Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1/2021

20.01.2021 | Non-Thematic Review

Targeting the cytoskeleton against metastatic dissemination

verfasst von: Carmen Ruggiero, Enzo Lalli

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1/2021

Einloggen, um Zugang zu erhalten

Abstract

Cancer is a pathology characterized by a loss or a perturbation of a number of typical features of normal cell behaviour. Indeed, the acquisition of an inappropriate migratory and invasive phenotype has been reported to be one of the hallmarks of cancer. The cytoskeleton is a complex dynamic network of highly ordered interlinking filaments playing a key role in the control of fundamental cellular processes, like cell shape maintenance, motility, division and intracellular transport. Moreover, deregulation of this complex machinery contributes to cancer progression and malignancy, enabling cells to acquire an invasive and metastatic phenotype. Metastasis accounts for 90% of death from patients affected by solid tumours, while an efficient prevention and suppression of metastatic disease still remains elusive. This results in the lack of effective therapeutic options currently available for patients with advanced disease. In this context, the cytoskeleton with its regulatory and structural proteins emerges as a novel and highly effective target to be exploited for a substantial therapeutic effort toward the development of specific anti-metastatic drugs. Here we provide an overview of the role of cytoskeleton components and interacting proteins in cancer metastasis with a special focus on small molecule compounds interfering with the actin cytoskeleton organization and function. The emerging involvement of microtubules and intermediate filaments in cancer metastasis is also reviewed.
Literatur
1.
Zurück zum Zitat Gupta, G. P., & Massagué, J. (2006). Cancer metastasis: building a framework. Cell, 127(4), 679–695.PubMedCrossRef Gupta, G. P., & Massagué, J. (2006). Cancer metastasis: building a framework. Cell, 127(4), 679–695.PubMedCrossRef
2.
Zurück zum Zitat Sahai, E. (2005). Mechanisms of cancer cell invasion. Current Opinion in Genetics & Development, 15(1), 87–96.CrossRef Sahai, E. (2005). Mechanisms of cancer cell invasion. Current Opinion in Genetics & Development, 15(1), 87–96.CrossRef
3.
Zurück zum Zitat Wang, W., Goswami, S., Lapidus, K., Wells, A. L., Wyckoff, J. B., Sahai, E., et al. (2004). Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Research, 64(23), 8585–8594.PubMedCrossRef Wang, W., Goswami, S., Lapidus, K., Wells, A. L., Wyckoff, J. B., Sahai, E., et al. (2004). Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Research, 64(23), 8585–8594.PubMedCrossRef
4.
Zurück zum Zitat Wickstead, B., & Gull, K. (2011). The evolution of the cytoskeleton. Journal of CellBiology, 194(4), 513–525.CrossRef Wickstead, B., & Gull, K. (2011). The evolution of the cytoskeleton. Journal of CellBiology, 194(4), 513–525.CrossRef
7.
Zurück zum Zitat Dent, E. W., & Gertler, F. B. (2003). Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron, 40(2), 209–227.PubMedCrossRef Dent, E. W., & Gertler, F. B. (2003). Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron, 40(2), 209–227.PubMedCrossRef
8.
Zurück zum Zitat Wittmann, T., Hyman, A., & Desai, A. (2001). The spindle: a dynamic assembly of microtubules and motors. Nature Cell Biol, 3(1), E28–E34.PubMedCrossRef Wittmann, T., Hyman, A., & Desai, A. (2001). The spindle: a dynamic assembly of microtubules and motors. Nature Cell Biol, 3(1), E28–E34.PubMedCrossRef
9.
Zurück zum Zitat Wegner, A. (1976). Head to tail polymerization of actin. Journal of Molecular Biology, 108(1), 139–150.PubMedCrossRef Wegner, A. (1976). Head to tail polymerization of actin. Journal of Molecular Biology, 108(1), 139–150.PubMedCrossRef
10.
Zurück zum Zitat Korn, E. D., Carlier, M. F., & Pantaloni, D. (1987). Actin polymerization and ATP hydrolysis. Science, 238(4827), 638–644.PubMedCrossRef Korn, E. D., Carlier, M. F., & Pantaloni, D. (1987). Actin polymerization and ATP hydrolysis. Science, 238(4827), 638–644.PubMedCrossRef
11.
Zurück zum Zitat Bugyi, B., & Carlier, M. F. (2010). Control of actin filament treadmilling in cell motility. Annual Review of Biophysics, 39, 449–470.PubMedCrossRef Bugyi, B., & Carlier, M. F. (2010). Control of actin filament treadmilling in cell motility. Annual Review of Biophysics, 39, 449–470.PubMedCrossRef
12.
Zurück zum Zitat dos Remedios, C. G., Chhabra, D., Kekic, M., Dedova, I. V., Tsubakihara, M., Berry, D. A., et al. (2003). Actin binding proteins: regulation of cytoskeletal microfilaments. PhysiologicalReviews, 83(2), 433–473. dos Remedios, C. G., Chhabra, D., Kekic, M., Dedova, I. V., Tsubakihara, M., Berry, D. A., et al. (2003). Actin binding proteins: regulation of cytoskeletal microfilaments. PhysiologicalReviews, 83(2), 433–473.
13.
Zurück zum Zitat Miller, A. L. (2011). The contractile ring. CurrentBiology, 21(24), R976–R978. Miller, A. L. (2011). The contractile ring. CurrentBiology, 21(24), R976–R978.
14.
Zurück zum Zitat Lymn, R. W., & Taylor, E. W. (1971). Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry, 10(25), 4617–4624.PubMedCrossRef Lymn, R. W., & Taylor, E. W. (1971). Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry, 10(25), 4617–4624.PubMedCrossRef
15.
Zurück zum Zitat Rayment, I., Holden, H. M., Whittaker, M., Yohn, C. B., Lorenz, M., Holmes, K. C., & Milligan, R. A. (1993). Structure of the actin-myosin complex and its implications for muscle contraction. Science, 261(5117), 58–65.PubMedCrossRef Rayment, I., Holden, H. M., Whittaker, M., Yohn, C. B., Lorenz, M., Holmes, K. C., & Milligan, R. A. (1993). Structure of the actin-myosin complex and its implications for muscle contraction. Science, 261(5117), 58–65.PubMedCrossRef
16.
Zurück zum Zitat Geeves, M. A., & Holmes, K. C. (2005). The molecular mechanism of muscle contraction. Advances in Protein Chemistry, 71, 161–193.PubMedCrossRef Geeves, M. A., & Holmes, K. C. (2005). The molecular mechanism of muscle contraction. Advances in Protein Chemistry, 71, 161–193.PubMedCrossRef
17.
Zurück zum Zitat Pantaloni, D., Le Clainche, C., & Carlier, M. F. (2001). Mechanism of actin-based motility. Science, 292(5521), 1502–1506.PubMedCrossRef Pantaloni, D., Le Clainche, C., & Carlier, M. F. (2001). Mechanism of actin-based motility. Science, 292(5521), 1502–1506.PubMedCrossRef
18.
Zurück zum Zitat Footer, M. J., Kerssemakers, J. W. J., Theriot, J. A., & Dogterom, M. (2007). Direct measurement of force generation by actin filament polymerizationusing an optical trap. Proceedings of the National Academy of Sciences of the United States of America, 104(7), 2181–2186.PubMedPubMedCentralCrossRef Footer, M. J., Kerssemakers, J. W. J., Theriot, J. A., & Dogterom, M. (2007). Direct measurement of force generation by actin filament polymerizationusing an optical trap. Proceedings of the National Academy of Sciences of the United States of America, 104(7), 2181–2186.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Atilgan, E., Wirtz, D., & Sun, S. X. (2005). Morphology of the lamellipodium and organization of actin filaments at the leading edge of crawling cells. Biophysical Journal, 89(5), 3589–3602.PubMedPubMedCentralCrossRef Atilgan, E., Wirtz, D., & Sun, S. X. (2005). Morphology of the lamellipodium and organization of actin filaments at the leading edge of crawling cells. Biophysical Journal, 89(5), 3589–3602.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Loisel, T. P., Boujemaa, R., Pantaloni, D., & Carlier, M. F. (1999). Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature, 401(6753), 613–616.PubMedCrossRef Loisel, T. P., Boujemaa, R., Pantaloni, D., & Carlier, M. F. (1999). Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature, 401(6753), 613–616.PubMedCrossRef
21.
Zurück zum Zitat Zeile, W. L., Zhang, F., Dickinson, R. B., & Purich, D. L. (2005). Listeria's right-handed helical rocket-tail trajectories: mechanistic implications for force generation in actin-basedmotility. Cell Motility and the Cytoskeleton, 60(2), 121–128.PubMedCrossRef Zeile, W. L., Zhang, F., Dickinson, R. B., & Purich, D. L. (2005). Listeria's right-handed helical rocket-tail trajectories: mechanistic implications for force generation in actin-basedmotility. Cell Motility and the Cytoskeleton, 60(2), 121–128.PubMedCrossRef
22.
Zurück zum Zitat Foster, K. W. (2012). Flagella, Cilia, Actin- and Centrin-based Movement. In N. Sperelakis (Ed.), Cell Physiology Source Book (Fourth Edition) (pp. 823–853). Academic Press. Foster, K. W. (2012). Flagella, Cilia, Actin- and Centrin-based Movement. In N. Sperelakis (Ed.), Cell Physiology Source Book (Fourth Edition) (pp. 823–853). Academic Press.
23.
Zurück zum Zitat Carlson, B. M. (2018). Cells. In A. G. Wolff (Ed.), The Human Body: Linking Structure and Function (pp. 16–19). Academic Press. Carlson, B. M. (2018). Cells. In A. G. Wolff (Ed.), The Human Body: Linking Structure and Function (pp. 16–19). Academic Press.
25.
Zurück zum Zitat Hirokawa, N. (1998). Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science, 279(5350), 519–526.PubMedCrossRef Hirokawa, N. (1998). Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science, 279(5350), 519–526.PubMedCrossRef
26.
Zurück zum Zitat Desai, A., & Mitchison, T. J. (1997). Microtubule polymerization dynamics. Annual. Review Cell and Developmental Biology, 13, 83–117.CrossRef Desai, A., & Mitchison, T. J. (1997). Microtubule polymerization dynamics. Annual. Review Cell and Developmental Biology, 13, 83–117.CrossRef
27.
28.
Zurück zum Zitat Belmont, L. D., Hyman, A. A., Sawin, K. E., & Mitchison, T. J. (1990). Real-time visualization of cell cycle-dependent changes in microtubule dynamics in cytoplasmic extracts. Cell, 62(3), 579–589.PubMedCrossRef Belmont, L. D., Hyman, A. A., Sawin, K. E., & Mitchison, T. J. (1990). Real-time visualization of cell cycle-dependent changes in microtubule dynamics in cytoplasmic extracts. Cell, 62(3), 579–589.PubMedCrossRef
29.
30.
Zurück zum Zitat Walczak, C. E., & Heald, R. (2008). Mechanisms of mitotic spindle assembly and function. International Review of Cytology, 265, 111–158.PubMedCrossRef Walczak, C. E., & Heald, R. (2008). Mechanisms of mitotic spindle assembly and function. International Review of Cytology, 265, 111–158.PubMedCrossRef
31.
Zurück zum Zitat Achler, C., Filmer, D., Merte, C., & Drenckhahn, D. (1989). Role of microtubules in polarized delivery of apical membrane proteins to the brush border of the intestinal epithelium. Journal of Cell Biology, 109(1), 179–189.CrossRef Achler, C., Filmer, D., Merte, C., & Drenckhahn, D. (1989). Role of microtubules in polarized delivery of apical membrane proteins to the brush border of the intestinal epithelium. Journal of Cell Biology, 109(1), 179–189.CrossRef
32.
Zurück zum Zitat Siegrist, S. E., & Doe, C. Q. (2007). Microtubule-induced cortical cell polarity. Genes and Development, 21(5), 483–496.PubMedCrossRef Siegrist, S. E., & Doe, C. Q. (2007). Microtubule-induced cortical cell polarity. Genes and Development, 21(5), 483–496.PubMedCrossRef
33.
Zurück zum Zitat Hesse, M., Magin, T. M., & Weber, K. (2001). Genes for intermediate filament proteins and the draft sequence of the human genome: novel keratin genes and a surprisingly high number of pseudogenes related to keratin genes 8 and 18. Journal of Cell Science, 114(Pt14), 2569–2575.PubMedCrossRef Hesse, M., Magin, T. M., & Weber, K. (2001). Genes for intermediate filament proteins and the draft sequence of the human genome: novel keratin genes and a surprisingly high number of pseudogenes related to keratin genes 8 and 18. Journal of Cell Science, 114(Pt14), 2569–2575.PubMedCrossRef
34.
Zurück zum Zitat Jones, J. C., Kam, C. Y., Harmon, R. M., Woychek, A. V., Hopkinson, S. B., & Green, K. J. (2017). Intermediate Filaments and the Plasma Membrane. Cold Spring Harbor Perspectives in Biology, 9(1), a025866.PubMedPubMedCentralCrossRef Jones, J. C., Kam, C. Y., Harmon, R. M., Woychek, A. V., Hopkinson, S. B., & Green, K. J. (2017). Intermediate Filaments and the Plasma Membrane. Cold Spring Harbor Perspectives in Biology, 9(1), a025866.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Aebi, U., Cohn, J., Buhle, L., & Gerace, L. (1986). The nuclear lamina is a meshwork of intermediate-type filaments. Nature, 323(6088), 560–564.PubMedCrossRef Aebi, U., Cohn, J., Buhle, L., & Gerace, L. (1986). The nuclear lamina is a meshwork of intermediate-type filaments. Nature, 323(6088), 560–564.PubMedCrossRef
36.
Zurück zum Zitat Howard, J. (1997). Molecular motors: structural adaptations to cellular functions. Nature, 389(6651), 561–567.PubMedCrossRef Howard, J. (1997). Molecular motors: structural adaptations to cellular functions. Nature, 389(6651), 561–567.PubMedCrossRef
37.
Zurück zum Zitat Krendel, M., & Mooseker, M. S. (2005). Myosins: tails (and heads) of functional diversity. Physiology, 20, 239–251.PubMedCrossRef Krendel, M., & Mooseker, M. S. (2005). Myosins: tails (and heads) of functional diversity. Physiology, 20, 239–251.PubMedCrossRef
38.
Zurück zum Zitat Howard, J., Hudspeth, A. J., & Vale, R. D. (1989). Movement of microtubules by single kinesin molecules. Nature, 342(6246), 154–158.PubMedCrossRef Howard, J., Hudspeth, A. J., & Vale, R. D. (1989). Movement of microtubules by single kinesin molecules. Nature, 342(6246), 154–158.PubMedCrossRef
39.
Zurück zum Zitat Ampe, C., & Van Troys, M. (2017). Mammalian Actins: Isoform-Specific Functions and Diseases. Handbook of Experimental Pharmacology, 235, 1–37.PubMed Ampe, C., & Van Troys, M. (2017). Mammalian Actins: Isoform-Specific Functions and Diseases. Handbook of Experimental Pharmacology, 235, 1–37.PubMed
40.
Zurück zum Zitat Dugina, V., Zwaenepoel, I., Gabbiani, G., Clement, S., & Chaponnier, C. (2009). Beta- and gamma-cytoplasmic actins display distinct distribution and functional diversity. Journal of Cell Science, 122(16), 2980–2988.PubMedCrossRef Dugina, V., Zwaenepoel, I., Gabbiani, G., Clement, S., & Chaponnier, C. (2009). Beta- and gamma-cytoplasmic actins display distinct distribution and functional diversity. Journal of Cell Science, 122(16), 2980–2988.PubMedCrossRef
41.
Zurück zum Zitat Perrin, B. J., & Ervasti, J. M. (2010). The Actin Gene Family: Function Follows Isoform. Cytoskeleton (Hoboken), 67(10), 630–634.CrossRef Perrin, B. J., & Ervasti, J. M. (2010). The Actin Gene Family: Function Follows Isoform. Cytoskeleton (Hoboken), 67(10), 630–634.CrossRef
42.
Zurück zum Zitat Burke, T. A., Christensen, J. R., Barone, E., Suarez, C., Sirotkin, V., & Kovar, D. R. (2014). Homeostatic Actin Cytoskeleton Networks Are Regulated by Assembly Factor Competition for Monomers. Current Biology, 24(5), 579–585.PubMedCrossRef Burke, T. A., Christensen, J. R., Barone, E., Suarez, C., Sirotkin, V., & Kovar, D. R. (2014). Homeostatic Actin Cytoskeleton Networks Are Regulated by Assembly Factor Competition for Monomers. Current Biology, 24(5), 579–585.PubMedCrossRef
43.
Zurück zum Zitat Cao, L. G., Babcock, G. G., Rubenstein, P. A., & Wang, Y. L. (1992). Effects of profilin and profilactin on actin structure and function in living cells. Journal of Cell Biology, 117(5), 1023–1029.CrossRef Cao, L. G., Babcock, G. G., Rubenstein, P. A., & Wang, Y. L. (1992). Effects of profilin and profilactin on actin structure and function in living cells. Journal of Cell Biology, 117(5), 1023–1029.CrossRef
44.
Zurück zum Zitat Carlsson, L., Nystrom, L. E., Sundkvist, I., Markey, F., & Lindberg, U. (1977). Actin polymerizability is influenced by profilin, a low molecular weight protein in non-muscle cells. Journal of MolecularBiology, 115(3), 465–483. Carlsson, L., Nystrom, L. E., Sundkvist, I., Markey, F., & Lindberg, U. (1977). Actin polymerizability is influenced by profilin, a low molecular weight protein in non-muscle cells. Journal of MolecularBiology, 115(3), 465–483.
45.
Zurück zum Zitat Fujiwara, I., Vavylonis, D., & Pollard, T. D. (2007). Polymerization of ADP- and ADP-Pi-actin determined by fluorescence microscopy. Proceedings of the National Academy of Sciences of the United States of America, 104(21), 8827–8832.PubMedPubMedCentralCrossRef Fujiwara, I., Vavylonis, D., & Pollard, T. D. (2007). Polymerization of ADP- and ADP-Pi-actin determined by fluorescence microscopy. Proceedings of the National Academy of Sciences of the United States of America, 104(21), 8827–8832.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Pollard, T. D., & Weeds, A. G. (1984). The rate constant for ATP hydrolysis by polymerizedactin. FEBS Letters, 170(1), 94–98.PubMedCrossRef Pollard, T. D., & Weeds, A. G. (1984). The rate constant for ATP hydrolysis by polymerizedactin. FEBS Letters, 170(1), 94–98.PubMedCrossRef
47.
Zurück zum Zitat Mukherjee, T. M., & Staehelin, L. A. (1971). The fine-structural organization of the brush border of intestinal epithelial cells. Journal of Cell Science, 8(3), 573‐599.CrossRef Mukherjee, T. M., & Staehelin, L. A. (1971). The fine-structural organization of the brush border of intestinal epithelial cells. Journal of Cell Science, 8(3), 573‐599.CrossRef
48.
Zurück zum Zitat Mooseker, M. S., & Tilney, L. G. (1975). Organization of an actin filament-membrane complex. Filament polarity and membrane attachment in the microvilli of intestinal epithelialcells. Journal of Cell Biology, 67(3), 725–743.CrossRef Mooseker, M. S., & Tilney, L. G. (1975). Organization of an actin filament-membrane complex. Filament polarity and membrane attachment in the microvilli of intestinal epithelialcells. Journal of Cell Biology, 67(3), 725–743.CrossRef
49.
Zurück zum Zitat Bretscher, A., & Weber, K. (1978). Localization of actin and microfilament-associated proteins in the microvilli and terminal web of the intestinal brush border by immunofluorescence microscopy. Journal of Cell Biology, (3), 839–845. Bretscher, A., & Weber, K. (1978). Localization of actin and microfilament-associated proteins in the microvilli and terminal web of the intestinal brush border by immunofluorescence microscopy. Journal of Cell Biology, (3), 839–845.
50.
Zurück zum Zitat Bearer, E. L. (1993). Role of Actin Polymerization in Cell Locomotion: Molecules and Models. American Journal of Respiratory Cell and Molecular Biology, 8(6), 582–591.PubMedCrossRef Bearer, E. L. (1993). Role of Actin Polymerization in Cell Locomotion: Molecules and Models. American Journal of Respiratory Cell and Molecular Biology, 8(6), 582591.PubMedCrossRef
51.
Zurück zum Zitat Slack, J. M. W. (2014). The basis of growth and differentiation. In R. Lanza, R. Langer, & J. Vacanti (Eds.), Principles of Tissue Engineering (Fourth Edition) (pp. 127–145). Academic Press. Slack, J. M. W. (2014). The basis of growth and differentiation. In R. Lanza, R. Langer, & J. Vacanti (Eds.), Principles of Tissue Engineering (Fourth Edition) (pp. 127–145). Academic Press.
52.
Zurück zum Zitat Zheng, Y., Wong, M. L., Alberts, B., & Mitchison, T. (1995). Nucleation of microtubule assembly by a gamma-tubulin-containing ring complex. Nature, 378(6557), 578–583.PubMedCrossRef Zheng, Y., Wong, M. L., Alberts, B., & Mitchison, T. (1995). Nucleation of microtubule assembly by a gamma-tubulin-containing ring complex. Nature, 378(6557), 578–583.PubMedCrossRef
53.
