016/​j.​ultrasmedbio.​2007.​03.​012.CrossRef
22.
Zurück zum Zitat Takagawa, J., Zhang, Y., Wong, M. L., Sievers, R. E., Kapasi, N. K., Wang, Y., et al. (2007). Myocardial infarct size measurement in the mouse chronic infarction model: comparison of area- and length-based approaches. Journal of Applied Physiology (1985), 102(6), 2104–2111. doi:10.1152/japplphysiol.00033.2007.CrossRef Takagawa, J., Zhang, Y., Wong, M. L., Sievers, R. E., Kapasi, N. K., Wang, Y., et al. (2007). Myocardial infarct size measurement in the mouse chronic infarction model: comparison of area- and length-based approaches. Journal of Applied Physiology (1985), 102(6), 2104–2111. doi:10.​1152/​japplphysiol.​00033.​2007.CrossRef
24.
Zurück zum Zitat Selvaraj, S. K., Giri, R. K., Perelman, N., Johnson, C., Malik, P., & Kalra, V. K. (2003). Mechanism of monocyte activation and expression of proinflammatory cytochemokines by placenta growth factor. Blood, 102(4), 1515–1524. doi:10.1182/blood-2002-11-3423.CrossRefPubMed Selvaraj, S. K., Giri, R. K., Perelman, N., Johnson, C., Malik, P., & Kalra, V. K. (2003). Mechanism of monocyte activation and expression of proinflammatory cytochemokines by placenta growth factor. Blood, 102(4), 1515–1524. doi:10.​1182/​blood-2002-11-3423.CrossRefPubMed
26.
Zurück zum Zitat Nakashima, Y., Plump, A. S., Raines, E. W., Breslow, J. L., & Ross, R. (1994). ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arteriosclerosis and Thrombosis, 14(1), 133–140.CrossRefPubMed Nakashima, Y., Plump, A. S., Raines, E. W., Breslow, J. L., & Ross, R. (1994). ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arteriosclerosis and Thrombosis, 14(1), 133–140.CrossRefPubMed
27.
Zurück zum Zitat Carnevale, D., Cifelli, G., Mascio, G., Madonna, M., Sbroggio, M., Perrino, C., et al. (2011). Placental growth factor regulates cardiac inflammation through the tissue inhibitor of metalloproteinases-3/tumor necrosis factor-alpha-converting enzyme axis: crucial role for adaptive cardiac remodeling during cardiac pressure overload. Circulation, 124(12), 1337–1350. doi:10.1161/CIRCULATIONAHA.111.050500.CrossRefPubMed Carnevale, D., Cifelli, G., Mascio, G., Madonna, M., Sbroggio, M., Perrino, C., et al. (2011). Placental growth factor regulates cardiac inflammation through the tissue inhibitor of metalloproteinases-3/tumor necrosis factor-alpha-converting enzyme axis: crucial role for adaptive cardiac remodeling during cardiac pressure overload. Circulation, 124(12), 1337–1350. doi:10.​1161/​CIRCULATIONAHA.​111.​050500.CrossRefPubMed
28.
Zurück zum Zitat Accornero, F., van Berlo, J. H., Benard, M. J., Lorenz, J. N., Carmeliet, P., & Molkentin, J. D. (2011). Placental growth factor regulates cardiac adaptation and hypertrophy through a paracrine mechanism. Circulation Research, 109(3), 272–280. doi:10.1161/CIRCRESAHA.111.240820.CrossRefPubMed Accornero, F., van Berlo, J. H., Benard, M. J., Lorenz, J. N., Carmeliet, P., & Molkentin, J. D. (2011). Placental growth factor regulates cardiac adaptation and hypertrophy through a paracrine mechanism. Circulation Research, 109(3), 272–280. doi:10.​1161/​CIRCRESAHA.​111.​240820.CrossRefPubMed
29.
Zurück zum Zitat MacArthur, J. M., Bishop, J. R., Stanford, K. I., Wang, L., Bensadoun, A., Witztum, J. L., et al. (2007). Liver heparan sulfate proteoglycans mediate clearance of triglyceride-rich lipoproteins independently of LDL receptor family members. The Journal of Clinical Investigation, 117(1), 153–164. doi:10.1172/JCI29154.CrossRefPubMedPubMedCentral MacArthur, J. M., Bishop, J. R., Stanford, K. I., Wang, L., Bensadoun, A., Witztum, J. L., et al. (2007). Liver heparan sulfate proteoglycans mediate clearance of triglyceride-rich lipoproteins independently of LDL receptor family members. The Journal of Clinical Investigation, 117(1), 153–164. doi:10.​1172/​JCI29154.