Zurück zum Zitat Howard, J., & Hyman, A. A. (2003). Dynamics and mechanics of the microtubule plus end. Nature, 422(6933), 753–758.PubMedCrossRef Howard, J., & Hyman, A. A. (2003). Dynamics and mechanics of the microtubule plus end. Nature, 422(6933), 753–758.PubMedCrossRef
54.
Zurück zum Zitat Mitchison, T., & Kirschner, M. (1984). Dynamic instability of microtubule growth. Nature, 312(5991), 237–242.PubMedCrossRef Mitchison, T., & Kirschner, M. (1984). Dynamic instability of microtubule growth. Nature, 312(5991), 237–242.PubMedCrossRef
55.
Zurück zum Zitat Rodionov, V. I., & Borisy, G. G. (1997). Microtubule treadmilling in vivo. Science, 275(5297), 215–218.PubMedCrossRef Rodionov, V. I., & Borisy, G. G. (1997). Microtubule treadmilling in vivo. Science, 275(5297), 215–218.PubMedCrossRef
56.
Zurück zum Zitat Aldaz, H., Rice, L. M., Stearns, T., & Agard, D. A. (2005). Insights into microtubule nucleation from the crystal structure of human gamma-tubulin. Nature, 435(7041), 523–527.PubMedCrossRef Aldaz, H., Rice, L. M., Stearns, T., & Agard, D. A. (2005). Insights into microtubule nucleation from the crystal structure of human gamma-tubulin. Nature, 435(7041), 523–527.PubMedCrossRef
57.
Zurück zum Zitat Drewes, G., Ebneth, A., & Mandelkow, E. M. (1998). MAPs, MARKs and microtubule dynamics. Trends in Biochemical Sciences, 23(8), 307–311.PubMedCrossRef Drewes, G., Ebneth, A., & Mandelkow, E. M. (1998). MAPs, MARKs and microtubule dynamics. Trends in Biochemical Sciences, 23(8), 307–311.PubMedCrossRef
58.
Zurück zum Zitat Andersen, S. S. (2000). Spindle assembly and the art of regulating microtubule dynamics by MAPs and Stathmin/Op18. Trends in Cell Biology, 10(7), 261–267.PubMedCrossRef Andersen, S. S. (2000). Spindle assembly and the art of regulating microtubule dynamics by MAPs and Stathmin/Op18. Trends in Cell Biology, 10(7), 261–267.PubMedCrossRef
59.
Zurück zum Zitat Permana, S., Hisanaga, S., Nagatomo, Y., Iida, J., Hotani, H., & Itoh, T. J. (2005). Truncation of the projection domain of MAP4 (microtubule-associatedprotein 4) leads to attenuation of microtubule dynamic instability. Cell Structure and Function, 29(5–6), 147–157.PubMedCrossRef Permana, S., Hisanaga, S., Nagatomo, Y., Iida, J., Hotani, H., & Itoh, T. J. (2005). Truncation of the projection domain of MAP4 (microtubule-associatedprotein 4) leads to attenuation of microtubule dynamic instability. Cell Structure and Function, 29(5–6), 147–157.PubMedCrossRef
60.
Zurück zum Zitat Garcia, M. L., & Cleveland, D. W. (2001). Going new places using an old MAP: tau, microtubules and human neurodegenerative disease. Current Opinion in Cell Biology, 13(1), 41–48.PubMedCrossRef Garcia, M. L., & Cleveland, D. W. (2001). Going new places using an old MAP: tau, microtubules and human neurodegenerative disease. Current Opinion in Cell Biology, 13(1), 41–48.PubMedCrossRef
61.
Zurück zum Zitat Schweizer, J., Bowden, P. E., Coulombe, P. A., Langbein, L., Lane, E. B., Magin, T. M., et al. (2006). New consensus nomenclature for mammalian keratins. Journal of Cell Biology, 174(2), 169–174.CrossRef Schweizer, J., Bowden, P. E., Coulombe, P. A., Langbein, L., Lane, E. B., Magin, T. M., et al. (2006). New consensus nomenclature for mammalian keratins. Journal of Cell Biology, 174(2), 169–174.CrossRef
62.
Zurück zum Zitat Franke, W. W., Schmid, E., Winter, S., Osborn, M., & Weber, K. (1979). Widespread occurrence of intermediate-sized filaments of the vimentin-type in cultured cells from diverse vertebrates. Experimental Cell Research, 123(1), 25–46.PubMedCrossRef Franke, W. W., Schmid, E., Winter, S., Osborn, M., & Weber, K. (1979). Widespread occurrence of intermediate-sized filaments of the vimentin-type in cultured cells from diverse vertebrates. Experimental Cell Research, 123(1), 25–46.PubMedCrossRef
63.
Zurück zum Zitat Lazarides, E., & Hubbard, B. D. (1976). Immunological characterization of the subunit of the 100 A filaments from muscle cells. Proceedings of the National Academy of Sciences of the United States of America, 7(12), 4344–4348.CrossRef Lazarides, E., & Hubbard, B. D. (1976). Immunological characterization of the subunit of the 100 A filaments from muscle cells. Proceedings of the National Academy of Sciences of the United States of America, 7(12), 4344–4348.CrossRef
64.
Zurück zum Zitat Hoffman, P. N., & Lasek, R. J. (1975). The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. Journal of Cell Biology, 66(2), 351–366.CrossRef Hoffman, P. N., & Lasek, R. J. (1975). The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. Journal of Cell Biology, 66(2), 351366.CrossRef
65.
Zurück zum Zitat Lendahl, U., Zimmerman, L. B., & McKay, R. D. G. (1990). CNS stem cells express a new class of intermediate filament protein. Cell, 60(4), 585–595.PubMedCrossRef Lendahl, U., Zimmerman, L. B., & McKay, R. D. G. (1990). CNS stem cells express a new class of intermediate filament protein. Cell, 60(4), 585–595.PubMedCrossRef
66.
Zurück zum Zitat Mignone, J. L., Kukekov, V., Chiang, A. S., Steindler, D., & Enikolopov, G. J. (2004). Neural stem and progenitor cells in nestin-GFP transgenic mice. Journal of Comparative Neurology, 469(3), 311–324.CrossRef Mignone, J. L., Kukekov, V., Chiang, A. S., Steindler, D., & Enikolopov, G. J. (2004). Neural stem and progenitor cells in nestin-GFP transgenic mice. Journal of Comparative Neurology, 469(3), 311–324.CrossRef
67.
Zurück zum Zitat Koster, S., Weitz, D. A., Goldman, R. D., Aebi, U., & Hermann, H. (2015). Intermediate filament mechanics in vitro and in the cell: from coiled coils to filaments, fibers and networks. Current Opinion in Cell Biology, 32, 82–91.PubMedCrossRef Koster, S., Weitz, D. A., Goldman, R. D., Aebi, U., & Hermann, H. (2015). Intermediate filament mechanics in vitro and in the cell: from coiled coils to filaments, fibers and networks. Current Opinion in Cell Biology, 32, 82–91.PubMedCrossRef
68.
Zurück zum Zitat Helfand, B. T., Chang, L., & Goldman, R. D. (2003). The dynamic and motile properties of intermediate filaments. Annual Review of Cell and Developmental Biology, 19, 445–467.PubMedCrossRef Helfand, B. T., Chang, L., & Goldman, R. D. (2003). The dynamic and motile properties of intermediate filaments. Annual Review of Cell and Developmental Biology, 19, 445–467.PubMedCrossRef
69.
Zurück zum Zitat Gerace, L., & Blobel, G. (1980). The nuclear envelope lamina is reversibly depolymerized during mitosis. Cell., 19(1), 277–287.PubMedCrossRef Gerace, L., & Blobel, G. (1980). The nuclear envelope lamina is reversibly depolymerized during mitosis. Cell., 19(1), 277–287.PubMedCrossRef
70.
Zurück zum Zitat Ottaviano, Y., & Gerace, L. (1985). Phosphorylation of the nuclear lamins during interphase and mitosis. Journal of Biological Chemistry, 260(1), 624–632.CrossRef Ottaviano, Y., & Gerace, L. (1985). Phosphorylation of the nuclear lamins during interphase and mitosis. Journal of Biological Chemistry, 260(1), 624–632.CrossRef
71.
Zurück zum Zitat Coulombe, P. A., Kerns, M. L., & Fuchs, E. (2009). Epidermolysis bullosa simplex: a paradigm for disorders of tissue fragility. Journal of Clinical Investigation, 119(7), 1784–1793.CrossRef Coulombe, P. A., Kerns, M. L., & Fuchs, E. (2009). Epidermolysis bullosa simplex: a paradigm for disorders of tissue fragility. Journal of Clinical Investigation, 119(7), 1784–1793.CrossRef
72.
Zurück zum Zitat Goldfarb, L. G., Olivé, M., Vicart, P., & Goebel, H. H. (2008). Intermediate Filament Diseases: Desminopathy. Advances in Experimental Medicine and Biology, 642, 131–164.PubMedPubMedCentralCrossRef Goldfarb, L. G., Olivé, M., Vicart, P., & Goebel, H. H. (2008). Intermediate Filament Diseases: Desminopathy. Advances in Experimental Medicine and Biology, 642, 131–164.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Xiao, S., McLean, J., & Robertson, J. (2006). Neuronal Intermediate Filaments and ALS: A New Look at an Old Question. Biochimica Biophysica Acta, 1762(11-12), 1001–1012.CrossRef Xiao, S., McLean, J., & Robertson, J. (2006). Neuronal Intermediate Filaments and ALS: A New Look at an Old Question. Biochimica Biophysica Acta, 1762(11-12), 1001–1012.CrossRef
74.
Zurück zum Zitat Talmadge, J. E., & Fidler, I. J. (2010). AACR Centennial Series: The Biology of Cancer Metastasis: Historical Perspective. Cancer Research, 70(14), 5649–5469.PubMedPubMedCentralCrossRef Talmadge, J. E., & Fidler, I. J. (2010). AACR Centennial Series: The Biology of Cancer Metastasis: Historical Perspective. Cancer Research, 70(14), 5649–5469.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews Cancer, 2(8), 563–572.PubMedCrossRef Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews Cancer, 2(8), 563–572.PubMedCrossRef
76.
Zurück zum Zitat Woodhouse, E. C., Chuaqui, R. F., & Liotta, L. A. (1997). General mechanisms of metastasis. Cancer, 80(8 Suppl), 1529–1537.PubMedCrossRef Woodhouse, E. C., Chuaqui, R. F., & Liotta, L. A. (1997). General mechanisms of metastasis. Cancer, 80(8 Suppl), 1529–1537.PubMedCrossRef
78.
Zurück zum Zitat Hiratsuka, S., Nakamura, K., Iwai, S., Murakami, M., Itoh, T., Kijima, H., et al. (2002). MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell, (4), 289–300. Hiratsuka, S., Nakamura, K., Iwai, S., Murakami, M., Itoh, T., Kijima, H., et al. (2002). MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell, (4), 289–300.
79.
Zurück zum Zitat Hiratsuka, S., Watanabe, A., Aburatani, H., & Maru, Y. (2006). Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nature Cell Biology, 8(12), 1369–1375.PubMedCrossRef Hiratsuka, S., Watanabe, A., Aburatani, H., & Maru, Y. (2006). Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nature Cell Biology, 8(12), 1369–1375.PubMedCrossRef
80.
Zurück zum Zitat Hiratsuka, S., Watanabe, A., Sakurai, Y., Akashi-Takamura, S., Ishibashi, S., Miyake, K., et al. (2008). The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nature Cell Biology, 10(11), 1349–1355.PubMedCrossRef Hiratsuka, S., Watanabe, A., Sakurai, Y., Akashi-Takamura, S., Ishibashi, S., Miyake, K., et al. (2008). The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nature Cell Biology, 10(11), 1349–1355.PubMedCrossRef
81.
82.
Zurück zum Zitat van't Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart, A. A. M., Mao, M., et al. (2002). Gene Expression Profiling Predicts Clinical Outcome of Breast Cancer. Nature, 415(6871), 530–536.CrossRef van't Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart, A. A. M., Mao, M., et al. (2002). Gene Expression Profiling Predicts Clinical Outcome of Breast Cancer. Nature, 415(6871), 530–536.CrossRef
83.
Zurück zum Zitat Talhouk, R. S., Bissell, M. J., & Werb, Z. (1992). Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution. Journal of Cell Biology, 118(5), 1271–1282.CrossRef Talhouk, R. S., Bissell, M. J., & Werb, Z. (1992). Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution. Journal of Cell Biology, 118(5), 1271–1282.CrossRef
84.
Zurück zum Zitat Wu, D. Y., & Goldberg, D. J. (1993). Regulated tyrosine phosphorylation at the tips of growth cone filopodia. Journal of Cell Biology, 123(3), 653–664.CrossRef Wu, D. Y., & Goldberg, D. J. (1993). Regulated tyrosine phosphorylation at the tips of growth cone filopodia. Journal of Cell Biology, 123(3), 653–664.CrossRef
85.
Zurück zum Zitat Folkman, J. (1971). Tumor angiogenesis: therapeutic implications. New England Journal of Medicine, 285(21), 1182–1186.CrossRef Folkman, J. (1971). Tumor angiogenesis: therapeutic implications. New England Journal of Medicine, 285(21), 1182–1186.CrossRef
86.
Zurück zum Zitat Liotta, L. A., & Kohn, E. C. (2001). The microenvironment of the tumour-host interface. Nature, 411(6835), 375–379.PubMedCrossRef Liotta, L. A., & Kohn, E. C. (2001). The microenvironment of the tumour-host interface. Nature, 411(6835), 375–379.PubMedCrossRef
87.
Zurück zum Zitat Coussens, L. M., & Werb, Z. (1996). Matrix metalloproteinases and the development of cancer. Chemistry and Biology, 3(11), 895–904.PubMedCrossRef Coussens, L. M., & Werb, Z. (1996). Matrix metalloproteinases and the development of cancer. Chemistry and Biology, 3(11), 895–904.PubMedCrossRef
88.
Zurück zum Zitat Brooks, P. C., Montgomery, A. M., Rosenfeld, M., Reisfeld, R. A., Hu, T., Klier, G., & Cheresh, D. A. (1994). Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell, 79(7), 1157–1164.PubMedCrossRef Brooks, P. C., Montgomery, A. M., Rosenfeld, M., Reisfeld, R. A., Hu, T., Klier, G., & Cheresh, D. A. (1994). Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell, 79(7), 1157–1164.PubMedCrossRef
89.
Zurück zum Zitat Davis, G. E. (1992). Affinity of integrins for damaged extracellular matrix: alpha v beta 3 binds to denatured collagen type I through RGD sites. Biochemical and Biophysical Research Communications, 182(3), 1025–1031.PubMedCrossRef Davis, G. E. (1992). Affinity of integrins for damaged extracellular matrix: alpha v beta 3 binds to denatured collagen type I through RGD sites. Biochemical and Biophysical Research Communications, 182(3), 1025–1031.PubMedCrossRef
90.
Zurück zum Zitat Klymkowsky, M. W., & Savagner, P. (2009). Epithelial-mesenchymal Transition: A Cancer Researcher's Conceptual Friend and Foe. American Jorunal of Pathology, 174(5), 1588–1593.CrossRef Klymkowsky, M. W., & Savagner, P. (2009). Epithelial-mesenchymal Transition: A Cancer Researcher's Conceptual Friend and Foe. American Jorunal of Pathology, 174(5), 1588–1593.CrossRef
91.
Zurück zum Zitat Polyak, K., & Weinberg, R. A. Transitions Between Epithelial and Mesenchymal States: Acquisition of Malignant and Stem Cell Traits. Nature Reviews Cancer, 9(4), 265–273. Polyak, K., & Weinberg, R. A. Transitions Between Epithelial and Mesenchymal States: Acquisition of Malignant and Stem Cell Traits. Nature Reviews Cancer, 9(4), 265–273.
92.
Zurück zum Zitat Micalizzi, D. S., Farabaugh, S. M., & Ford, H. L. (2010). Epithelial-mesenchymaltransition in cancer: parallels between normal development and tumor progression. Journal of Mammary Gland Biology and Neoplasia, 15(2), 117–134.PubMedPubMedCentralCrossRef Micalizzi, D. S., Farabaugh, S. M., & Ford, H. L. (2010). Epithelial-mesenchymaltransition in cancer: parallels between normal development and tumor progression. Journal of Mammary Gland Biology and Neoplasia, 15(2), 117–134.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Taube, J. H., Herschkowitz, J. I., Komurov, K., Zhou, A. Y., Gupta, S., Yang, J., et al. (2010). Core epithelial-to mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proceedings of the National Academy of Sciences of the United States of America, 107(35), 15449–15554.PubMedPubMedCentralCrossRef Taube, J. H., Herschkowitz, J. I., Komurov, K., Zhou, A. Y., Gupta, S., Yang, J., et al. (2010). Core epithelial-to mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proceedings of the National Academy of Sciences of the United States of America, 107(35), 15449–15554.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Friedl, P., & Wolf, K. (2008). Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Research, 68(18), 7247–7249.PubMedCrossRef Friedl, P., & Wolf, K. (2008). Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Research, 68(18), 7247–7249.PubMedCrossRef
95.
Zurück zum Zitat Madsen, C. D., & Sahai, E. (2010). Cancer dissemination--lessons from leukocytes. Developmental Cell, 19(1), 13–26.PubMedCrossRef Madsen, C. D., & Sahai, E. (2010). Cancer dissemination--lessons from leukocytes. Developmental Cell, 19(1), 13–26.PubMedCrossRef
96.
Zurück zum Zitat Sabeh, F., Shimizu-Hirota, R., & Weiss, S. J. (2009). Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. Journal of Cell Biology, 185(1), 11–19.CrossRef Sabeh, F., Shimizu-Hirota, R., & Weiss, S. J. (2009). Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. Journal of Cell Biology, 185(1), 11–19.CrossRef
98.
Zurück zum Zitat Joyce, J. A., & Pollard, J. W. (2009). Microenvironmental regulation of metastasis. Nature Reviews Cancer, 9(4), 239–252.PubMedCrossRef Joyce, J. A., & Pollard, J. W. (2009). Microenvironmental regulation of metastasis. Nature Reviews Cancer, 9(4), 239–252.PubMedCrossRef
99.
Zurück zum Zitat Karnoub, A. E., Dash, A. B., Vo, A. P., Sullivan, A., Brooks, M. W., Bell, G. W., et al. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449(7162), 557–563.PubMedCrossRef Karnoub, A. E., Dash, A. B., Vo, A. P., Sullivan, A., Brooks, M. W., Bell, G. W., et al. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449(7162), 557–563.PubMedCrossRef
100.
101.
Zurück zum Zitat Wyckoff, J. B., Wang, Y., Lin, E. Y., Li, J. F., Goswami, S., Stanley, E. R., et al. (2007). Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Research, 67(6), 2649–2656.PubMedCrossRef Wyckoff, J. B., Wang, Y., Lin, E. Y., Li, J. F., Goswami, S., Stanley, E. R., et al. (2007). Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Research, 67(6), 2649–2656.PubMedCrossRef
102.
Zurück zum Zitat Boureux, A., Vignal, E., Faure, S., & Fort, P. (2007). Evolution of the Rho family of ras-like GTPases in eukaryotes. Molecular Biology and Evolution, 24(1), 203–216.PubMedCrossRef Boureux, A., Vignal, E., Faure, S., & Fort, P. (2007). Evolution of the Rho family of ras-like GTPases in eukaryotes. Molecular Biology and Evolution, 24(1), 203–216.PubMedCrossRef
103.
104.
Zurück zum Zitat Nobes, C. D., & Hall, A. (1995). Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell, 81(1), 53–62.PubMedCrossRef Nobes, C. D., & Hall, A. (1995). Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell, 81(1), 53–62.PubMedCrossRef
105.
Zurück zum Zitat Etienne-Manneville, S., & Hall, A. (2002). Rho GTPases in cell biology. Nature, 420(6916), 629–635.PubMedCrossRef Etienne-Manneville, S., & Hall, A. (2002). Rho GTPases in cell biology. Nature, 420(6916), 629–635.PubMedCrossRef
106.
Zurück zum Zitat Jaffe, A. B., & Hall, A. (2005). Rho GTPases: biochemistry and biology. Annual Reviews Cell and Developmental Biology, 21, 247–269.CrossRef Jaffe, A. B., & Hall, A. (2005). Rho GTPases: biochemistry and biology. Annual Reviews Cell and Developmental Biology, 21, 247–269.CrossRef
107.
Zurück zum Zitat Rossman, K. L., Der, C. J., & Sondek, J. (2005). GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nature Reviews Molecular and Cellular Biology, 6(2), 167–180.CrossRef Rossman, K. L., Der, C. J., & Sondek, J. (2005). GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nature Reviews Molecular and Cellular Biology, 6(2), 167–180.CrossRef
108.
Zurück zum Zitat Tcherkezian, J., & Lamarche-Vane, N. (2007). Current knowledge of the large RhoGAP family of proteins. Biology of the Cell, 99(2), 67–86.PubMedCrossRef Tcherkezian, J., & Lamarche-Vane, N. (2007). Current knowledge of the large RhoGAP family of proteins. Biology of the Cell, 99(2), 67–86.PubMedCrossRef
109.
Zurück zum Zitat Garcia-Mata, R., Boulter, E., & Burridge, K. (2011). The 'invisible hand': regulation of RHO GTPases by RHOGDIs. Nature Reviews Molcular and Cellular Biology, 12(8), 493–504.CrossRef Garcia-Mata, R., Boulter, E., & Burridge, K. (2011). The 'invisible hand': regulation of RHO GTPases by RHOGDIs. Nature Reviews Molcular and Cellular Biology, 12(8), 493–504.CrossRef
110.
Zurück zum Zitat Adamson, P., Paterson, H. F., & Hall, A. (1992). Intracellular localization of the P21 rho proteins. Journal of Cell Biology, 119(3), 617–627.CrossRef Adamson, P., Paterson, H. F., & Hall, A. (1992). Intracellular localization of the P21 rho proteins. Journal of Cell Biology, 119(3), 617–627.CrossRef
111.
Zurück zum Zitat Riento, K., & Ridley, A. J. (2003). Rocks: multifunctional kinases in cell behaviour. Nature Reviews Molecular and Cellular Biology, 4(6), 446–456.CrossRef Riento, K., & Ridley, A. J. (2003). Rocks: multifunctional kinases in cell behaviour. Nature Reviews Molecular and Cellular Biology, 4(6), 446–456.CrossRef
112.
Zurück zum Zitat Bishop, A. L., & Hall, A. (2000). Rho GTPases and thei reffector proteins. Biochemical Journal, 2(Pt 2), 241–255.CrossRef Bishop, A. L., & Hall, A. (2000). Rho GTPases and thei reffector proteins. Biochemical Journal, 2(Pt 2), 241–255.CrossRef
113.
Zurück zum Zitat Bokoch, G. M. (2003). Biology of the p21-activated kinases. Annual Review of Biochemistry, 72, 743–781.PubMedCrossRef Bokoch, G. M. (2003). Biology of the p21-activated kinases. Annual Review of Biochemistry, 72, 743–781.PubMedCrossRef
115.
Zurück zum Zitat Kakiuchi, M., Nishizawa, T., Ueda, H., Gotoh, K., Tanaka, A., Hayashi, A., et al. (2014). Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma. Nature Genetics, 46(6), 583–587.PubMedCrossRef Kakiuchi, M., Nishizawa, T., Ueda, H., Gotoh, K., Tanaka, A., Hayashi, A., et al. (2014). Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma. Nature Genetics, 46(6), 583–587.PubMedCrossRef
116.
Zurück zum Zitat Sakata-Yanagimoto, M., Enami, T., Yoshida, K., Shiraishi, Y., Ishii, R., Miyake, Y., et al. (2014). Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nature Genetics, 46(2), 171–175.PubMedCrossRef Sakata-Yanagimoto, M., Enami, T., Yoshida, K., Shiraishi, Y., Ishii, R., Miyake, Y., et al. (2014). Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nature Genetics, 46(2), 171–175.PubMedCrossRef
117.
Zurück zum Zitat Yoo, H. Y., Sung, M. K., Lee, S. H., Kim, S., Lee, H., Park, S., et al. (2014). A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nature Genetics, 46(4), 371–375.PubMedCrossRef Yoo, H. Y., Sung, M. K., Lee, S. H., Kim, S., Lee, H., Park, S., et al. (2014). A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nature Genetics, 46(4), 371–375.PubMedCrossRef
118.
119.
Zurück zum Zitat Jaffe, A. B., & Hall, A. (2002). Rho GTPases in transformation and metastasis. Advances in Cancer Research, 84, 57–80.PubMedCrossRef Jaffe, A. B., & Hall, A. (2002). Rho GTPases in transformation and metastasis. Advances in Cancer Research, 84, 57–80.PubMedCrossRef
120.
Zurück zum Zitat Melendez, J., Grogg, M., & Zheng, Y. (2011). Signaling role of Cdc42 in regulating mammalian physiology. Journal of Biological Chemistry, 286(4), 2375–2381.CrossRef Melendez, J., Grogg, M., & Zheng, Y. (2011). Signaling role of Cdc42 in regulating mammalian physiology. Journal of Biological Chemistry, 286(4), 2375–2381.CrossRef
121.
Zurück zum Zitat Zhou, C., & Zheng, Y. (2013). Cell Type-specific Signaling Function of RhoA GTPase: Lessons from Mouse Gene Targeting. Journal of Biological Chemistry, 288(51), 36179–36188.CrossRef Zhou, C., & Zheng, Y. (2013). Cell Type-specific Signaling Function of RhoA GTPase: Lessons from Mouse Gene Targeting. Journal of Biological Chemistry, 288(51), 36179–36188.CrossRef
122.
Zurück zum Zitat Kamai, T., Yamanishi, T., Shirataki, H., Takagi, K., Asami, H., et al. (2004). Overexpression of RhoA, Rac1, and Cdc42 GTPases is associated with progression in testicular cancer. Clinical Cancer Research, 10(14), 4799–4805.PubMedCrossRef Kamai, T., Yamanishi, T., Shirataki, H., Takagi, K., Asami, H., et al. (2004). Overexpression of RhoA, Rac1, and Cdc42 GTPases is associated with progression in testicular cancer. Clinical Cancer Research, 10(14), 4799–4805.PubMedCrossRef
123.
Zurück zum Zitat Fritz, G., Brachetti, C., Bahlmann, F., Schmidt, M., & Kaina, B. (2002). Rho GTPases in human breast tumours: expression and mutation analyses and correlation with clinical parameters. British Journal of Cancer, 87(6), 635–644.PubMedPubMedCentralCrossRef Fritz, G., Brachetti, C., Bahlmann, F., Schmidt, M., & Kaina, B. (2002). Rho GTPases in human breast tumours: expression and mutation analyses and correlation with clinical parameters. British Journal of Cancer, 87(6), 635–644.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Engers, R., Ziegler, S., Mueller, M., Walter, A., Willers, R., & Gabbert, H. E. (2007). Prognostic relevance of increased Rac GTPase expression in prostate carcinomas. Endocrine Related Cancer, 14(2), 245–256.PubMedCrossRef Engers, R., Ziegler, S., Mueller, M., Walter, A., Willers, R., & Gabbert, H. E. (2007). Prognostic relevance of increased Rac GTPase expression in prostate carcinomas. Endocrine Related Cancer, 14(2), 245–256.PubMedCrossRef
125.
Zurück zum Zitat Pan, Y., Bi, F., Liu, N., Xue, Y., Yao, X., Zheng, Y., & Fan, D. (2004). Expression of seven main Rho family members in gastric carcinoma. Biochemical and Biophysical Research Communications, 315(3), 686–691.PubMedCrossRef Pan, Y., Bi, F., Liu, N., Xue, Y., Yao, X., Zheng, Y., & Fan, D. (2004). Expression of seven main Rho family members in gastric carcinoma. Biochemical and Biophysical Research Communications, 315(3), 686–691.PubMedCrossRef
126.
Zurück zum Zitat Ji, J., Feng, X., Shi, M., Cai, Q., Yu, Y., Zhu, Z., & Zhang, J. (2015). Rac1 is correlated with aggressiveness and a potential therapeutic target for gastric cancer. International Journal of Oncology, 46(3), 1343–1353.PubMedCrossRef Ji, J., Feng, X., Shi, M., Cai, Q., Yu, Y., Zhu, Z., & Zhang, J. (2015). Rac1 is correlated with aggressiveness and a potential therapeutic target for gastric cancer. International Journal of Oncology, 46(3), 1343–1353.PubMedCrossRef
127.
Zurück zum Zitat Faried, A., Faried, L. S., Usman, N., Kato, H., & Kuwano, H. (2007). Clinical and prognostic significance of RhoA and RhoC gene expression in esophageal squamous cell carcinoma. Annals of Surgical Oncolgy, 14(12), 3593–3601.CrossRef Faried, A., Faried, L. S., Usman, N., Kato, H., & Kuwano, H. (2007). Clinical and prognostic significance of RhoA and RhoC gene expression in esophageal squamous cell carcinoma. Annals of Surgical Oncolgy, 14(12), 3593–3601.CrossRef
128.
Zurück zum Zitat Braga, V. M. M., Machesky, L. M., Hall, A., & Hotchin, N. (1997). The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts. Journal of Cell Biology, 137(6), 1421–1431.CrossRef Braga, V. M. M., Machesky, L. M., Hall, A., & Hotchin, N. (1997). The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts. Journal of Cell Biology, 137(6), 1421–1431.CrossRef
129.
Zurück zum Zitat Kozma, R., Ahmed, S., Best, A., & Lim, L. (1995). The Ras related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Molecular and Cellular Biology, 15(4), 1942–1952.PubMedPubMedCentralCrossRef Kozma, R., Ahmed, S., Best, A., & Lim, L. (1995). The Ras related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Molecular and Cellular Biology, 15(4), 1942–1952.PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Nobes, C. D., & Hall, A. (1995). Rho, Rac and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia and filopodia. Cell, 81(1), 1–20.CrossRef Nobes, C. D., & Hall, A. (1995). Rho, Rac and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia and filopodia. Cell, 81(1), 1–20.CrossRef
131.
Zurück zum Zitat Nobes, C. D., & Hall, A. (1999). Rho GTPases control polarity, protrusion and adhesion during cell movement. Journal of Cell Biology, 144(6), 1235–1244.CrossRef Nobes, C. D., & Hall, A. (1999). Rho GTPases control polarity, protrusion and adhesion during cell movement. Journal of Cell Biology, 144(6), 1235–1244.CrossRef
132.
Zurück zum Zitat Ridley, A. J., & Hall, A. (1992). The small GTP-binding protein Rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell, 70(3), 389–399.PubMedCrossRef Ridley, A. J., & Hall, A. (1992). The small GTP-binding protein Rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell, 70(3), 389–399.PubMedCrossRef
133.
Zurück zum Zitat Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D., & Hall, A. (1992). The small GTP-binding protein Rac regulates growth factor-induced membrane ruffling. Cell, 70(3), 401–410.PubMedCrossRef Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D., & Hall, A. (1992). The small GTP-binding protein Rac regulates growth factor-induced membrane ruffling. Cell, 70(3), 401–410.PubMedCrossRef
134.
Zurück zum Zitat Khosravi-Far, R., Solski, P. A., Clark, G. J., Kinch, M., & Der, C. J. (1995). Activation of Rac1, RhoA, and Mitogen-Activated Protein Kinases Is Required for Ras Transformation. Molecular Cell Biology, 15(11), 6443–6653.CrossRef Khosravi-Far, R., Solski, P. A., Clark, G. J., Kinch, M., & Der, C. J. (1995). Activation of Rac1, RhoA, and Mitogen-Activated Protein Kinases Is Required for Ras Transformation. Molecular Cell Biology, 15(11), 6443–6653.CrossRef
135.
Zurück zum Zitat Reymond, N., Im, J. H., Garg, R., Vega, F. M., Borda d’Agua, B., & Riou, P. (2012). Cdc42 promotes transendothelial migration of cancer cells through β1 integrin. Journal of Cell Biology, 199(4), 653–668.CrossRef Reymond, N., Im, J. H., Garg, R., Vega, F. M., Borda d’Agua, B., & Riou, P. (2012). Cdc42 promotes transendothelial migration of cancer cells through β1 integrin. Journal of Cell Biology, 199(4), 653–668.CrossRef
136.
Zurück zum Zitat Hakem, A., Sanchez-Sweatman, O., You-Ten, A., Duncan, G., Wakeham, A., & Khokha, R. (2005). RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis. Genes Development, 19(17), 1974–1979.PubMedPubMedCentralCrossRef Hakem, A., Sanchez-Sweatman, O., You-Ten, A., Duncan, G., Wakeham, A., & Khokha, R. (2005). RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis. Genes Development, 19(17), 1974–1979.PubMedPubMedCentralCrossRef
137.
Zurück zum Zitat Harding, M. A., & Theodorescu, D. (2010). RhoGDI signaling provides targets for cancer therapy. European Journal of Cancer, 46(7), 1252–1259.PubMedCrossRef Harding, M. A., & Theodorescu, D. (2010). RhoGDI signaling provides targets for cancer therapy. European Journal of Cancer, 46(7), 1252–1259.PubMedCrossRef
138.
Zurück zum Zitat Vigil, D., Cherfils, J., Rossman, K. L., & Der, C. J. (2010). Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nature Reviews Cancer, 10(12), 842–857.PubMedPubMedCentralCrossRef Vigil, D., Cherfils, J., Rossman, K. L., & Der, C. J. (2010). Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nature Reviews Cancer, 10(12), 842–857.PubMedPubMedCentralCrossRef
139.
Zurück zum Zitat Durkin, M. E., Yuan, B. Z., Zhou, X., Zimonjic, D. B., Lowy, D. R., Thorgeirsson, S. S., et al. (2007). DLC-1: a Rho GTPase-activating protein and tumour suppressor. Journal of Cellular and Moecular Medicine, 11(5), 1185–1207.CrossRef Durkin, M. E., Yuan, B. Z., Zhou, X., Zimonjic, D. B., Lowy, D. R., Thorgeirsson, S. S., et al. (2007). DLC-1: a Rho GTPase-activating protein and tumour suppressor. Journal of Cellular and Moecular Medicine, 11(5), 1185–1207.CrossRef
140.
Zurück zum Zitat Goodison, S., Yuan, J., Sloan, D., Kim, R., Li, C., Popescu, N. C., et al. (2005). The Rho GAP protein DLC-1 functions as a metastasis suppressor in breast cancer cells. Cancer Research, 65(14), 6042–6053.PubMedPubMedCentralCrossRef Goodison, S., Yuan, J., Sloan, D., Kim, R., Li, C., Popescu, N. C., et al. (2005). The Rho GAP protein DLC-1 functions as a metastasis suppressor in breast cancer cells. Cancer Research, 65(14), 6042–6053.PubMedPubMedCentralCrossRef
141.
Zurück zum Zitat Zhao, L., Wang, H., Li, J., Liu, Y., & Ding, Y. (2008). Overexpression of Rho GDP-dissociation inhibitor alpha is associated with tumor progression and poor prognosis of colorectal cancer. Journal of Proteome Research, 7(9), 3994–4003.PubMedCrossRef Zhao, L., Wang, H., Li, J., Liu, Y., & Ding, Y. (2008). Overexpression of Rho GDP-dissociation inhibitor alpha is associated with tumor progression and poor prognosis of colorectal cancer. Journal of Proteome Research, 7(9), 3994–4003.PubMedCrossRef
142.
Zurück zum Zitat Ding, J., Huang, S., Wu, S., Zhao, Y., Liang, L., Yan, M., et al. (2010). Gain of miR-151 on chromosome 8q24.3 facilitates tumour cell migration and spreading through downregulating RhoGDIA. Nature Cell Biology, 12(4), 390–399.PubMedCrossRef Ding, J., Huang, S., Wu, S., Zhao, Y., Liang, L., Yan, M., et al. (2010). Gain of miR-151 on chromosome 8q24.3 facilitates tumour cell migration and spreading through downregulating RhoGDIA. Nature Cell Biology, 12(4), 390–399.PubMedCrossRef
143.
Zurück zum Zitat Moissoglu, K., McRoberts, K. S., Meier, J. A., Theodorescu, D., & Schwartz, M. A. (2009). Rho GDP dissociation inhibitor 2 suppresses metastasis via unconventional regulation of Rho GTPases. Cancer Research, 69(7), 2838–2844.PubMedPubMedCentralCrossRef Moissoglu, K., McRoberts, K. S., Meier, J. A., Theodorescu, D., & Schwartz, M. A. (2009). Rho GDP dissociation inhibitor 2 suppresses metastasis via unconventional regulation of Rho GTPases. Cancer Research, 69(7), 2838–2844.PubMedPubMedCentralCrossRef
144.
Zurück zum Zitat Hu, L. D., Zou, H. F., Zhan, S. X., & Cao, K. M. (2007). Biphasic expression of RhoGDI2 in the progression of breast cancer and its negative relation with lymphnode metastasis. Oncology Reports, 17(6), 1383–1389.PubMed Hu, L. D., Zou, H. F., Zhan, S. X., & Cao, K. M. (2007). Biphasic expression of RhoGDI2 in the progression of breast cancer and its negative relation with lymphnode metastasis. Oncology Reports, 17(6), 1383–1389.PubMed
145.
Zurück zum Zitat Mullins, R. D., Heuser, J. A., & Pollard, T. D. (1998). The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of actin filaments. Proceedings of the National Academy of Sciences of the United States of America, 95(11), 6181–6186.PubMedPubMedCentralCrossRef Mullins, R. D., Heuser, J. A., & Pollard, T. D. (1998). The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of actin filaments. Proceedings of the National Academy of Sciences of the United States of America, 95(11), 6181–6186.PubMedPubMedCentralCrossRef
146.
Zurück zum Zitat Amann, K. J., & Pollard, T. D. (2001). Direct real-time observation of actin filament branching mediated byArp2/3 complex using total internal reflection fluorescence microscopy. Proceedings of the National Academy of Sciences of the United States of America, 98(26), 15009–15013.PubMedPubMedCentralCrossRef Amann, K. J., & Pollard, T. D. (2001). Direct real-time observation of actin filament branching mediated byArp2/3 complex using total internal reflection fluorescence microscopy. Proceedings of the National Academy of Sciences of the United States of America, 98(26), 15009–15013.PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat Machesky, L. M., & Insall, R. H. (1998). Scar1 and the related Wiskott–Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Current Biology, 8(25), 1347–1356.PubMedCrossRef Machesky, L. M., & Insall, R. H. (1998). Scar1 and the related Wiskott–Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Current Biology, 8(25), 1347–1356.PubMedCrossRef
148.
Zurück zum Zitat Machesky, L. M., Mullins, R. D., Higgs, H. N., Kaiser, D. A., Blanchoin, L., May, R. C., et al. (1999). Scar, a WASP-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 3739–3744.PubMedPubMedCentralCrossRef Machesky, L. M., Mullins, R. D., Higgs, H. N., Kaiser, D. A., Blanchoin, L., May, R. C., et al. (1999). Scar, a WASP-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 3739–3744.PubMedPubMedCentralCrossRef
149.
Zurück zum Zitat Rohatgi, R., Ma, L., Miki, H., Lopez, M., Kirchhausen, T., Takenawa, T., et al. (1999). The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell, 97(2), 221–231.PubMedCrossRef Rohatgi, R., Ma, L., Miki, H., Lopez, M., Kirchhausen, T., Takenawa, T., et al. (1999). The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell, 97(2), 221–231.PubMedCrossRef
150.
Zurück zum Zitat Otsubo, T., Iwaya, K., Mukai, Y., Mizokami, Y., Serizawa, H., Matsuoka, T., et al. (2004). Involvement of Arp2/3 complex in the process of colorectal carcinogenesis. Modern Pathology, 17(4), 461‐467.CrossRef Otsubo, T., Iwaya, K., Mukai, Y., Mizokami, Y., Serizawa, H., Matsuoka, T., et al. (2004). Involvement of Arp2/3 complex in the process of colorectal carcinogenesis. Modern Pathology, 17(4), 461‐467.CrossRef
151.
Zurück zum Zitat Semba, S., Iwaya, K., Matsubayashi, J., Serzawa, H., Kataba, H., Takashi, H., et al. (2006). Coexpression of actin-related protein 2 and Wiskott-Aldrich syndrome family verproline-homologous protein 2 in adenocarcinoma of the lung. Clinical Cancer Reserach, 12(8), 2449–2454.CrossRef Semba, S., Iwaya, K., Matsubayashi, J., Serzawa, H., Kataba, H., Takashi, H., et al. (2006). Coexpression of actin-related protein 2 and Wiskott-Aldrich syndrome family verproline-homologous protein 2 in adenocarcinoma of the lung. Clinical Cancer Reserach, 12(8), 2449–2454.CrossRef
152.
Zurück zum Zitat Linder, S., Nelson, D., Weiss, M., & Aepfelbacher, M. (1999). Wiskott–Aldrich syndrome protein regulates podosomes in primary human macrophages. Proceedings of the National Academy of Sciences of the United States of America, 96(17), 9648–9653.PubMedPubMedCentralCrossRef Linder, S., Nelson, D., Weiss, M., & Aepfelbacher, M. (1999). Wiskott–Aldrich syndrome protein regulates podosomes in primary human macrophages. Proceedings of the National Academy of Sciences of the United States of America, 96(17), 9648–9653.PubMedPubMedCentralCrossRef
153.
Zurück zum Zitat Mizutani, K., Miki, H., He, H., Maruta, H., & Takenawa, T. (2002). Essential role of neural Wiskott–Aldrich syndrome protein in podosome formation and degradation of extracellular matrix in src transformed fibroblasts. Cancer Research, 62(3), 669–674.PubMed Mizutani, K., Miki, H., He, H., Maruta, H., & Takenawa, T. (2002). Essential role of neural Wiskott–Aldrich syndrome protein in podosome formation and degradation of extracellular matrix in src transformed fibroblasts. Cancer Research, 62(3), 669–674.PubMed
154.
Zurück zum Zitat Hiura, K., Lim, S. S., Little, S. P., Lin, S., & Sato, M. (1995). Differentiation dependent expression of tensin and cortcatin in chicken osteoclasts. Cell Motility and the Cytoskeleton, 30(4), 272–284.PubMedCrossRef Hiura, K., Lim, S. S., Little, S. P., Lin, S., & Sato, M. (1995). Differentiation dependent expression of tensin and cortcatin in chicken osteoclasts. Cell Motility and the Cytoskeleton, 30(4), 272–284.PubMedCrossRef
155.