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Tran-Lundmark, K., Tran, P. K., Paulsson-Berne, G., Friden, V., Soininen, R., Tryggvason, K., et al. (2008). Heparan sulfate in perlecan promotes mouse atherosclerosis: roles in lipid permeability, lipid retention, and smooth muscle cell proliferation. Circulation Research, 103(1), 43–52. doi:10.1161/circresaha.108.172833.CrossRefPubMedPubMedCentral Tran-Lundmark, K., Tran, P. K., Paulsson-Berne, G., Friden, V., Soininen, R., Tryggvason, K., et al. (2008). Heparan sulfate in perlecan promotes mouse atherosclerosis: roles in lipid permeability, lipid retention, and smooth muscle cell proliferation. Circulation Research, 103(1), 43–52. doi:10.​1161/​circresaha.​108.​172833.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Autiero, M., Luttun, A., Tjwa, M., & Carmeliet, P. (2003). Placental growth factor and its receptor, vascular endothelial growth factor receptor-1: novel targets for stimulation of ischemic tissue revascularization and inhibition of angiogenic and inflammatory disorders. Journal of Thrombosis and Haemostasis, 1(7), 1356–1370. doi:10.1046/j.1538-7836.2003.00263.x.CrossRefPubMed Autiero, M., Luttun, A., Tjwa, M., & Carmeliet, P. (2003). Placental growth factor and its receptor, vascular endothelial growth factor receptor-1: novel targets for stimulation of ischemic tissue revascularization and inhibition of angiogenic and inflammatory disorders. Journal of Thrombosis and Haemostasis, 1(7), 1356–1370. doi:10.​1046/​j.​1538-7836.​2003.​00263.​x.CrossRefPubMed
35.
Zurück zum Zitat Cudmore, M. J., Hewett, P. W., Ahmad, S., Wang, K. Q., Cai, M., Al-Ani, B., et al. (2012). The role of heterodimerization between VEGFR-1 and VEGFR-2 in the regulation of endothelial cell homeostasis. Nature Communications, 3, 972. doi:10.1038/ncomms1977.CrossRefPubMed Cudmore, M. J., Hewett, P. W., Ahmad, S., Wang, K. Q., Cai, M., Al-Ani, B., et al. (2012). The role of heterodimerization between VEGFR-1 and VEGFR-2 in the regulation of endothelial cell homeostasis. Nature Communications, 3, 972. doi:10.​1038/​ncomms1977.CrossRefPubMed
36.
37.
Zurück zum Zitat Bellik, L., Vinci, M. C., Filippi, S., Ledda, F., & Parenti, A. (2005). Intracellular pathways triggered by the selective FLT-1-agonist placental growth factor in vascular smooth muscle cells exposed to hypoxia. British Journal of Pharmacology, 146(4), 568–575. doi:10.1038/sj.bjp.0706347.CrossRefPubMedPubMedCentral Bellik, L., Vinci, M. C., Filippi, S., Ledda, F., & Parenti, A. (2005). Intracellular pathways triggered by the selective FLT-1-agonist placental growth factor in vascular smooth muscle cells exposed to hypoxia. British Journal of Pharmacology, 146(4), 568–575. doi:10.​1038/​sj.​bjp.​0706347.CrossRefPubMedPubMedCentral
Metadaten
Titel
Sustained Placental Growth Factor-2 Treatment Does Not Aggravate Advanced Atherosclerosis in Ischemic Cardiomyopathy
verfasst von
Ming Wu
Peter Pokreisz
Melissa Swinnen
Ellen Caluwe
Hilde Gillijns
Nina Vanden Driessche
Andrea Casazza
Erik Verbeken
Desire Collen
Stefan Janssens
Publikationsdatum
10.04.2017
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 4/2017
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-017-9742-4

Weitere Artikel der Ausgabe 4/2017

Journal of Cardiovascular Translational Research 4/2017 Zur Ausgabe

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

GLP-1-Agonisten können Fortschreiten diabetischer Retinopathie begünstigen

24.05.2024 Diabetische Retinopathie Nachrichten

Möglicherweise hängt es von der Art der Diabetesmedikamente ab, wie hoch das Risiko der Betroffenen ist, dass sich sehkraftgefährdende Komplikationen verschlimmern.

TAVI versus Klappenchirurgie: Neue Vergleichsstudie sorgt für Erstaunen

21.05.2024 TAVI Nachrichten

Bei schwerer Aortenstenose und obstruktiver KHK empfehlen die Leitlinien derzeit eine chirurgische Kombi-Behandlung aus Klappenersatz plus Bypass-OP. Diese Empfehlung wird allerdings jetzt durch eine aktuelle Studie infrage gestellt – mit überraschender Deutlichkeit.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.