Zurück zum Zitat Yamaguchi, H., Lorenz, M., Kempiak, S., Sarmiento, C., Coniglio, S., Symons, M., et al. (2005). Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. Journal of Cell Biology, 168(3), 441–452.CrossRef Yamaguchi, H., Lorenz, M., Kempiak, S., Sarmiento, C., Coniglio, S., Symons, M., et al. (2005). Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. Journal of Cell Biology, 168(3), 441–452.CrossRef
156.
Zurück zum Zitat Goode, B. L., & Eck, M. J. (2007). Mechanism and Function of Formins in the Control of Actin Assembly. Annual Review of Biochemistry, 76, 593–627.PubMedCrossRef Goode, B. L., & Eck, M. J. (2007). Mechanism and Function of Formins in the Control of Actin Assembly. Annual Review of Biochemistry, 76, 593–627.PubMedCrossRef
157.
Zurück zum Zitat Higgs, H. N. (2005). Formin proteins: a domain-based approach. Trends in Biochemical Sciences, 30(6), 342–353.PubMedCrossRef Higgs, H. N. (2005). Formin proteins: a domain-based approach. Trends in Biochemical Sciences, 30(6), 342–353.PubMedCrossRef
158.
Zurück zum Zitat Higashida, C., Miyoshi, T., Fujita, A., Oceguera-Yanez, F., Monypenny, J., Andou, Y., et al. (2004). Actin polymerization-driven molecular movement of mDia1 in living cells. Science, (5666), 2007–2010. Higashida, C., Miyoshi, T., Fujita, A., Oceguera-Yanez, F., Monypenny, J., Andou, Y., et al. (2004). Actin polymerization-driven molecular movement of mDia1 in living cells. Science, (5666), 2007–2010.
159.
Zurück zum Zitat Moseley, J. B., Sagot, I., Manning, A. L., Xu, Y., Eck, M. J., Pellman, D., & Goode, B. L. (2004). A conserved mechanism for Bni1- and mDia1-induced actin assembly and dual regulation of Bni1 by Bud6 and profilin. Molecular Biology of the Cell, 15(2), 896–907.PubMedPubMedCentralCrossRef Moseley, J. B., Sagot, I., Manning, A. L., Xu, Y., Eck, M. J., Pellman, D., & Goode, B. L. (2004). A conserved mechanism for Bni1- and mDia1-induced actin assembly and dual regulation of Bni1 by Bud6 and profilin. Molecular Biology of the Cell, 15(2), 896–907.PubMedPubMedCentralCrossRef
160.
Zurück zum Zitat Zigmond, S. H., Evangelista, M., Boone, C., Yang, C., Dar, A. C., Sicheri, F., et al. (2003). Formin leaky cap allows elongation in the presence of tight capping proteins. Current Biology, 13(20), 1820–1823.PubMedCrossRef Zigmond, S. H., Evangelista, M., Boone, C., Yang, C., Dar, A. C., Sicheri, F., et al. (2003). Formin leaky cap allows elongation in the presence of tight capping proteins. Current Biology, 13(20), 1820–1823.PubMedCrossRef
161.
Zurück zum Zitat Kovar, D. R., Harris, E. S., Mahaffy, R., Higgs, H. N., & Pollard, T. D. (2006). Control of the assembly of ATP- and ADP-actin by formins and profilin. Cell, 124(2), 423–435.PubMedCrossRef Kovar, D. R., Harris, E. S., Mahaffy, R., Higgs, H. N., & Pollard, T. D. (2006). Control of the assembly of ATP- and ADP-actin by formins and profilin. Cell, 124(2), 423–435.PubMedCrossRef
162.
Zurück zum Zitat Vavylonis, D., Kovar, D. R., O'Shaughnessy, B., & Pollard, T. D. (2006). Model of formin associated actin filament elongation. Molecular Cell, 21(4), 455–466.PubMedPubMedCentralCrossRef Vavylonis, D., Kovar, D. R., O'Shaughnessy, B., & Pollard, T. D. (2006). Model of formin associated actin filament elongation. Molecular Cell, 21(4), 455–466.PubMedPubMedCentralCrossRef
163.
Zurück zum Zitat Hotulainen, P., Paunola, E., Vartiainen, M. K., & Lappalainen, P. (2005). Actin-depolymerizing factor and cofilin-1 play overlapping roles in promoting rapid F-actin depolymerization in mammalian no nmuscle cells. Molecular Biology of the Cell, 16(2), 649–664.PubMedPubMedCentralCrossRef Hotulainen, P., Paunola, E., Vartiainen, M. K., & Lappalainen, P. (2005). Actin-depolymerizing factor and cofilin-1 play overlapping roles in promoting rapid F-actin depolymerization in mammalian no nmuscle cells. Molecular Biology of the Cell, 16(2), 649–664.PubMedPubMedCentralCrossRef
164.
Zurück zum Zitat Ichetovkin, I., Han, J., Pang, K. M., Knecht, D. A., & Condeelis, J. S. (2000). Actin filaments are severed by both native and recombinant dictyostelium cofilin but to different extents. Cell Motility and the Cytoskeleton, 45(4), 293–306.PubMedCrossRef Ichetovkin, I., Han, J., Pang, K. M., Knecht, D. A., & Condeelis, J. S. (2000). Actin filaments are severed by both native and recombinant dictyostelium cofilin but to different extents. Cell Motility and the Cytoskeleton, 45(4), 293–306.PubMedCrossRef
165.
Zurück zum Zitat Ichetovkin, I., Grant, W., & Condeelis, J. (2002). Cofilin produces newly polymerized actin filaments that are preferred for dendritic nucleation by the Arp2/3 complex. Current Biology, 12(1), 79–84.PubMedCrossRef Ichetovkin, I., Grant, W., & Condeelis, J. (2002). Cofilin produces newly polymerized actin filaments that are preferred for dendritic nucleation by the Arp2/3 complex. Current Biology, 12(1), 79–84.PubMedCrossRef
166.
Zurück zum Zitat Adrianantoandro, E., & Pollard, T. (2006). Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/Cofilin. Molecular Cell, 24(1), 13–23.CrossRef Adrianantoandro, E., & Pollard, T. (2006). Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/Cofilin. Molecular Cell, 24(1), 13–23.CrossRef
167.
Zurück zum Zitat Wang, L. H., Xiang, J., Yan, M., Zhang, Y., Zhao, Y., Yue, C. F., et al. (2010). The mitotic kinase Aurora-A induces mammary cell migration and breast cancer metastasis by activating the Cofilin-F-actin pathway. Cancer Research, 70(22), 9118–9128.PubMedCrossRef Wang, L. H., Xiang, J., Yan, M., Zhang, Y., Zhao, Y., Yue, C. F., et al. (2010). The mitotic kinase Aurora-A induces mammary cell migration and breast cancer metastasis by activating the Cofilin-F-actin pathway. Cancer Research, 70(22), 9118–9128.PubMedCrossRef
168.
Zurück zum Zitat Ghosh, M., Song, X., Mouneimne, G., Sidani, M., Lawrence, D. S., & Condeelis, J. S. (2004). Cofilin promotes actin polymerization and defines the direction of cell motility. Science, 304(5671), 743‐746.CrossRef Ghosh, M., Song, X., Mouneimne, G., Sidani, M., Lawrence, D. S., & Condeelis, J. S. (2004). Cofilin promotes actin polymerization and defines the direction of cell motility. Science, 304(5671), 743‐746.CrossRef
169.
Zurück zum Zitat Yap, C. T., Simpson, T. I., Pratt, T., Price, D. J., & Maciver, S. K. (2005). The motility of glioblastoma tumour cells is modulated by intracellular cofilin expression in a concentration-dependent manner. Cell Motility and the Cytoskeleton, 60(3), 153–165.PubMedCrossRef Yap, C. T., Simpson, T. I., Pratt, T., Price, D. J., & Maciver, S. K. (2005). The motility of glioblastoma tumour cells is modulated by intracellular cofilin expression in a concentration-dependent manner. Cell Motility and the Cytoskeleton, 60(3), 153–165.PubMedCrossRef
170.
Zurück zum Zitat Des Marais, V., Macaluso, F., Condeelis, J., & Bailly, M. (2004). Synergistic interaction between the Arp2/3complex and cofilin drives stimulated lamellipodia extension. Journal of Cell Science, 117(Pt16), 3499–3510.CrossRef Des Marais, V., Macaluso, F., Condeelis, J., & Bailly, M. (2004). Synergistic interaction between the Arp2/3complex and cofilin drives stimulated lamellipodia extension. Journal of Cell Science, 117(Pt16), 3499–3510.CrossRef
171.
Zurück zum Zitat Yang, N., Higuchi, O., Ohashi, K., Nagata, K., Wada, A., Kangawa, K., et al. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature, 393(6687), 809–812. Yang, N., Higuchi, O., Ohashi, K., Nagata, K., Wada, A., Kangawa, K., et al. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature, 393(6687), 809–812.
172.
Zurück zum Zitat Toshima, J., Toshima, J. Y., Amano, T., Yang, N., Narumiya, S., & Mizuno, K. (2001). Cofilin phosphorylation by protein kinase testicular protein kinase 1 and its role in integrin-mediated actin reorganization and focal adhesion formation. Molecular Biology of the Cell, 12(4), 1131–1145.PubMedPubMedCentralCrossRef Toshima, J., Toshima, J. Y., Amano, T., Yang, N., Narumiya, S., & Mizuno, K. (2001). Cofilin phosphorylation by protein kinase testicular protein kinase 1 and its role in integrin-mediated actin reorganization and focal adhesion formation. Molecular Biology of the Cell, 12(4), 1131–1145.PubMedPubMedCentralCrossRef
173.
Zurück zum Zitat Nakano, K., Kanai-Azuma, M., Kanai, Y., Moryiama, K., Yazaki, K., Hayashi, Y., et al. (2003). Cofilin phosphorylation and actin polymerization by NRK/NESK, a member of the germinal center kinase family. Experimental Cell Research, 287(2), 219–227.PubMedCrossRef Nakano, K., Kanai-Azuma, M., Kanai, Y., Moryiama, K., Yazaki, K., Hayashi, Y., et al. (2003). Cofilin phosphorylation and actin polymerization by NRK/NESK, a member of the germinal center kinase family. Experimental Cell Research, 287(2), 219–227.PubMedCrossRef
174.
Zurück zum Zitat Niwa, R., Nagata-Ohashi, K., Takeichi, M., Mizuno, K., & Uemura, T. (2002). Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell, 108(2), 233–246.PubMedCrossRef Niwa, R., Nagata-Ohashi, K., Takeichi, M., Mizuno, K., & Uemura, T. (2002). Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell, 108(2), 233–246.PubMedCrossRef
175.
Zurück zum Zitat Ambach, A., Saunus, J., Konstandin, M., Wesselborg, S., Meuer, S. C., & Samstag, Y. (2000). The serine phosphatases PP1 and PP2A associate with and activate the actin-binding protein cofilin in human T lymphocytes. European Journal of Immunology, 30(12), 3422–3431.PubMedCrossRef Ambach, A., Saunus, J., Konstandin, M., Wesselborg, S., Meuer, S. C., & Samstag, Y. (2000). The serine phosphatases PP1 and PP2A associate with and activate the actin-binding protein cofilin in human T lymphocytes. European Journal of Immunology, 30(12), 3422–3431.PubMedCrossRef
176.
Zurück zum Zitat Gohla, A., Birkenfeld, J., & Bokoch, G. M. (2005). Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nature Cell Biology, 7(1), 21–29.PubMedCrossRef Gohla, A., Birkenfeld, J., & Bokoch, G. M. (2005). Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nature Cell Biology, 7(1), 21–29.PubMedCrossRef
177.
Zurück zum Zitat Mouneimne, G., Soon, L., Des Marais, V., Sidani, M., Song, X., Yip, S. C., et al. (2004). Phospholipase C and cofilin are required for carcinoma cell directionality in response to EGF stimulation. Journal of Cell Biology, 166(5), 697–708.CrossRef Mouneimne, G., Soon, L., Des Marais, V., Sidani, M., Song, X., Yip, S. C., et al. (2004). Phospholipase C and cofilin are required for carcinoma cell directionality in response to EGF stimulation. Journal of Cell Biology, 166(5), 697–708.CrossRef
178.
Zurück zum Zitat Patel, H., & Barber, D. (2005). A developmentally regulated Na-H exchanger in Dyctyostelium discoideum is necessary for cell polarity during chemotaxis. Journal of Cell Biology, 169(2), 321–329.CrossRef Patel, H., & Barber, D. (2005). A developmentally regulated Na-H exchanger in Dyctyostelium discoideum is necessary for cell polarity during chemotaxis. Journal of Cell Biology, 169(2), 321–329.CrossRef
179.
Zurück zum Zitat Bernstein, B. W., Painter, W. B., Chen, H., Minamide, L. S., Abe, H., & Bamburg, J. R. (2000). Intracellular pH modulation of ADF/cofilin proteins. Cell Motility and the Cytoskeleton, 47(4), 319–336.PubMedCrossRef Bernstein, B. W., Painter, W. B., Chen, H., Minamide, L. S., Abe, H., & Bamburg, J. R. (2000). Intracellular pH modulation of ADF/cofilin proteins. Cell Motility and the Cytoskeleton, 47(4), 319–336.PubMedCrossRef
180.
Zurück zum Zitat Wang, W., Goswami, S., Sahai, E., Wyckoff, J. B., Segall, J. E., & Condeelis, J. S. (2005). Tumor cells caught in the act of invading: their strategy for enhanced cell motility. Trends in Cell Biology, 15(3), 138–145.PubMedCrossRef Wang, W., Goswami, S., Sahai, E., Wyckoff, J. B., Segall, J. E., & Condeelis, J. S. (2005). Tumor cells caught in the act of invading: their strategy for enhanced cell motility. Trends in Cell Biology, 15(3), 138–145.PubMedCrossRef
181.
Zurück zum Zitat Wang, W., Goswami, S., Lapidus, K., Wells, A. L., Wyckoff, J. B., Sahai, E., et al. (2004). Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Research, 64(23), 8585–8594.PubMedCrossRef Wang, W., Goswami, S., Lapidus, K., Wells, A. L., Wyckoff, J. B., Sahai, E., et al. (2004). Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Research, 64(23), 8585–8594.PubMedCrossRef
182.
Zurück zum Zitat Gunnersen, J. M., Spirkoska, V., Smith, P. E., Danks, R. A., & Tan, S. S. (2000). Growth and migration markers of rat C6 glioma cells identified by serial analysis of gene expression. Glia, 32(2), 146–154.PubMedCrossRef Gunnersen, J. M., Spirkoska, V., Smith, P. E., Danks, R. A., & Tan, S. S. (2000). Growth and migration markers of rat C6 glioma cells identified by serial analysis of gene expression. Glia, 32(2), 146–154.PubMedCrossRef
183.
Zurück zum Zitat Davila, M., Frost, A. R., Grizzle, W. E., & Chakrabarti, R. (2003). LIM kinase 1 isessential for the invasive growth of prostate epithelial cells: implications in prostate cancer. Journal of Biological Chemistry, 278(38), 36868–36875.CrossRef Davila, M., Frost, A. R., Grizzle, W. E., & Chakrabarti, R. (2003). LIM kinase 1 isessential for the invasive growth of prostate epithelial cells: implications in prostate cancer. Journal of Biological Chemistry, 278(38), 36868–36875.CrossRef
184.
Zurück zum Zitat Yoshioka, K., Foletta, V., Bernard, O., & Itoh, K. (2003). A role for LIM kinase in cancer invasion. Proceedings of the National Academy of Sciences of the United States of America, 100(12), 7247–7252.PubMedPubMedCentralCrossRef Yoshioka, K., Foletta, V., Bernard, O., & Itoh, K. (2003). A role for LIM kinase in cancer invasion. Proceedings of the National Academy of Sciences of the United States of America, 100(12), 7247–7252.PubMedPubMedCentralCrossRef
185.
Zurück zum Zitat Ding, S. J., Li, Y., Shao, X. X., Zhou, H., Zeng, R., Tang, Z. Y., et al. (2004). Proteome analysis of hepatocellular carcinoma cell strains, MHCC97-H and MHCC97-L, with different metastasis potentials. Proteomics, 4(4), 982–994.PubMedCrossRef Ding, S. J., Li, Y., Shao, X. X., Zhou, H., Zeng, R., Tang, Z. Y., et al. (2004). Proteome analysis of hepatocellular carcinoma cell strains, MHCC97-H and MHCC97-L, with different metastasis potentials. Proteomics, 4(4), 982–994.PubMedCrossRef
186.
Zurück zum Zitat Collazo, J., Zhu, B., Larkin, S., Martin, S. K., Pu, H., Horbinski, C., et al. (2014). Cofilin drives cell-invasive and metastatic responses to TGF-β in prostate cancer. Cancer research, 74(8), 2362–2373.PubMedPubMedCentralCrossRef Collazo, J., Zhu, B., Larkin, S., Martin, S. K., Pu, H., Horbinski, C., et al. (2014). Cofilin drives cell-invasive and metastatic responses to TGF-β in prostate cancer. Cancer research, 74(8), 2362–2373.PubMedPubMedCentralCrossRef
187.
Zurück zum Zitat Wang, W., Mouneimne, G., Sidani, M., Wyckoff, J., Chen, X., Makris, A., et al. (2006). The activity status of cofilin is directly related to invasion, intravasation, and metastasis of mammary tumors. Journal of Cell Biology, 173(3), 395–404.CrossRef Wang, W., Mouneimne, G., Sidani, M., Wyckoff, J., Chen, X., Makris, A., et al. (2006). The activity status of cofilin is directly related to invasion, intravasation, and metastasis of mammary tumors. Journal of Cell Biology, 173(3), 395–404.CrossRef
188.
Zurück zum Zitat Machesky, L. M., & Li, A. (2010). Fascin: invasive filopodia promoting metastasis. Communicative & Integrative Biology, 3(3), 263–270.CrossRef Machesky, L. M., & Li, A. (2010). Fascin: invasive filopodia promoting metastasis. Communicative & Integrative Biology, 3(3), 263–270.CrossRef
189.
Zurück zum Zitat Zhang, F. R., Tao, L. H., Shen, Z. Y., Lv, Z., Xu, L. Y., & Li, E. M. (2008). Fascin expression in human embryonic, fetal, and normal adult tissue. Journal of Histochemistry and Cytochemistry, 56(2), 193–199.PubMedPubMedCentralCrossRef Zhang, F. R., Tao, L. H., Shen, Z. Y., Lv, Z., Xu, L. Y., & Li, E. M. (2008). Fascin expression in human embryonic, fetal, and normal adult tissue. Journal of Histochemistry and Cytochemistry, 56(2), 193–199.PubMedPubMedCentralCrossRef
190.
Zurück zum Zitat Adams, J. C. (2004). Roles of fascin in cell adhesion and motility. Current Opinion in Cell Biology, 16(5), 590–596.PubMedCrossRef Adams, J. C. (2004). Roles of fascin in cell adhesion and motility. Current Opinion in Cell Biology, 16(5), 590–596.PubMedCrossRef
191.
Zurück zum Zitat Adams, J. C., Clelland, J. D., Collett, G. D. M., Matsumura, F., Yamashiro, S., & Zhang, L. (1999). Cell-matrix adhesions differentially regulate fascin phosphorylation. Molecular Biology of the Cell, 10(12), 4177–4190.PubMedPubMedCentralCrossRef Adams, J. C., Clelland, J. D., Collett, G. D. M., Matsumura, F., Yamashiro, S., & Zhang, L. (1999). Cell-matrix adhesions differentially regulate fascin phosphorylation. Molecular Biology of the Cell, 10(12), 4177–4190.PubMedPubMedCentralCrossRef
192.
Zurück zum Zitat Shonukan, O., Bagayogo, I., McCrea, P., Chao, M., & Hempstead, B. (2003). Neurotrophin-induced melanoma cell migration is mediated through the actin-bundling protein fascin. Oncogene, 22(23), 3616–3623.PubMedCrossRef Shonukan, O., Bagayogo, I., McCrea, P., Chao, M., & Hempstead, B. (2003). Neurotrophin-induced melanoma cell migration is mediated through the actin-bundling protein fascin. Oncogene, 22(23), 3616–3623.PubMedCrossRef
193.
Zurück zum Zitat Yamashiro-Matsumura, S., & Matsumura, F. (1986). Intracellular localization of the 55-kD actin-bundling protein in cultured cells: spatial relationships with actin, alpha-actinin, tropomyosin, and fimbrin. Journal of Cell Biology, 103(2), 631–640.CrossRef Yamashiro-Matsumura, S., & Matsumura, F. (1986). Intracellular localization of the 55-kD actin-bundling protein in cultured cells: spatial relationships with actin, alpha-actinin, tropomyosin, and fimbrin. Journal of Cell Biology, 103(2), 631–640.CrossRef
194.
Zurück zum Zitat Elkhatib, N., Neu, M. B., Zensen, C., Schmoller, K. M., Louvard, D., Bausch, A. R., et al. (2014). Fascin plays a role in stress fiber organization and focal adhesion disassembly. Current Biology, 24(13), 1492–1499.PubMedCrossRef Elkhatib, N., Neu, M. B., Zensen, C., Schmoller, K. M., Louvard, D., Bausch, A. R., et al. (2014). Fascin plays a role in stress fiber organization and focal adhesion disassembly. Current Biology, 24(13), 1492–1499.PubMedCrossRef
195.
Zurück zum Zitat Aratyn, Y. S., Schaus, T. E., Taylor, E. W., & Borisy, G. G. (2007). Intrinsic dynamic behavior of fascin in filopodia. Molecular Biology of the Cell, 18(10), 3928–3940.PubMedPubMedCentralCrossRef Aratyn, Y. S., Schaus, T. E., Taylor, E. W., & Borisy, G. G. (2007). Intrinsic dynamic behavior of fascin in filopodia. Molecular Biology of the Cell, 18(10), 3928–3940.PubMedPubMedCentralCrossRef
196.
Zurück zum Zitat Quintavalle, M., Elia, L., Condorelli, G., & Courtneidge, S. A. (2010). MicroRNA control of podosome formation invascular smooth muscle cells in vivo and in vitro. Journal of Cell Biology, 189(1), 13–22.CrossRef Quintavalle, M., Elia, L., Condorelli, G., & Courtneidge, S. A. (2010). MicroRNA control of podosome formation invascular smooth muscle cells in vivo and in vitro. Journal of Cell Biology, 189(1), 13–22.CrossRef
197.
Zurück zum Zitat Li, A., Dawson, J. C., Forero-Vargas, M., Spence, H. J., Yu, X., Konig, I., et al. (2010). The actin-bundling protein fascin stabilizes actin ininvadopodia and potentiates protrusive invasion. Current Biology, 20(4), 339–345.PubMedCrossRef Li, A., Dawson, J. C., Forero-Vargas, M., Spence, H. J., Yu, X., Konig, I., et al. (2010). The actin-bundling protein fascin stabilizes actin ininvadopodia and potentiates protrusive invasion. Current Biology, 20(4), 339–345.PubMedCrossRef
198.
Zurück zum Zitat Jayo, A., & Parsons, M. (2010). Fascin: a key regulator of cytoskeletal dynamics. Interntional Journal of Biochemistry and Cell Biology, 42(10), 1614–1617.CrossRef Jayo, A., & Parsons, M. (2010). Fascin: a key regulator of cytoskeletal dynamics. Interntional Journal of Biochemistry and Cell Biology, 42(10), 1614–1617.CrossRef
199.
Zurück zum Zitat Keshamouni, V. G., Jagtap, P., Michailidis, G., Strahler, J. R., Kuick, R., Reka, A. K., et al. (2009). Temporal quantitative proteomics by iTRAQ2D-LC-MS/MS and corresponding mRNAexpression analysis identify post-transcriptional modulation of actin-cytoskeleton regulators during TGF-beta-induced epithelial-mesenchymal transition. Journal of Proteome Research, 8(1), 35–47.PubMedCrossRef Keshamouni, V. G., Jagtap, P., Michailidis, G., Strahler, J. R., Kuick, R., Reka, A. K., et al. (2009). Temporal quantitative proteomics by iTRAQ2D-LC-MS/MS and corresponding mRNAexpression analysis identify post-transcriptional modulation of actin-cytoskeleton regulators during TGF-beta-induced epithelial-mesenchymal transition. Journal of Proteome Research, 8(1), 35–47.PubMedCrossRef
200.
Zurück zum Zitat Vignjevic, D., Schoumacher, M., Gavert, N., Janssen, K. P., Jih, G., Laé, M., et al. (2007). Fascin, a novel target of beta-catenin-TCF signaling, is expressed at the invasive front of human colon cancer. Cancer Research, 67(14), 6844–6853.PubMedCrossRef Vignjevic, D., Schoumacher, M., Gavert, N., Janssen, K. P., Jih, G., Laé, M., et al. (2007). Fascin, a novel target of beta-catenin-TCF signaling, is expressed at the invasive front of human colon cancer. Cancer Research, 67(14), 6844–6853.PubMedCrossRef
201.
Zurück zum Zitat Snyder, M., Huang, X. Y., & Zhang, J. J. (2011). Signal transducers and activators of transcription 3 (STAT3) directly regulates cytokine-induced fascin expression and is required for breast cancer cell migration. Journal of Biological Chemistry, 286(45), 38886–38893.CrossRef Snyder, M., Huang, X. Y., & Zhang, J. J. (2011). Signal transducers and activators of transcription 3 (STAT3) directly regulates cytokine-induced fascin expression and is required for breast cancer cell migration. Journal of Biological Chemistry, 286(45), 38886–38893.CrossRef
202.
Zurück zum Zitat Chiyomaru, T., Enokida, H., Tatarano, S., Kawahara, K., Uchida, Y., Nishiyama, K., et al. (2010). miR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expressionin bladder cancer. British Journal of Cancer, 102(5), 883–891.PubMedPubMedCentralCrossRef Chiyomaru, T., Enokida, H., Tatarano, S., Kawahara, K., Uchida, Y., Nishiyama, K., et al. (2010). miR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expressionin bladder cancer. British Journal of Cancer, 102(5), 883–891.PubMedPubMedCentralCrossRef
203.
Zurück zum Zitat Gotte, M., Mohr, C., Koo, C. Y., Stock, C., Vaske, A. K., Viola, M., et al. (2010). miR-145-dependent targeting of junctional adhesion molecule A and modulation of fascin expression areassociated with reduced breast cancer cell motility and invasiveness. Oncogene, 29(50), 6569–6580.PubMedCrossRef Gotte, M., Mohr, C., Koo, C. Y., Stock, C., Vaske, A. K., Viola, M., et al. (2010). miR-145-dependent targeting of junctional adhesion molecule A and modulation of fascin expression areassociated with reduced breast cancer cell motility and invasiveness. Oncogene, 29(50), 6569–6580.PubMedCrossRef
204.
Zurück zum Zitat Fuse, M., Nohata, N., Kojima, S., Chiyomaru, T., Kawakami, K., Enokida, H., et al. (2011). Restorationof miR-145 expression suppresses cell proliferation, migration and invasion in prostate cancerby targeting FSCN1. International Journal of Oncology, 38(4), 11093–11101. Fuse, M., Nohata, N., Kojima, S., Chiyomaru, T., Kawakami, K., Enokida, H., et al. (2011). Restorationof miR-145 expression suppresses cell proliferation, migration and invasion in prostate cancerby targeting FSCN1. International Journal of Oncology, 38(4), 11093–11101.
205.
Zurück zum Zitat Yamakita, Y., Ono, S., Matsumura, F., & Yamashiro, F. (1996). Phosphorylation of human fascin inhibits its actin binding and bundling activities. Journal of Biological Chemistry, 271(21), 12632–12638.CrossRef Yamakita, Y., Ono, S., Matsumura, F., & Yamashiro, F. (1996). Phosphorylation of human fascin inhibits its actin binding and bundling activities. Journal of Biological Chemistry, 271(21), 12632–12638.CrossRef
206.
Zurück zum Zitat Ono, S., Yamakita, Y., Yamashiro, S., Matsudaira, P. T., Gnarra, J. R., Obinata, F., et al. (1997). Identification of an actin binding region and a protein kinase C phosphorylation site on human fascin. Journal of Biological Chemistry, 272(4), 2527–2533.CrossRef Ono, S., Yamakita, Y., Yamashiro, S., Matsudaira, P. T., Gnarra, J. R., Obinata, F., et al. (1997). Identification of an actin binding region and a protein kinase C phosphorylation site on human fascin. Journal of Biological Chemistry, 272(4), 2527–2533.CrossRef
207.
Zurück zum Zitat Ma, Y., & Machesky, L. M. (2015). Fascin1 in Carcinomas: Its Regulation and Prognostic Value. International Journal of Cancer, 137(11), 2534–2544.PubMedCrossRef Ma, Y., & Machesky, L. M. (2015). Fascin1 in Carcinomas: Its Regulation and Prognostic Value. International Journal of Cancer, 137(11), 2534–2544.PubMedCrossRef
208.
Zurück zum Zitat Chen, S. F., Yang, S. F., Li, J. W., Nieh, P. C., Lin, S. Y., Fu, E., et al. (2007). Expression of fascin in oral and oropharyngeal squamous cell carcinomas has prognostic significance—a tissue microarray study of 129 cases. Histopathology, 51(2), 173–183.PubMedCrossRef Chen, S. F., Yang, S. F., Li, J. W., Nieh, P. C., Lin, S. Y., Fu, E., et al. (2007). Expression of fascin in oral and oropharyngeal squamous cell carcinomas has prognostic significance—a tissue microarray study of 129 cases. Histopathology, 51(2), 173–183.PubMedCrossRef
209.
Zurück zum Zitat Durmaz, A., Kurt, B., Ongoru, O., Karahatay, S., Gerek, M., & Yalcin, S. (2010). Significance of fascin expression in laryngeal squamous cell carcinoma. The Journal of Laryngology & Otology, 124(2), 194–198.CrossRef Durmaz, A., Kurt, B., Ongoru, O., Karahatay, S., Gerek, M., & Yalcin, S. (2010). Significance of fascin expression in laryngeal squamous cell carcinoma. The Journal of Laryngology & Otology, 124(2), 194–198.CrossRef
210.
Zurück zum Zitat Puppa, G., Maisonneuve, P., Sonzogni, A., Masullo, M., Chiappa, A., Valerio, M., et al. (2007). Independent prognostic value of fascin immunoreactivity in stage III-IV colonic adenocarcinoma. British Journal of Cancer, 96(7), 1118–1126.PubMedPubMedCentralCrossRef Puppa, G., Maisonneuve, P., Sonzogni, A., Masullo, M., Chiappa, A., Valerio, M., et al. (2007). Independent prognostic value of fascin immunoreactivity in stage III-IV colonic adenocarcinoma. British Journal of Cancer, 96(7), 1118–1126.PubMedPubMedCentralCrossRef
211.
Zurück zum Zitat Oh, S. Y., Kim, Y. B., Suh, K. W., Paek, O. J., & Moon, H. Y. (2012). Prognostic impact of fascin-1 expression is more significant in advanced colorectal cancer. Journal of Surgical Research, 172(1), 102–108.CrossRef Oh, S. Y., Kim, Y. B., Suh, K. W., Paek, O. J., & Moon, H. Y. (2012). Prognostic impact of fascin-1 expression is more significant in advanced colorectal cancer. Journal of Surgical Research, 172(1), 102–108.CrossRef
212.
Zurück zum Zitat Yoder, B. J., Tso, E., Skacel, M., Pettay, J., Tarr, S., Budd, T., et al. (2005). The expression of fascin, an actin-bundling motility protein, correlates with hormone receptor-negative breast cancer and a more aggressive clinical course. Clinical Cancer Research, 11(1), 186–192.PubMedCrossRef Yoder, B. J., Tso, E., Skacel, M., Pettay, J., Tarr, S., Budd, T., et al. (2005). The expression of fascin, an actin-bundling motility protein, correlates with hormone receptor-negative breast cancer and a more aggressive clinical course. Clinical Cancer Research, 11(1), 186–192.PubMedCrossRef
213.
Zurück zum Zitat Al-Alwan, M., Olabi, S., Ghebeh, H., Barhoush, E., Tulbah, A., Al-Tweigeriet, T., et al. (2011). Fascin is a key regulator of breast cancer invasion that acts via the modification of metastasis-associated molecules. PLoS One, 6(11), e27339.PubMedPubMedCentralCrossRef Al-Alwan, M., Olabi, S., Ghebeh, H., Barhoush, E., Tulbah, A., Al-Tweigeriet, T., et al. (2011). Fascin is a key regulator of breast cancer invasion that acts via the modification of metastasis-associated molecules. PLoS One, 6(11), e27339.PubMedPubMedCentralCrossRef
214.
Zurück zum Zitat Li, A., Morton, J. P., Ma, Y., Karim, S. A., Zhou, Y., Faller, W. J., et al. (2014). Fascin is regulated by slug, promotes progression of pancreatic cancer in mice, and is associated with patient outcomes. Gastroenterology, 146(5), 1386–1396.PubMedCrossRef Li, A., Morton, J. P., Ma, Y., Karim, S. A., Zhou, Y., Faller, W. J., et al. (2014). Fascin is regulated by slug, promotes progression of pancreatic cancer in mice, and is associated with patient outcomes. Gastroenterology, 146(5), 1386–1396.PubMedCrossRef
215.
Zurück zum Zitat Swierczynski, S. L., Maitra, A., Abraham, S. C., Iacobuzio-Donahue, C. A., Ashfaq, R., Cameron, J. L., et al. (2004). Analysis of novel tumor markers in pancreatic and biliary carcinomas using tissue microarrays. Human Pathology, 35(3), 357–366.PubMedCrossRef Swierczynski, S. L., Maitra, A., Abraham, S. C., Iacobuzio-Donahue, C. A., Ashfaq, R., Cameron, J. L., et al. (2004). Analysis of novel tumor markers in pancreatic and biliary carcinomas using tissue microarrays. Human Pathology, 35(3), 357–366.PubMedCrossRef
216.
Zurück zum Zitat Pelosi, G., Pastorino, U., Pasini, F., Maissoneuve, P., Fraggetta, F., Iannucci, A., et al. (2003). Independent prognostic value of fascin immunoreactivity in stage I non small cell lung cancer. British Journal of Cancer, 88(4), 537–547.PubMedPubMedCentralCrossRef Pelosi, G., Pastorino, U., Pasini, F., Maissoneuve, P., Fraggetta, F., Iannucci, A., et al. (2003). Independent prognostic value of fascin immunoreactivity in stage I non small cell lung cancer. British Journal of Cancer, 88(4), 537–547.PubMedPubMedCentralCrossRef
217.
Zurück zum Zitat Choi, P. J., Yang, D. K., Son, C. H., Lee, K. E., Lee, J. I., & Roh, M. S. (2006). Fascin immunoreactivity for preoperatively predicting lymphnode metastases in peripheral adenocarcinoma of the lung 3 cm or less in diameter. European Journal of Cardiothoracic Surgery, 30(3), 538–542.PubMedCrossRef Choi, P. J., Yang, D. K., Son, C. H., Lee, K. E., Lee, J. I., & Roh, M. S. (2006). Fascin immunoreactivity for preoperatively predicting lymphnode metastases in peripheral adenocarcinoma of the lung 3 cm or less in diameter. European Journal of Cardiothoracic Surgery, 30(3), 538–542.PubMedCrossRef
218.
Zurück zum Zitat Poli, G., Ruggiero, C., Cantini, G., Canu, L., Baroni, G., Armignacco, R., et al. (2019). Fascin-1 Is a Novel Prognostic Biomarker Associated With Tumor Invasiveness in Adrenocortical Carcinoma. Journal of Clinical Endocrinology and Metabolis, 104(5), 1712–1724.CrossRef Poli, G., Ruggiero, C., Cantini, G., Canu, L., Baroni, G., Armignacco, R., et al. (2019). Fascin-1 Is a Novel Prognostic Biomarker Associated With Tumor Invasiveness in Adrenocortical Carcinoma. Journal of Clinical Endocrinology and Metabolis, 104(5), 1712–1724.CrossRef
219.
Zurück zum Zitat Doghman, M., Karpova, T., Rodrigues, G. A., Arhatte, M., De Moura, J., & Cavalli, L. R. (2007). Increased steroidogenic factor-1 dosage triggers adrenocortical cell proliferation and cancer. Molecular Endocrinology, 21(12), 2968–2987.PubMedCrossRef Doghman, M., Karpova, T., Rodrigues, G. A., Arhatte, M., De Moura, J., & Cavalli, L. R. (2007). Increased steroidogenic factor-1 dosage triggers adrenocortical cell proliferation and cancer. Molecular Endocrinology, 21(12), 2968–2987.PubMedCrossRef
220.
Zurück zum Zitat Ruggiero, C., Doghman-Bouguerra, M., Sbiera, S., Sbiera, I., Parsons, M., Ragazzon, B., et al. (2017). Dosage-dependent transcriptional regulation of VAV2 by Steroidogenic Factor-1 drives tumor cell invasion. Science Signaling, 10(469), eaal2464.PubMedCrossRef Ruggiero, C., Doghman-Bouguerra, M., Sbiera, S., Sbiera, I., Parsons, M., Ragazzon, B., et al. (2017). Dosage-dependent transcriptional regulation of VAV2 by Steroidogenic Factor-1 drives tumor cell invasion. Science Signaling, 10(469), eaal2464.PubMedCrossRef
221.
Zurück zum Zitat Sellers, J. R. (2000). Myosins: a diverse superfamily. Biochimica et biophysica acta, 1496(1), 3–22.PubMedCrossRef Sellers, J. R. (2000). Myosins: a diverse superfamily. Biochimica et biophysica acta, 1496(1), 3–22.PubMedCrossRef
222.
Zurück zum Zitat Zhou, X., Liu, Y., You, J., Zhang, H., Zhang, X., & Ye, L. (2008). Myosin light-chain kinase contributes to the proliferation and migration of breast cancer cells through cross-talk with activated ERK1/2. Cancer Letters, 270(2), 312–327.PubMedCrossRef Zhou, X., Liu, Y., You, J., Zhang, H., Zhang, X., & Ye, L. (2008). Myosin light-chain kinase contributes to the proliferation and migration of breast cancer cells through cross-talk with activated ERK1/2. Cancer Letters, 270(2), 312–327.PubMedCrossRef
223.
Zurück zum Zitat Betapudi, V., Gokulrangan, G., Chance, M. R., & Egelhoff, T. T. (2011). A proteomic study of myosin II motor proteins during tumor cell migration. Journal of Molecular Biology, 407(5), 673–686.PubMedPubMedCentralCrossRef Betapudi, V., Gokulrangan, G., Chance, M. R., & Egelhoff, T. T. (2011). A proteomic study of myosin II motor proteins during tumor cell migration. Journal of Molecular Biology, 407(5), 673–686.PubMedPubMedCentralCrossRef
224.
Zurück zum Zitat Yoshida, H., Cheng, W., Hun, J., Montell, D., Geisbrecht, E., Rosen, D., et al. (2004). Lessons from border cell migration in the Drosophila ovary: A role for myosin VI in dissemination of human ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 101(21), 8144–8149.PubMedPubMedCentralCrossRef Yoshida, H., Cheng, W., Hun, J., Montell, D., Geisbrecht, E., Rosen, D., et al. (2004). Lessons from border cell migration in the Drosophila ovary: A role for myosin VI in dissemination of human ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 101(21), 8144–8149.PubMedPubMedCentralCrossRef
225.
Zurück zum Zitat Bai, J., Uehara, Y., & Montell, D. J. (2000). Regulation of invasive cell behavior by taiman, a Drosophila protein related to AIB1, a steroid receptor coactivator amplified in breast cancer. Cell, 103(7), 1047–1058.PubMedCrossRef Bai, J., Uehara, Y., & Montell, D. J. (2000). Regulation of invasive cell behavior by taiman, a Drosophila protein related to AIB1, a steroid receptor coactivator amplified in breast cancer. Cell, 103(7), 1047–1058.PubMedCrossRef
226.
Zurück zum Zitat Loikkanen, I., Toljamo, K., Hirvikoski, P., Väisänen, T. P., Paavonen, T. K., & Vaarala, M. H. (2009). Myosin VI is a modulator of androgen-dependent gene expression. Oncology Reports, 22(5), 991–995.PubMed Loikkanen, I., Toljamo, K., Hirvikoski, P., Väisänen, T. P., Paavonen, T. K., & Vaarala, M. H. (2009). Myosin VI is a modulator of androgen-dependent gene expression. Oncology Reports, 22(5), 991–995.PubMed
227.
Zurück zum Zitat Ruppender, N., Larson, S., Lakely, B., Kollath, L., Brown, L., Coleman, I., et al. (2015). Cellular Adhesion Promotes Prostate Cancer Cells Escape from Dormancy. PLoS One, 10(6), e0130565.PubMedPubMedCentralCrossRef Ruppender, N., Larson, S., Lakely, B., Kollath, L., Brown, L., Coleman, I., et al. (2015). Cellular Adhesion Promotes Prostate Cancer Cells Escape from Dormancy. PLoS One, 10(6), e0130565.PubMedPubMedCentralCrossRef
228.
Zurück zum Zitat Lan, L., Han, H., Zuo, H., Chen, Z., Du, Y., Zhao, W., Gu, J., & Zhang, Z. (2010). Upregulation of myosin Va by Snail is involved in cancer cell migration and metastasis. International Journal of Cancer, 126(1), 53–64.PubMedCrossRef Lan, L., Han, H., Zuo, H., Chen, Z., Du, Y., Zhao, W., Gu, J., & Zhang, Z. (2010). Upregulation of myosin Va by Snail is involved in cancer cell migration and metastasis. International Journal of Cancer, 126(1), 53–64.PubMedCrossRef
229.
Zurück zum Zitat Vickaryous, N., Polanco-Echeverry, G., Morrow, S., Suraweera, N., Thomas, H., Tomlinson, I., & Silver, A. (2008). Smooth-muscle myosin mutations in hereditary non-polyposis colorectal cancer syndrome. British Journal of Cancer, 99(10), 1726–1728.PubMedPubMedCentralCrossRef Vickaryous, N., Polanco-Echeverry, G., Morrow, S., Suraweera, N., Thomas, H., Tomlinson, I., & Silver, A. (2008). Smooth-muscle myosin mutations in hereditary non-polyposis colorectal cancer syndrome. British Journal of Cancer, 99(10), 1726–1728.PubMedPubMedCentralCrossRef
230.
Zurück zum Zitat Laing, N. G., & Nowak, K. J. (2005). When contractile proteins go bad: the sarcomere and skeletal muscle disease. Bioessays, 27(8), 809–822.PubMedCrossRef Laing, N. G., & Nowak, K. J. (2005). When contractile proteins go bad: the sarcomere and skeletal muscle disease. Bioessays, 27(8), 809–822.PubMedCrossRef
231.
Zurück zum Zitat Alhopuro, P., Phichith, D., Tuupanen, S., Sammalkorpi, H., Nybondas, M., Saharinen, J., et al. (2008). Unregulated smooth-muscle myosin in human intestinal neoplasia. Proceedings of the National Academy of Sciences of the United States of America, 105(14), 5513–5518.PubMedPubMedCentralCrossRef Alhopuro, P., Phichith, D., Tuupanen, S., Sammalkorpi, H., Nybondas, M., Saharinen, J., et al. (2008). Unregulated smooth-muscle myosin in human intestinal neoplasia. Proceedings of the National Academy of Sciences of the United States of America, 105(14), 5513–5518.PubMedPubMedCentralCrossRef
232.
Zurück zum Zitat Pessina, P., Conti, V., Pacelli, F., Rosa, F., Doglietto, G. B., Brunelli, S., & Bossola, M. (2010). Skeletal muscle of gastric cancer patients expresses genes involved in muscle regeneration. Oncology Reports, 24(3), 741–745.PubMed Pessina, P., Conti, V., Pacelli, F., Rosa, F., Doglietto, G. B., Brunelli, S., & Bossola, M. (2010). Skeletal muscle of gastric cancer patients expresses genes involved in muscle regeneration. Oncology Reports, 24(3), 741–745.PubMed
233.
Zurück zum Zitat Dong, W., Chen, X., Chen, P., Yue, D., Zhu, L., & Fan, Q. (2012). Inactivation of MYO5B promotes invasion and motility ingastric cancer cells. Digestive Diseases and Science, 57(5), 1247–1252.CrossRef Dong, W., Chen, X., Chen, P., Yue, D., Zhu, L., & Fan, Q. (2012). Inactivation of MYO5B promotes invasion and motility ingastric cancer cells. Digestive Diseases and Science, 57(5), 1247–1252.CrossRef
234.
Zurück zum Zitat Kaneko, K., Satoh, K., Masamune, A., Satoh, A., & Shimosegawa, T. (2002). Myosin light chain kinase inhibitors can block invasion and adhesion of human pancreatic cancer cell lines. Pancreas, 24(1), 34–41.PubMedCrossRef Kaneko, K., Satoh, K., Masamune, A., Satoh, A., & Shimosegawa, T. (2002). Myosin light chain kinase inhibitors can block invasion and adhesion of human pancreatic cancer cell lines. Pancreas, 24(1), 34–41.PubMedCrossRef
235.
Zurück zum Zitat Roy, I., McAllister, D. M., Gorse, E., Dixon, K., Piper, C. T., Zimmerman, N. P., et al. (2015). Pancreatic Cancer Cell Migration and Metastasis Is Regulated by Chemokine-Biased Agonism and Bioenergetic Signaling. Cancer research, 75(17), 3529–3542.PubMedPubMedCentralCrossRef Roy, I., McAllister, D. M., Gorse, E., Dixon, K., Piper, C. T., Zimmerman, N. P., et al. (2015). Pancreatic Cancer Cell Migration and Metastasis Is Regulated by Chemokine-Biased Agonism and Bioenergetic Signaling. Cancer research, 75(17), 3529–3542.PubMedPubMedCentralCrossRef
236.
Zurück zum Zitat Jacobs, K., Van Gele, M., Forsyth, R., Brochez, L., Vanhoecke, B., De Wever, O., & Bracke, M. (2010). P-cadherin counteracts myosin II-B function: implications in melanoma progression. Molecular Cancer, 9, 255.PubMedPubMedCentralCrossRef Jacobs, K., Van Gele, M., Forsyth, R., Brochez, L., Vanhoecke, B., De Wever, O., & Bracke, M. (2010). P-cadherin counteracts myosin II-B function: implications in melanoma progression. Molecular Cancer, 9, 255.PubMedPubMedCentralCrossRef
237.
Zurück zum Zitat Li, H., Zhou, F., Wang, H., Lin, D., Chen, G., Zuo, X., et al. (2015). Knockdown of myosin VI by lentivirus mediated short hairpin RNA suppresses proliferation of melanoma. Molecular Medicine Reports, 12(5), 6801–6806.PubMedCrossRef Li, H., Zhou, F., Wang, H., Lin, D., Chen, G., Zuo, X., et al. (2015). Knockdown of myosin VI by lentivirus mediated short hairpin RNA suppresses proliferation of melanoma. Molecular Medicine Reports, 12(5), 6801–6806.PubMedCrossRef
238.
Zurück zum Zitat Gillespie, G. Y., Soroceanu, L., Manning, T. J., Gladson, C. L., & Rosenfeld, S. S. (1999). Glioma migration can be blocked by nontoxic inhibitors of myosin II. Cancer Research, 59(9), 2076–2082.PubMed Gillespie, G. Y., Soroceanu, L., Manning, T. J., Gladson, C. L., & Rosenfeld, S. S. (1999). Glioma migration can be blocked by nontoxic inhibitors of myosin II. Cancer Research, 59(9), 2076–2082.PubMed
239.
Zurück zum Zitat Liu, P., Tarlé, S. A., Hajra, A., Claxton, D. F., Marlton, P., Freedman, M., et al. (1993). Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science, 261(5124), 1041–1044.PubMedCrossRef Liu, P., Tarlé, S. A., Hajra, A., Claxton, D. F., Marlton, P., Freedman, M., et al. (1993). Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science, 261(5124), 1041–1044.PubMedCrossRef
240.
Zurück zum Zitat Ouderkirk, J. L., & Krendel, M. (2014). Myosin 1e is a component of the invadosome core that contributes to regulation of invadosome dynamics. Experimental Cell Research, 322(2), 265–276.PubMedPubMedCentralCrossRef Ouderkirk, J. L., & Krendel, M. (2014). Myosin 1e is a component of the invadosome core that contributes to regulation of invadosome dynamics. Experimental Cell Research, 322(2), 265–276.PubMedPubMedCentralCrossRef
241.
Zurück zum Zitat Tohtong, R., Phattarasakul, K., Jiraviriyakul, A., & Sutthiphongchai, T. (2003). Dependence of metastatic cancer cell invasion on MLCK-catalyzed phosphorylation of myosin regulatory light chain. Prostate Cancer Prostatic Dieases, 6(3), 212–216.CrossRef Tohtong, R., Phattarasakul, K., Jiraviriyakul, A., & Sutthiphongchai, T. (2003). Dependence of metastatic cancer cell invasion on MLCK-catalyzed phosphorylation of myosin regulatory light chain. Prostate Cancer Prostatic Dieases, 6(3), 212–216.CrossRef
242.
Zurück zum Zitat Ivkovic, S., Beadle, C., Noticewala, S., Massey, S. C., Swanson, K. R., Toro, L. N., et al. (2012). Direct inhibition of myosin II effectively blocks glioma invasion in the presence of multiple motogens. Molecular Biology of the Cell, 23(4), 533–542.PubMedPubMedCentralCrossRef Ivkovic, S., Beadle, C., Noticewala, S., Massey, S. C., Swanson, K. R., Toro, L. N., et al. (2012). Direct inhibition of myosin II effectively blocks glioma invasion in the presence of multiple motogens. Molecular Biology of the Cell, 23(4), 533–542.PubMedPubMedCentralCrossRef
243.
Zurück zum Zitat Vicente-Manzanares, M., Zareno, J., Whitmore, L., Choi, C. K., & Horwitz, A. F. (2007). Regulation of protusion, adhesion dynamics, and polarity by myosins IIA and IIB in migration of cells. Journal of Cell Biology, 176(5), 573–580.CrossRef Vicente-Manzanares, M., Zareno, J., Whitmore, L., Choi, C. K., & Horwitz, A. F. (2007). Regulation of protusion, adhesion dynamics, and polarity by myosins IIA and IIB in migration of cells. Journal of Cell Biology, 176(5), 573–580.CrossRef
244.
Zurück zum Zitat Lan, L., Han, H., Zuo, H., Chen, Z., Du, Y., Zhao, W., Gu, J., & Zhang, Z. (2010). Upregulation of myosin Va by Snail is involved in cancer cell migration and metastasis. International Journal of Cancer, 126(1), 53–64.PubMedCrossRef Lan, L., Han, H., Zuo, H., Chen, Z., Du, Y., Zhao, W., Gu, J., & Zhang, Z. (2010). Upregulation of myosin Va by Snail is involved in cancer cell migration and metastasis. International Journal of Cancer, 126(1), 53–64.PubMedCrossRef
245.
Zurück zum Zitat Wang, F. S., Wolenski, J. S., Cheney, R. E., Mooseker, M. S., & Jay, D. G. (1996). Function of myosin-V in filopodial extention of neuronal growth cone. Science, 273(5275), 660–663.PubMedCrossRef Wang, F. S., Wolenski, J. S., Cheney, R. E., Mooseker, M. S., & Jay, D. G. (1996). Function of myosin-V in filopodial extention of neuronal growth cone. Science, 273(5275), 660–663.PubMedCrossRef
246.
Zurück zum Zitat Letellier, E., Schmitz, M., Ginolhac, A., Rodriguez, F., Ullmann, P., & Qureshi-Baig, K. (2017). Loss of Myosin Vb in colorectal cancer is a strong prognostic factor for disease recurrence. British Journal of Cancer, 117, 1689–1701.PubMedPubMedCentralCrossRef Letellier, E., Schmitz, M., Ginolhac, A., Rodriguez, F., Ullmann, P., & Qureshi-Baig, K. (2017). Loss of Myosin Vb in colorectal cancer is a strong prognostic factor for disease recurrence. British Journal of Cancer, 117, 1689–1701.PubMedPubMedCentralCrossRef
247.
Zurück zum Zitat Knudsen, B. (2006). Migrating with myosin VI. American Journal of Pathology, 169(5), 1523–1526.CrossRef Knudsen, B. (2006). Migrating with myosin VI. American Journal of Pathology, 169(5), 1523–1526.CrossRef
248.
Zurück zum Zitat Post, P. L., Bokoch, G. M., & Mooseker, M. S. (1998). Human myosin-IXb is a mechanochemically active motor and a GAP for rho. Journal of Cell Science, 111(Pt7), 941–950.PubMedCrossRef Post, P. L., Bokoch, G. M., & Mooseker, M. S. (1998). Human myosin-IXb is a mechanochemically active motor and a GAP for rho. Journal of Cell Science, 111(Pt7), 941–950.PubMedCrossRef
249.
Zurück zum Zitat Omelchenko, T., & Hall, A. (2012). Myosin-IXA regulates collective epithelial cell migration by targeting rho gap activity to cell cell junctions. Current Biology, 22(4), 278–288.PubMedPubMedCentralCrossRef Omelchenko, T., & Hall, A. (2012). Myosin-IXA regulates collective epithelial cell migration by targeting rho gap activity to cell cell junctions. Current Biology, 22(4), 278–288.PubMedPubMedCentralCrossRef
250.
Zurück zum Zitat Berg, J. S., & Cheney, R. E. (2002). Myosin-X is an unconventional myosin that undergoes intrafilopodial motility. Nature Cell Biology, 4(3), 246–250.PubMedCrossRef Berg, J. S., & Cheney, R. E. (2002). Myosin-X is an unconventional myosin that undergoes intrafilopodial motility. Nature Cell Biology, 4(3), 246–250.PubMedCrossRef
251.
Zurück zum Zitat Bohil, A. B., Robertson, B. W., & Cheney, R. E. (2006). Myosin-X is a molecular motor that functions in filopodia formation. Proceedings of the National Academy of Sciences of the United States of America, 103(33), 12411–12416.PubMedPubMedCentralCrossRef Bohil, A. B., Robertson, B. W., & Cheney, R. E. (2006). Myosin-X is a molecular motor that functions in filopodia formation. Proceedings of the National Academy of Sciences of the United States of America, 103(33), 12411–12416.PubMedPubMedCentralCrossRef
252.
Zurück zum Zitat Mischel, P. S., Shai, R., Shi, T., Horvath, S., Lu, K. V., Choe, G., et al. (2003). Identification of molecular subtypes of glioblastoma by gene expression profiling. Oncogene, 22(15), 2361–2373.PubMedCrossRef Mischel, P. S., Shai, R., Shi, T., Horvath, S., Lu, K. V., Choe, G., et al. (2003). Identification of molecular subtypes of glioblastoma by gene expression profiling. Oncogene, 22(15), 2361–2373.PubMedCrossRef
253.
Zurück zum Zitat Ross, M. E., Zhou, X., Song, G., Shurtleff, S. A., Girtman, K., Williams, W. K., et al. (2003). Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood, 102(8), 2951–2959.PubMedCrossRef Ross, M. E., Zhou, X., Song, G., Shurtleff, S. A., Girtman, K., Williams, W. K., et al. (2003). Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood, 102(8), 2951–2959.PubMedCrossRef
254.
Zurück zum Zitat Cao, R., Chen, J., Zhang, X., Zhai, Y., Qing, X., Xing, W., et al. (2014). Elevated expression of myosin X in tumours contributes to breast cancer aggressiveness and metastasis. British Journal of Cancer, 111(3), 539–550.PubMedPubMedCentralCrossRef Cao, R., Chen, J., Zhang, X., Zhai, Y., Qing, X., Xing, W., et al. (2014). Elevated expression of myosin X in tumours contributes to breast cancer aggressiveness and metastasis. British Journal of Cancer, 111(3), 539–550.PubMedPubMedCentralCrossRef
255.
Zurück zum Zitat Arjonen, A., Kaukonen, R., Mattila, E., Rouhi, P., Hognas, G., Sihto, H., et al. (2014). Mutant p53-associated myosin-X upregulation promotes breast cancer invasion and metastasis. Journal of Clinical Investigation, 124(3), 1069–1082.CrossRef Arjonen, A., Kaukonen, R., Mattila, E., Rouhi, P., Hognas, G., Sihto, H., et al. (2014). Mutant p53-associated myosin-X upregulation promotes breast cancer invasion and metastasis. Journal of Clinical Investigation, 124(3), 1069–1082.CrossRef
256.
Zurück zum Zitat Moser, M., Legate, K. R., Zent, R., & Fassler, R. (2009). The tail of integrins, talin, and kindlins. Science, 324(5929), 895–899.PubMedCrossRef Moser, M., Legate, K. R., Zent, R., & Fassler, R. (2009). The tail of integrins, talin, and kindlins. Science, 324(5929), 895–899.PubMedCrossRef
257.
Zurück zum Zitat Calderwood, D. A. (2004). Talin controls integrin activation. Biochemical Society Transactions, 32(Pt3), 434–437.PubMedCrossRef Calderwood, D. A. (2004). Talin controls integrin activation. Biochemical Society Transactions, 32(Pt3), 434–437.PubMedCrossRef
258.
Zurück zum Zitat Critchley, D. R., & Gingras, A. R. (2008). Talin at a glance. Journal of Cell Science, 121, 1345–1347.PubMedCrossRef Critchley, D. R., & Gingras, A. R. (2008). Talin at a glance. Journal of Cell Science, 121, 1345–1347.PubMedCrossRef
259.
Zurück zum Zitat Senetar, M. A., Foster, S. J., & McCann, R. O. (2004). Intrasteric inhibition mediates the interaction of the I/LWEQ module proteins Talin1, Talin2, Hip1, and Hip12 with actin. Biochemistry, 43(49), 15418–15428.PubMedCrossRef Senetar, M. A., Foster, S. J., & McCann, R. O. (2004). Intrasteric inhibition mediates the interaction of the I/LWEQ module proteins Talin1, Talin2, Hip1, and Hip12 with actin. Biochemistry, 43(49), 15418–15428.PubMedCrossRef
260.
Zurück zum Zitat Smith, S. J., & McCann, R. O. (2007). A C-terminal dimerization motif is required for focal adhesion targeting of Talin1 and the interaction of the Talin1 I/LWEQ module with F-actin. Biochemistry, 46(38), 10886–10898.PubMedCrossRef Smith, S. J., & McCann, R. O. (2007). A C-terminal dimerization motif is required for focal adhesion targeting of Talin1 and the interaction of the Talin1 I/LWEQ module with F-actin. Biochemistry, 46(38), 10886–10898.PubMedCrossRef
261.
Zurück zum Zitat Calderwood, D.A., Zent, R., Grant, R., Rees, D.J., Hynes, R.O., & Ginsberg, M.H. (1999). The Talin head domain binds to integrin beta subunit cytoplasmic tails and regulates integrin activation. Journal of Biological Chemistry, 274(49), 28071–28074. Calderwood, D.A., Zent, R., Grant, R., Rees, D.J., Hynes, R.O., & Ginsberg, M.H. (1999). The Talin head domain binds to integrin beta subunit cytoplasmic tails and regulates integrin activation. Journal of Biological Chemistry, 274(49), 28071–28074.
262.
Zurück zum Zitat Frame, M., & Norman, J. (2008). A tal(in) of cell spreading. Nature Cell Biology, 10(9), 1017–1019.PubMedCrossRef Frame, M., & Norman, J. (2008). A tal(in) of cell spreading. Nature Cell Biology, 10(9), 1017–1019.PubMedCrossRef
263.
Zurück zum Zitat Huang, C., Rajfur, Z., Yousefi, N., Chen, Z., Jacobson, K., & Ginsberg, M. H. (2009). Talin phosphorylation by Cdk5 regulates Smurf1-mediated talin head ubiquitylation and cell migration. Nature Cell Biology, 11(5), 624–630.PubMedPubMedCentralCrossRef Huang, C., Rajfur, Z., Yousefi, N., Chen, Z., Jacobson, K., & Ginsberg, M. H. (2009). Talin phosphorylation by Cdk5 regulates Smurf1-mediated talin head ubiquitylation and cell migration. Nature Cell Biology, 11(5), 624–630.PubMedPubMedCentralCrossRef
264.
Zurück zum Zitat Jin, J. K., Tien, P. C., Cheng, C. J., Song, J. H., Huang, C., Lin, S. H., & Gallick, G. E. (2015). Talin1 phosphorylation activates ß1 integrins: A novel mechanism to promote prostate cancer bone metastasis. Oncogene, 34(14), 1811–1821.PubMedCrossRef Jin, J. K., Tien, P. C., Cheng, C. J., Song, J. H., Huang, C., Lin, S. H., & Gallick, G. E. (2015). Talin1 phosphorylation activates ß1 integrins: A novel mechanism to promote prostate cancer bone metastasis. Oncogene, 34(14), 1811–1821.PubMedCrossRef
265.
Zurück zum Zitat Sakamoto, S., McCann, R. O., Dhir, R., & Kypriano, N. (2010). Talin1 promotes tumor invasion and metastasis via focal adhesion signaling and anoikis resistance. Cancer Research, 70(5), 1885–1895.PubMedPubMedCentralCrossRef Sakamoto, S., McCann, R. O., Dhir, R., & Kypriano, N. (2010). Talin1 promotes tumor invasion and metastasis via focal adhesion signaling and anoikis resistance. Cancer Research, 70(5), 1885–1895.PubMedPubMedCentralCrossRef
266.
Zurück zum Zitat Chen, P., Lei, L., Wang, J., Zou, X., Zhang, D., Deng, L., & Wu, D. (2017). Downregulation of Talin1 promotes hepatocellular carcinoma progression through activation of the ERK1/2 pathway. Cancer Science, 108(6), 1157–1168.PubMedPubMedCentralCrossRef Chen, P., Lei, L., Wang, J., Zou, X., Zhang, D., Deng, L., & Wu, D. (2017). Downregulation of Talin1 promotes hepatocellular carcinoma progression through activation of the ERK1/2 pathway. Cancer Science, 108(6), 1157–1168.PubMedPubMedCentralCrossRef
267.
Zurück zum Zitat Bostanci, O., Kemik, O., Kemik, A., Battal, M., Demir, U., Purisa, S., & Mihmanli, M. (2014). A novel screening test for colon cancer: Talin-1. European Review for Medical and Pharmacological Sciences, 18(17), 2533–2537.PubMed Bostanci, O., Kemik, O., Kemik, A., Battal, M., Demir, U., Purisa, S., & Mihmanli, M. (2014). A novel screening test for colon cancer: Talin-1. European Review for Medical and Pharmacological Sciences, 18(17), 2533–2537.PubMed
268.
Zurück zum Zitat Youns, M. M., Abdel, W. A., Hassan, Z. A., & Attia, M. S. (2013). Serum talin-1 is a potential novel biomarker for diagnosis of the epatocellular carcinoma in Egyptian patients. Asian Pacific Journal of Cancer Prevention, 14(6), 3819–3823.PubMedCrossRef Youns, M. M., Abdel, W. A., Hassan, Z. A., & Attia, M. S. (2013). Serum talin-1 is a potential novel biomarker for diagnosis of the epatocellular carcinoma in Egyptian patients. Asian Pacific Journal of Cancer Prevention, 14(6), 3819–3823.PubMedCrossRef
269.
Zurück zum Zitat Fang, K. P., Dai, W., Ren, Y. H., Xu, Y. C., Zhang, S. M., & Qian, Y. B. (2016). Both Talin-1 and Talin-2 correlate with malignancy potential of the human hepatocellular carcinoma MHCC-97 L cell. BMC Cancer, 16, 45.PubMedPubMedCentralCrossRef Fang, K. P., Dai, W., Ren, Y. H., Xu, Y. C., Zhang, S. M., & Qian, Y. B. (2016). Both Talin-1 and Talin-2 correlate with malignancy potential of the human hepatocellular carcinoma MHCC-97 L cell. BMC Cancer, 16, 45.PubMedPubMedCentralCrossRef
270.
Zurück zum Zitat Liang, Y., Chen, H., Ji, L., Du, J., Xie, X., Li, X., & Lou, Y. (2018). Talin2 regulates breast cancer cell migration and invasion by apoptosis. Oncology Letters, 16(1), 285–293.PubMedPubMedCentral Liang, Y., Chen, H., Ji, L., Du, J., Xie, X., Li, X., & Lou, Y. (2018). Talin2 regulates breast cancer cell migration and invasion by apoptosis. Oncology Letters, 16(1), 285–293.PubMedPubMedCentral
271.
Zurück zum Zitat Everley, P. A., Krijgsveld, J., Zetter, B. R., & Gygi, S. P. (2004). Quantitative cancer proteomics: stable isotope labeling with aminoacids in cell culture (SILAC) as a tool for prostate cancer research. Molecular and Cellular Proteomics, 3(7), 729–735.PubMedCrossRef Everley, P. A., Krijgsveld, J., Zetter, B. R., & Gygi, S. P. (2004). Quantitative cancer proteomics: stable isotope labeling with aminoacids in cell culture (SILAC) as a tool for prostate cancer research. Molecular and Cellular Proteomics, 3(7), 729–735.PubMedCrossRef
272.
Zurück zum Zitat Pittenger, M. F., Kazzaz, J. A., & Helfman, D. M. (1994). Functional properties of non-muscle tropomyosin isoforms. Current Opinion in Cell Biology, 6(1), 96–104.PubMedCrossRef Pittenger, M. F., Kazzaz, J. A., & Helfman, D. M. (1994). Functional properties of non-muscle tropomyosin isoforms. Current Opinion in Cell Biology, 6(1), 96–104.PubMedCrossRef
273.
Zurück zum Zitat Gunning, P. W., Ghoshdastider, U., Whitaker, S., Popp, D., & Robinson, R. C. (2015). The evolution of compositionally and functionally distinct actin filaments. Journal of Cell Science, 128(11), 2009–2019.PubMedCrossRef Gunning, P. W., Ghoshdastider, U., Whitaker, S., Popp, D., & Robinson, R. C. (2015). The evolution of compositionally and functionally distinct actin filaments. Journal of Cell Science, 128(11), 2009–2019.PubMedCrossRef
274.
Zurück zum Zitat Brown, J. H., Kim, K. H., Jun, G., et al. (2001). Deciphering the design of the tropomyosin molecule. Proceedings of the National Academy of Sciences of the United States of America, 98(15), 8496–8501.PubMedPubMedCentralCrossRef Brown, J. H., Kim, K. H., Jun, G., et al. (2001). Deciphering the design of the tropomyosin molecule. Proceedings of the National Academy of Sciences of the United States of America, 98(15), 8496–8501.PubMedPubMedCentralCrossRef
275.
Zurück zum Zitat Gordon, A. M., Homsher, E., & Regnier, M. (2000). Regulation of contraction in striated muscle. Physiological Reviews, 80(2), 853–924.PubMedCrossRef Gordon, A. M., Homsher, E., & Regnier, M. (2000). Regulation of contraction in striated muscle. Physiological Reviews, 80(2), 853–924.PubMedCrossRef
276.
Zurück zum Zitat Schevzov, G., Gunning, P., Jeffrey, P. L., Temm-Grove, C., Helfman, D. M., Lin, J. J., et al. (1997). Tropomyosin localization reveals distinct populations of microfilaments in neurites and growth cones. Molecular and Cellular Neuroscience, 8(6), 439–454.PubMedCrossRef Schevzov, G., Gunning, P., Jeffrey, P. L., Temm-Grove, C., Helfman, D. M., Lin, J. J., et al. (1997). Tropomyosin localization reveals distinct populations of microfilaments in neurites and growth cones. Molecular and Cellular Neuroscience, 8(6), 439–454.PubMedCrossRef
277.
Zurück zum Zitat Schevzov, G., Kee, A. J., Wang, B., Sequeira, V. B., Hook, J., & Coombes, J. D. (2015). Regulation of cell proliferation by ERK and signal-dependent nuclear translocation of ERK is dependent on Tm5NM1-containing actin filaments. Molecular Biology of the Cell, 26(13), 2475–2490.PubMedPubMedCentralCrossRef Schevzov, G., Kee, A. J., Wang, B., Sequeira, V. B., Hook, J., & Coombes, J. D. (2015). Regulation of cell proliferation by ERK and signal-dependent nuclear translocation of ERK is dependent on Tm5NM1-containing actin filaments. Molecular Biology of the Cell, 26(13), 2475–2490.PubMedPubMedCentralCrossRef
278.
Zurück zum Zitat Lin, J. J., Hegmann, T. E., & Lin, J. L. (1998). Differential localization of tropomyosin isoforms in cultured nonmuscle cells. Journal of Cell Biology, 107(2), 563–572.CrossRef Lin, J. J., Hegmann, T. E., & Lin, J. L. (1998). Differential localization of tropomyosin isoforms in cultured nonmuscle cells. Journal of Cell Biology, 107(2), 563–572.CrossRef
279.
Zurück zum Zitat McMichael, B. K., Kotadiya, P., Singh, T., Holliday, L. S., & Lee, B. S. (2006). Tropomyosin isoforms localize to distinct microfilament populations in osteoclasts. Bone, 39(4), 694–705.PubMedCrossRef McMichael, B. K., Kotadiya, P., Singh, T., Holliday, L. S., & Lee, B. S. (2006). Tropomyosin isoforms localize to distinct microfilament populations in osteoclasts. Bone, 39(4), 694–705.PubMedCrossRef
280.
Zurück zum Zitat Dominguez, R. (2011). Tropomyosin: the gatekeeper’s view of the actin filament revealed. Biophyscal Journal, 100(4), 797–798.CrossRef Dominguez, R. (2011). Tropomyosin: the gatekeeper’s view of the actin filament revealed. Biophyscal Journal, 100(4), 797–798.CrossRef
281.
Zurück zum Zitat Johnson, M., East, D. A., & Mulvihill, D. P. (2014). Formins determine the functional properties of actin filaments in yeast. Current Biology, 24(13), 1525–1530.PubMedCrossRef Johnson, M., East, D. A., & Mulvihill, D. P. (2014). Formins determine the functional properties of actin filaments in yeast. Current Biology, 24(13), 1525–1530.PubMedCrossRef
282.
Zurück zum Zitat Goins, L. M., & Mullins, R. D. (2015). A novel tropomyosin isoform functions at the mitotic spindle and Golgi in Drosophila. Molecular Biology of the Cell, 26(13), 2491–2504.PubMedPubMedCentralCrossRef Goins, L. M., & Mullins, R. D. (2015). A novel tropomyosin isoform functions at the mitotic spindle and Golgi in Drosophila. Molecular Biology of the Cell, 26(13), 2491–2504.PubMedPubMedCentralCrossRef
283.
Zurück zum Zitat Perry, S. V. (2001). Vertebrate tropomyosin: distribution, properties and function. Journal of Muscle Research and Cell Motility, 22(1), 5–49.PubMedCrossRef Perry, S. V. (2001). Vertebrate tropomyosin: distribution, properties and function. Journal of Muscle Research and Cell Motility, 22(1), 5–49.PubMedCrossRef
284.
Zurück zum Zitat Helfman, D. M., Flynn, P., Khan, P., & Saeed, A. (2008). Tropomyosin as a regulator of cancer cell transformation. Advances in Experimental Medicine and Biology, 644, 124–131.PubMedCrossRef Helfman, D. M., Flynn, P., Khan, P., & Saeed, A. (2008). Tropomyosin as a regulator of cancer cell transformation. Advances in Experimental Medicine and Biology, 644, 124–131.PubMedCrossRef
285.
Zurück zum Zitat Bharadwaj, S., & Prasad, G. L. (2002). Tropomyosin-1, a novel suppressor of cellular transformation is downregulated by promoter methylation in cancer cells. Cancer Letters, 183(2), 205–213.PubMedCrossRef Bharadwaj, S., & Prasad, G. L. (2002). Tropomyosin-1, a novel suppressor of cellular transformation is downregulated by promoter methylation in cancer cells. Cancer Letters, 183(2), 205–213.PubMedCrossRef
286.
Zurück zum Zitat Ku, B. M., Ryu, H. W., Lee, Y. K., Ryu, J., Yeon, J., & Choi, J. (2010). 4 '-Acetoamido-4-hydroxychalcone, a chalcone derivative, inhibits glioma growth and invasion through regulation of the tropomyosin 1 gene. Biochemical and Biophysical Research Communications, 402(3), 525–530.PubMedCrossRef Ku, B. M., Ryu, H. W., Lee, Y. K., Ryu, J., Yeon, J., & Choi, J. (2010). 4 '-Acetoamido-4-hydroxychalcone, a chalcone derivative, inhibits glioma growth and invasion through regulation of the tropomyosin 1 gene. Biochemical and Biophysical Research Communications, 402(3), 525–530.PubMedCrossRef
287.
Zurück zum Zitat Yang, W., Wang, X., Zheng, W., Li, K., Liu, H., & Sun, Y. (2013). Genetic and epigenetic alterations are involved in the regulation of TPM1 in cholangiocarcinoma. International Journal of Oncology, 42(2), 690–698.PubMedCrossRef Yang, W., Wang, X., Zheng, W., Li, K., Liu, H., & Sun, Y. (2013). Genetic and epigenetic alterations are involved in the regulation of TPM1 in cholangiocarcinoma. International Journal of Oncology, 42(2), 690–698.PubMedCrossRef
288.
Zurück zum Zitat Pan, H., Gu, L., Liu, B., Li, Y., Wang, Y., Bai, X., et al. (2017). Tropomyosin-1 acts as a potential tumor suppressorin human oral squamous cell carcinoma. PLoS One, 12(2), e0168900.PubMedPubMedCentralCrossRef Pan, H., Gu, L., Liu, B., Li, Y., Wang, Y., Bai, X., et al. (2017). Tropomyosin-1 acts as a potential tumor suppressorin human oral squamous cell carcinoma. PLoS One, 12(2), e0168900.PubMedPubMedCentralCrossRef
289.
Zurück zum Zitat Mlakar, V., Berginc, G., Volavsek, M., Stor, Z., Rems, M., & Glavac, D. (2009). Presence of activating KRAS mutations correlates significantly with expression of tumour suppressor genes DCN and TPM1 in colorectal cancer. BMC Cancer, 9, 282.PubMedPubMedCentralCrossRef Mlakar, V., Berginc, G., Volavsek, M., Stor, Z., Rems, M., & Glavac, D. (2009). Presence of activating KRAS mutations correlates significantly with expression of tumour suppressor genes DCN and TPM1 in colorectal cancer. BMC Cancer, 9, 282.PubMedPubMedCentralCrossRef
290.
Zurück zum Zitat Zhu, S., Si, M. L., Wu, H., & Mo, Y. Y. (2007). MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). Journal of Biological Chemistry, 282(19), 14328–14336.CrossRef Zhu, S., Si, M. L., Wu, H., & Mo, Y. Y. (2007). MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). Journal of Biological Chemistry, 282(19), 14328–14336.CrossRef
291.
Zurück zum Zitat Zhu, S., Wu, H., Wu, F., Nie, D., Sheng, S., & Mo, Y. Y. (2008). MicroRNA-21targets tumor suppressor genes in invasion and metastasis. Cell Research, 18(3), 350–359.PubMedCrossRef Zhu, S., Wu, H., Wu, F., Nie, D., Sheng, S., & Mo, Y. Y. (2008). MicroRNA-21targets tumor suppressor genes in invasion and metastasis. Cell Research, 18(3), 350–359.PubMedCrossRef
292.
Zurück zum Zitat Wang, J., Guan, J., Lu, Z., Jin, J., Cai, Y., Wang, C., & Wang, F. (2015). Clinical and tumor significance of tropomyosin-1expression levels in renal cell carcinoma. Oncology Reports, 33(3), 1326–1334.PubMedCrossRef Wang, J., Guan, J., Lu, Z., Jin, J., Cai, Y., Wang, C., & Wang, F. (2015). Clinical and tumor significance of tropomyosin-1expression levels in renal cell carcinoma. Oncology Reports, 33(3), 1326–1334.PubMedCrossRef
293.
Zurück zum Zitat Gagat, M., Grzanka, D., Izdebska, M., & Grzanka, A. (2013). Effect of L-homocysteine on endothelial cell-cell junctions following F-actin stabilization through tropomyosin-1 overexpression. International Journal of Molecular Medicine, 32(1), 115–129.PubMedCrossRef Gagat, M., Grzanka, D., Izdebska, M., & Grzanka, A. (2013). Effect of L-homocysteine on endothelial cell-cell junctions following F-actin stabilization through tropomyosin-1 overexpression. International Journal of Molecular Medicine, 32(1), 115–129.PubMedCrossRef
294.
Zurück zum Zitat Stehn, J. R., Haass, N. K., Bonello, T., Desouza, M., Kottyan, G., Treutlein, H., et al. (2013). A novel class of anticancer compounds targets the actin cytoskeleton in tumor cells. Cancer Research, 73(16), 5169–5182.PubMedCrossRef Stehn, J. R., Haass, N. K., Bonello, T., Desouza, M., Kottyan, G., Treutlein, H., et al. (2013). A novel class of anticancer compounds targets the actin cytoskeleton in tumor cells. Cancer Research, 73(16), 5169–5182.PubMedCrossRef
295.
Zurück zum Zitat Stehn, J. R., Schevzov, G., O’Neill, G. M., & Gunning, P. W. (2006). Specialisation of the tropomyosin composition of actin filaments provides new potential targets for chemotherapy. Current Cancer Drug Targets, 6(3), 245–256.PubMedCrossRef Stehn, J. R., Schevzov, G., O’Neill, G. M., & Gunning, P. W. (2006). Specialisation of the tropomyosin composition of actin filaments provides new potential targets for chemotherapy. Current Cancer Drug Targets, 6(3), 245–256.PubMedCrossRef
296.
Zurück zum Zitat Miyado, K., Kimura, M., & Taniguchi, S. (1996). Decreased expression of a single tropomyosin isoform, TM5/TM30nm, results in reduction in motility of highly metastatic B16-F10 mouse melanoma cells. Biochemical Biophysical Research Communications, 225(2), 427–435.PubMedCrossRef Miyado, K., Kimura, M., & Taniguchi, S. (1996). Decreased expression of a single tropomyosin isoform, TM5/TM30nm, results in reduction in motility of highly metastatic B16-F10 mouse melanoma cells. Biochemical Biophysical Research Communications, 225(2), 427–435.PubMedCrossRef
297.
Zurück zum Zitat Currier, M. A., Stehn, J. R., Swain, A., Chen, D., Hook, J., & Eiffe, E. (2017). Identification of Cancer-Targeted Tropomyosin Inhibitors and Their Synergy with Microtubule Drugs. Molecular Cancer Therapy, 16(8), 1555–1565.CrossRef Currier, M. A., Stehn, J. R., Swain, A., Chen, D., Hook, J., & Eiffe, E. (2017). Identification of Cancer-Targeted Tropomyosin Inhibitors and Their Synergy with Microtubule Drugs. Molecular Cancer Therapy, 16(8), 1555–1565.CrossRef
298.
Zurück zum Zitat Goldberg, J. (1998). Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell, 95(2), 237–248.PubMedCrossRef Goldberg, J. (1998). Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell, 95(2), 237–248.PubMedCrossRef
299.
Zurück zum Zitat Worthylake, D. K., Rossman, K. L., & Sondek, J. (2000). Crystal structure of Rac1 in complex with the guanine nucleotide exchange region of Tiam1. Nature, 408(6813), 682–688.PubMedCrossRef Worthylake, D. K., Rossman, K. L., & Sondek, J. (2000). Crystal structure of Rac1 in complex with the guanine nucleotide exchange region of Tiam1. Nature, 408(6813), 682–688.PubMedCrossRef
300.
Zurück zum Zitat Peyroche, A., Antonny, B., Robineau, S., Acker, J., Cherfils, J., & Jackson, C. L. (1999). Brefeldin A acts to stabilize an abortive ARF-GDP Sec7 domain protein complex: involvement of specific residues of the Sec7 domain. Molecular Cell, 3(3), 275–285.PubMedCrossRef Peyroche, A., Antonny, B., Robineau, S., Acker, J., Cherfils, J., & Jackson, C. L. (1999). Brefeldin A acts to stabilize an abortive ARF-GDP Sec7 domain protein complex: involvement of specific residues of the Sec7 domain. Molecular Cell, 3(3), 275–285.PubMedCrossRef
301.
Zurück zum Zitat Gao, Y., Dickerson, J. B., Guo, F., Zheng, J., & Zheng, Y. (2004). Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 101(20), 7618–7623.PubMedPubMedCentralCrossRef Gao, Y., Dickerson, J. B., Guo, F., Zheng, J., & Zheng, Y. (2004). Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 101(20), 7618–7623.PubMedPubMedCentralCrossRef
302.
Zurück zum Zitat Yoshida, T., Zhang, Y., Rivera Rosado, L., Chen, J., Khan, T., Moon, S. Y., et al. (2010). Blockade of Rac1 activity induces G1 cell cycle arrest or apoptosis in breast cancer cells through downregulation of cyclin D1, survivin, and X-linked inhibitor of apoptosis protein. Molecular Cancer Therapy, 9(6), 1657–1668.CrossRef Yoshida, T., Zhang, Y., Rivera Rosado, L., Chen, J., Khan, T., Moon, S. Y., et al. (2010). Blockade of Rac1 activity induces G1 cell cycle arrest or apoptosis in breast cancer cells through downregulation of cyclin D1, survivin, and X-linked inhibitor of apoptosis protein. Molecular Cancer Therapy, 9(6), 1657–1668.CrossRef
303.
Zurück zum Zitat Thomas, E. K., Cancelas, J. A., Chae, H. D., Cox, A. D., Keller, P. J., Perrotti, D., et al. (2007). Rac guanosine triphosphatases represent integrating molecular therapeutic targets for BCR-ABL-induced myeloproliferative disease. Cancer Cell, 12(5), 467–478.PubMedCrossRef Thomas, E. K., Cancelas, J. A., Chae, H. D., Cox, A. D., Keller, P. J., Perrotti, D., et al. (2007). Rac guanosine triphosphatases represent integrating molecular therapeutic targets for BCR-ABL-induced myeloproliferative disease. Cancer Cell, 12(5), 467–478.PubMedCrossRef
304.
Zurück zum Zitat Colomba, A., Giuriato, S., Dejean, E., Thornber, K., Delsol, G., Tronchere, H., et al. (2011). Inhibition of Rac controls NPM–ALK-dependent lymphoma development and dissemination. Blood Cancer Journal, 1(6), e21.PubMedPubMedCentralCrossRef Colomba, A., Giuriato, S., Dejean, E., Thornber, K., Delsol, G., Tronchere, H., et al. (2011). Inhibition of Rac controls NPM–ALK-dependent lymphoma development and dissemination. Blood Cancer Journal, 1(6), e21.PubMedPubMedCentralCrossRef
305.
Zurück zum Zitat Ji, J., Feng, X., Shi, M., Cai, Q., Yu, Y., Zhu, Z., et al. (2015). Rac1 is correlated with aggressiveness and a potential therapeutic target for gastric cancer. International Journal of Oncology, 46(3), 1343–1353.PubMedCrossRef Ji, J., Feng, X., Shi, M., Cai, Q., Yu, Y., Zhu, Z., et al. (2015). Rac1 is correlated with aggressiveness and a potential therapeutic target for gastric cancer. International Journal of Oncology, 46(3), 1343–1353.PubMedCrossRef
306.
Zurück zum Zitat Karpel-Massler, G., Westhoff, M. A., Zhou, S., Nonnenmacher, L., Dwucet, A., Kast, R. E., et al. (2013). Combined inhibition of HER1/EGFR and RAC1 results in asynergistic antiproliferative effect on established and primary cultured human glioblastoma cells. Molecular Cancer Therapy, 12(9), 1783–1795.CrossRef Karpel-Massler, G., Westhoff, M. A., Zhou, S., Nonnenmacher, L., Dwucet, A., Kast, R. E., et al. (2013). Combined inhibition of HER1/EGFR and RAC1 results in asynergistic antiproliferative effect on established and primary cultured human glioblastoma cells. Molecular Cancer Therapy, 12(9), 1783–1795.CrossRef
307.
Zurück zum Zitat Dutting, S., Heidenreich, J., Cherpokova, D., Amin, E., Zhang, S. C., Ahmadian, M. R., et al. (2015). Critical off-target effects of the widely used Rac1 inhibitors NSC23766 and EHT1864 in mouse platelets. Journal of Thrombosis and Haemostasis, 13(5), 827–838.PubMedCrossRef Dutting, S., Heidenreich, J., Cherpokova, D., Amin, E., Zhang, S. C., Ahmadian, M. R., et al. (2015). Critical off-target effects of the widely used Rac1 inhibitors NSC23766 and EHT1864 in mouse platelets. Journal of Thrombosis and Haemostasis, 13(5), 827–838.PubMedCrossRef
308.
Zurück zum Zitat Ferri, N., Corsini, A., Bottino, P., Clerici, F., & Contini, A. (2009). Virtual screening approach for the identification of new Rac1 inhibitors. Journal of Medicinal Chemistry, 52(14), 4087–4090.PubMedCrossRef Ferri, N., Corsini, A., Bottino, P., Clerici, F., & Contini, A. (2009). Virtual screening approach for the identification of new Rac1 inhibitors. Journal of Medicinal Chemistry, 52(14), 4087–4090.PubMedCrossRef
309.
Zurück zum Zitat Cardama, G. A., Comin, M., Hornos, L., Gonzalez, N., Defelipe, L., Turjanski, A., et al. (2014). Preclinical development of novel rac1-GEF signaling inhibitors using a rational design approach in highly aggressive breast cancer cell lines. Anticancer Agents in Medicinal Chemistry, 14(6), 840–851.CrossRef Cardama, G. A., Comin, M., Hornos, L., Gonzalez, N., Defelipe, L., Turjanski, A., et al. (2014). Preclinical development of novel rac1-GEF signaling inhibitors using a rational design approach in highly aggressive breast cancer cell lines. Anticancer Agents in Medicinal Chemistry, 14(6), 840–851.CrossRef
310.
Zurück zum Zitat Cardama, G. A., Gonzalez, N., Ciarlantini, M., Donadío, L. G., Comin, M. J., Alonso, D. F., et al. (2014). Proapoptotic and antiinvasive activity of Rac1 small molecule inhibitors on malignant glioma cells. Onco Targets and Therapies, 7, 2021–2033. Cardama, G. A., Gonzalez, N., Ciarlantini, M., Donadío, L. G., Comin, M. J., Alonso, D. F., et al. (2014). Proapoptotic and antiinvasive activity of Rac1 small molecule inhibitors on malignant glioma cells. Onco Targets and Therapies, 7, 2021–2033.
311.
Zurück zum Zitat Cabrera, M., Echeverria, E., Lenicov, F. R., Cardama, G. A., Gonzalez, N., Davio, C., et al. (2017). Pharmacological Rac1 inhibitors with selective apoptotic activity in human acute leukemic cell lines. Oncotarget, 8(58), 98509–98523.PubMedPubMedCentralCrossRef Cabrera, M., Echeverria, E., Lenicov, F. R., Cardama, G. A., Gonzalez, N., Davio, C., et al. (2017). Pharmacological Rac1 inhibitors with selective apoptotic activity in human acute leukemic cell lines. Oncotarget, 8(58), 98509–98523.PubMedPubMedCentralCrossRef
312.
Zurück zum Zitat Gonzalez, N., Cardama, G. A., Comin, M. J., Segatori, V. I., Pifano, M., Alonso, D. F., et al. (2017). Pharmacological inhibition of Rac1-PAK1 axis restores tamoxifen sensitivity in human resistant breast cancer cells. Cell Signaling, 30, 154–161.CrossRef Gonzalez, N., Cardama, G. A., Comin, M. J., Segatori, V. I., Pifano, M., Alonso, D. F., et al. (2017). Pharmacological inhibition of Rac1-PAK1 axis restores tamoxifen sensitivity in human resistant breast cancer cells. Cell Signaling, 30, 154–161.CrossRef
313.
Zurück zum Zitat Schmidt, S., Diriong, S., Mery, J., Fabbrizio, E., & Debant, A. (2002). Identification of the first Rho-GEF inhibitor, TRIPalpha, which targets the RhoA-specific GEF domain of Trio. FEBS Letters, 523(1-3), 35–42.PubMedCrossRef Schmidt, S., Diriong, S., Mery, J., Fabbrizio, E., & Debant, A. (2002). Identification of the first Rho-GEF inhibitor, TRIPalpha, which targets the RhoA-specific GEF domain of Trio. FEBS Letters, 523(1-3), 35–42.PubMedCrossRef
314.
Zurück zum Zitat Bouquier, N., Fromont, S., Zeeh, J. C., Auziol, C., Larrousse, P., Robert, B., et al. (2009). Aptamer-derived peptides as potent inhibitors of the oncogenic RhoGEF Tgat. Chemistry and Biology, 16(4), 391–400.PubMedCrossRef Bouquier, N., Fromont, S., Zeeh, J. C., Auziol, C., Larrousse, P., Robert, B., et al. (2009). Aptamer-derived peptides as potent inhibitors of the oncogenic RhoGEF Tgat. Chemistry and Biology, 16(4), 391–400.PubMedCrossRef
315.
Zurück zum Zitat Blangy, A., Bouquier, N., Gauthier-Rouvière, C., Schimdt, S., Debant, A., Leonetti, J. P., et al. (2006). Identification of TRIO-GEFD1 chemical inhibitors using the yeast exchange assay. Biology of the Cell, 98(9), 511–522.PubMedCrossRef Blangy, A., Bouquier, N., Gauthier-Rouvière, C., Schimdt, S., Debant, A., Leonetti, J. P., et al. (2006). Identification of TRIO-GEFD1 chemical inhibitors using the yeast exchange assay. Biology of the Cell, 98(9), 511–522.PubMedCrossRef
316.
Zurück zum Zitat Bouquier, N., Vignal, E., Charrasse, S., Weill, M., Schimdt, S., Leometti, J. P., et al. (2009). A cell active chemical GEF inhibitor selectively targets the Trio/RhoG/Rac1 signaling pathway. Chemistry and Biology, 16(6), 657–666.PubMedCrossRef Bouquier, N., Vignal, E., Charrasse, S., Weill, M., Schimdt, S., Leometti, J. P., et al. (2009). A cell active chemical GEF inhibitor selectively targets the Trio/RhoG/Rac1 signaling pathway. Chemistry and Biology, 16(6), 657–666.PubMedCrossRef
317.
Zurück zum Zitat Montalvo-Ortiz, B. L., Castillo-Pichardo, L., Hernandez, E., Humphries-Bicknaley, T., De La Mota-Peynado, A., Cubano, L. A., et al. (2012). Characterization of EHop-016, novel small molecule inhibitor of Rac GTPase. Journal of Biological Chemistry, 287(16), 13228–13238.CrossRef Montalvo-Ortiz, B. L., Castillo-Pichardo, L., Hernandez, E., Humphries-Bicknaley, T., De La Mota-Peynado, A., Cubano, L. A., et al. (2012). Characterization of EHop-016, novel small molecule inhibitor of Rac GTPase. Journal of Biological Chemistry, 287(16), 13228–13238.CrossRef
318.
Zurück zum Zitat Ruggiero, C., & Lalli, E. (2017). VAV2: a novel prognostic marker and a druggablet arget for adrenocortical carcinoma. Oncotarget, 8(51), 88257–88258.PubMedPubMedCentralCrossRef Ruggiero, C., & Lalli, E. (2017). VAV2: a novel prognostic marker and a druggablet arget for adrenocortical carcinoma. Oncotarget, 8(51), 88257–88258.PubMedPubMedCentralCrossRef
319.
Zurück zum Zitat Sbiera, S., Sbiera, I., Ruggiero, C., Doghman-Bouguerra, M., Korpershoek, E., de Krijger, R. R., et al. (2017). Assessment of VAV2 expression refines prognostic prediction in adrenocortical carcinoma. Journal of Clinical Endocrinology and Metabolism, 102(9), 3491–3498.PubMedCrossRef Sbiera, S., Sbiera, I., Ruggiero, C., Doghman-Bouguerra, M., Korpershoek, E., de Krijger, R. R., et al. (2017). Assessment of VAV2 expression refines prognostic prediction in adrenocortical carcinoma. Journal of Clinical Endocrinology and Metabolism, 102(9), 3491–3498.PubMedCrossRef
320.
321.
Zurück zum Zitat Castillo-Pichardo, L., Humphries-Bickley, T., De La Parra, C., Forestier-Roman, I., Martinez-Ferrer, M., Hernandez, E., et al. (2014). The Rac inhibitor EHop-016 inhibits mammary tumor growth and metastasis in a nude mouse model. Translational Oncology, 7(5), 546–555.PubMedPubMedCentralCrossRef Castillo-Pichardo, L., Humphries-Bickley, T., De La Parra, C., Forestier-Roman, I., Martinez-Ferrer, M., Hernandez, E., et al. (2014). The Rac inhibitor EHop-016 inhibits mammary tumor growth and metastasis in a nude mouse model. Translational Oncology, 7(5), 546–555.PubMedPubMedCentralCrossRef
322.
Zurück zum Zitat Humphries-Bickley, T., Castillo-Pichardo, L., Corujo-Carro, F., Duconge, J., Hernandez-O'Farrill, E., Vlaar, C., et al. (2015). Pharmacokinetics of Rac inhibitor EHop-016 in mice by ultra-performance liquid chromatography tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 981–982, 19–26.PubMedCrossRef Humphries-Bickley, T., Castillo-Pichardo, L., Corujo-Carro, F., Duconge, J., Hernandez-O'Farrill, E., Vlaar, C., et al. (2015). Pharmacokinetics of Rac inhibitor EHop-016 in mice by ultra-performance liquid chromatography tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 981–982, 19–26.PubMedCrossRef
323.
Zurück zum Zitat Humphries-Bickley, T., Castillo-Pichardo, L., Hernandez-O'Farrill, E., Borrero-Garcia, L. D., Forestier-Roman, I., Gerena, Y., et al. (2017). Characterization of a dual Rac/Cdc42 inhibitor MBQ-167 in metastatic cancer. Molecular Cancer Therapy, 16(5), 805–818.CrossRef Humphries-Bickley, T., Castillo-Pichardo, L., Hernandez-O'Farrill, E., Borrero-Garcia, L. D., Forestier-Roman, I., Gerena, Y., et al. (2017). Characterization of a dual Rac/Cdc42 inhibitor MBQ-167 in metastatic cancer. Molecular Cancer Therapy, 16(5), 805–818.CrossRef
324.
Zurück zum Zitat Zins, K., Lucas, T., Reichl, P., Abraham, D., & Aharinejad, S. (2013). A Rac1/Cdc42 GTPase-specific small molecule inhibitor suppresses growth of primary human prostate cancer xenografts and prolongs survival in mice. PLoS One, 8(9), e74924.PubMedPubMedCentralCrossRef Zins, K., Lucas, T., Reichl, P., Abraham, D., & Aharinejad, S. (2013). A Rac1/Cdc42 GTPase-specific small molecule inhibitor suppresses growth of primary human prostate cancer xenografts and prolongs survival in mice. PLoS One, 8(9), e74924.PubMedPubMedCentralCrossRef
325.
Zurück zum Zitat Zins, K., Gunawardhana, S., Lucas, T., Abraham, D., & Aharinejad, S. (2013). Targeting Cdc42 with the small molecule drug AZA197 suppresses primary colon cancer growth and prolongs survival in a preclinical mouse xenograft model by downregulation of PAK1 activity. Journal of Translational Medicine, 11, 295.PubMedPubMedCentralCrossRef Zins, K., Gunawardhana, S., Lucas, T., Abraham, D., & Aharinejad, S. (2013). Targeting Cdc42 with the small molecule drug AZA197 suppresses primary colon cancer growth and prolongs survival in a preclinical mouse xenograft model by downregulation of PAK1 activity. Journal of Translational Medicine, 11, 295.PubMedPubMedCentralCrossRef
326.
Zurück zum Zitat Peterson, J. R., Lebensohn, A. M., Pelish, H. E., & Kirschner, M. W. (2006). Biochemical suppression of small molecule inhibitors: a new strategy to identify inhibitor targets and signaling pathway components. Chemistry and Biology, 13(4), 443–452.PubMedCrossRef Peterson, J. R., Lebensohn, A. M., Pelish, H. E., & Kirschner, M. W. (2006). Biochemical suppression of small molecule inhibitors: a new strategy to identify inhibitor targets and signaling pathway components. Chemistry and Biology, 13(4), 443–452.PubMedCrossRef
327.
Zurück zum Zitat Sakamori, R., Yu, S., Zhang, X., Hoffman, A., Sun, J., Das, S., et al. (2014). CDC42 inhibition suppresses progression of incipient intestinal tumors. Cancer Research, 74(19), 5480–5492.PubMedPubMedCentralCrossRef Sakamori, R., Yu, S., Zhang, X., Hoffman, A., Sun, J., Das, S., et al. (2014). CDC42 inhibition suppresses progression of incipient intestinal tumors. Cancer Research, 74(19), 5480–5492.PubMedPubMedCentralCrossRef
328.
Zurück zum Zitat Friesland, A., Zhao, Y., Chen, Y. H., Wang, L., Zhou, H., & Lu, Q. (2013). Small molecule targeting Cdc42-intersectin interaction disrupts Golgi organization and suppresses cell motility. Proceedings of the National Academy of Sciences of the United States of America, 110(4), 1261–1266.PubMedPubMedCentralCrossRef Friesland, A., Zhao, Y., Chen, Y. H., Wang, L., Zhou, H., & Lu, Q. (2013). Small molecule targeting Cdc42-intersectin interaction disrupts Golgi organization and suppresses cell motility. Proceedings of the National Academy of Sciences of the United States of America, 110(4), 1261–1266.PubMedPubMedCentralCrossRef
329.
Zurück zum Zitat Shutes, A., Onesto, C., Picard, V., Leblond, B., Schweighoffer, F., & Der, C. J. (2007). Specificity and mechanism of action of EHT 1864, a novel small molecule inhibitor of Rac family small GTPases. Journal of Biological Chemistry, 282(49), 35666–35678.CrossRef Shutes, A., Onesto, C., Picard, V., Leblond, B., Schweighoffer, F., & Der, C. J. (2007). Specificity and mechanism of action of EHT 1864, a novel small molecule inhibitor of Rac family small GTPases. Journal of Biological Chemistry, 282(49), 35666–35678.CrossRef
330.
Zurück zum Zitat Rosenblatt, A. E., Garcia, M. I., Lyons, L., Xie, Y., Maiorino, C., Desire, L., et al. (2011). Inhibition of the RhoGTPase, Rac1, decreases estrogen receptor levels and is a novel therapeutic strategy in breast cancer. Endocrine Related Cancer, 18(2), 207–219.PubMedPubMedCentral Rosenblatt, A. E., Garcia, M. I., Lyons, L., Xie, Y., Maiorino, C., Desire, L., et al. (2011). Inhibition of the RhoGTPase, Rac1, decreases estrogen receptor levels and is a novel therapeutic strategy in breast cancer. Endocrine Related Cancer, 18(2), 207–219.PubMedPubMedCentral
331.
Zurück zum Zitat Castoria, G., D’Amato, L., Ciociola, A., Giovannelli, P., Giraldi, T., Sepe, L., et al. (2011). Androgen-induced cell migration: role of androgen receptor/filamin A association. PLoS One, 6(2), e17218.PubMedPubMedCentralCrossRef Castoria, G., D’Amato, L., Ciociola, A., Giovannelli, P., Giraldi, T., Sepe, L., et al. (2011). Androgen-induced cell migration: role of androgen receptor/filamin A association. PLoS One, 6(2), e17218.PubMedPubMedCentralCrossRef
332.
Zurück zum Zitat Molnar, J., Fazakas, C., Hasko, J., Sipos, O., Nagy, K., Nyul-Toth, A., et al. (2016). Transmigration characteristics of breast cancer and melanoma cells through the brain endothelium: role of rac and PI3K. Cell Adhesion and Migration, 10(3), 269–281.PubMedCrossRef Molnar, J., Fazakas, C., Hasko, J., Sipos, O., Nagy, K., Nyul-Toth, A., et al. (2016). Transmigration characteristics of breast cancer and melanoma cells through the brain endothelium: role of rac and PI3K. Cell Adhesion and Migration, 10(3), 269–281.PubMedCrossRef
333.
Zurück zum Zitat Katz, E., Sims, A. H., Sproul, D., Caldwell, H., Dixon, M. J., Meehan, R. R., et al. (2012). Targeting of Rac GTPases blocks the spread of intact human breast cancer. Oncotarget, 3(6), 608–619.PubMedPubMedCentralCrossRef Katz, E., Sims, A. H., Sproul, D., Caldwell, H., Dixon, M. J., Meehan, R. R., et al. (2012). Targeting of Rac GTPases blocks the spread of intact human breast cancer. Oncotarget, 3(6), 608–619.PubMedPubMedCentralCrossRef
334.
Zurück zum Zitat Hampsch, R. A., Shee, K., Bates, D., Lewis, L. D., Desire, L., Leblond, B., et al. (2017). Therapeutic sensitivity to Rac GTPase inhibition requires consequential suppression of mTORC1, AKT, and MEK signaling in breast cancer. Oncotarget, 8(13), 21806–21817.PubMedPubMedCentralCrossRef Hampsch, R. A., Shee, K., Bates, D., Lewis, L. D., Desire, L., Leblond, B., et al. (2017). Therapeutic sensitivity to Rac GTPase inhibition requires consequential suppression of mTORC1, AKT, and MEK signaling in breast cancer. Oncotarget, 8(13), 21806–21817.PubMedPubMedCentralCrossRef
335.
Zurück zum Zitat Arnst, J. L., Hein, A. L., Taylor, M. A., Palermo, N. Y., Contreras, I., Sonawane, Y. A., et al. (2017). Discovery and characterization of small molecule Rac1 inhibitors. Oncotarget, 8(21), 34586–34600.PubMedPubMedCentralCrossRef Arnst, J. L., Hein, A. L., Taylor, M. A., Palermo, N. Y., Contreras, I., Sonawane, Y. A., et al. (2017). Discovery and characterization of small molecule Rac1 inhibitors. Oncotarget, 8(21), 34586–34600.PubMedPubMedCentralCrossRef
336.
Zurück zum Zitat Surviladze, Z., Waller, A., Wu, Y., Romero, E., Edwards, B. S., Wandinger-Ness, A., et al. (2010). Identification of a small GTPase inhibitor using a highthroughput flow cytometry bead-based multiplex assay. Journal of Biomolecular Screening, 15(1), 10–20.PubMedCrossRef Surviladze, Z., Waller, A., Wu, Y., Romero, E., Edwards, B. S., Wandinger-Ness, A., et al. (2010). Identification of a small GTPase inhibitor using a highthroughput flow cytometry bead-based multiplex assay. Journal of Biomolecular Screening, 15(1), 10–20.PubMedCrossRef
337.
Zurück zum Zitat Hong, L., Kenney, S. R., Phillips, G. K., Simpson, D., Schroeder, C. E., Noth, J., et al. (2013). Characterization of a Cdc42 protein inhibitor and its use as a molecular probe. Journal of Biological Chemistry, 288(12), 8531–8543.CrossRef Hong, L., Kenney, S. R., Phillips, G. K., Simpson, D., Schroeder, C. E., Noth, J., et al. (2013). Characterization of a Cdc42 protein inhibitor and its use as a molecular probe. Journal of Biological Chemistry, 288(12), 8531–8543.CrossRef
338.
Zurück zum Zitat Surviladze, Z., Waller, A., Strouse, J. J., Bologa, C., Ursu, O., Salas, V., et al. (2010). A potent and selective inhibitor of Cdc42 GTPase. In Probe Reports from the NIH Molecular Libraries Program. Bethesda (MD): National Center for Biotechnology Information (US). Surviladze, Z., Waller, A., Strouse, J. J., Bologa, C., Ursu, O., Salas, V., et al. (2010). A potent and selective inhibitor of Cdc42 GTPase. In Probe Reports from the NIH Molecular Libraries Program. Bethesda (MD): National Center for Biotechnology Information (US).
339.
Zurück zum Zitat Oprea, T. I., Sklar, L. A., Agola, J. O., Guo, Y., Silberberg, M., Roxby, J., et al. (2015). Novel activities of select NSAID enantiomers against Rac1 and Cdc42 GTPases. PLoS One, 10(11), 1–32.CrossRef Oprea, T. I., Sklar, L. A., Agola, J. O., Guo, Y., Silberberg, M., Roxby, J., et al. (2015). Novel activities of select NSAID enantiomers against Rac1 and Cdc42 GTPases. PLoS One, 10(11), 1–32.CrossRef
340.
Zurück zum Zitat Carabaza, A., Cabré, F., Rotllan, E., Gomez, M., Gutierrez, M., Garcia, M. L., et al. (1996). Stereoselective inhibition of inducible cyclooxygenase by chiral nonsteroidal antiinflammatory drugs. Journal of Clinical Pharmacology, 36(6), 505–512.PubMedCrossRef Carabaza, A., Cabré, F., Rotllan, E., Gomez, M., Gutierrez, M., Garcia, M. L., et al. (1996). Stereoselective inhibition of inducible cyclooxygenase by chiral nonsteroidal antiinflammatory drugs. Journal of Clinical Pharmacology, 36(6), 505–512.PubMedCrossRef
341.
Zurück zum Zitat Guo, Y., Kenney, S. R., Muller, C. Y., Adams, S., Rutledge, T., Romero, E., et al. (2015). R-ketorolac targets Cdc42 and Rac1 and alters ovarian cancer cell behaviors critical for invasion and metastasis. Molecular Cancer Therapy, 14(10), 2215–2227.CrossRef Guo, Y., Kenney, S. R., Muller, C. Y., Adams, S., Rutledge, T., Romero, E., et al. (2015). R-ketorolac targets Cdc42 and Rac1 and alters ovarian cancer cell behaviors critical for invasion and metastasis. Molecular Cancer Therapy, 14(10), 2215–2227.CrossRef
342.
Zurück zum Zitat Peretti, A. S., Dominguez, D., Grimes, M. M., Hathaway, H. J., Prossnitz, E. R., Rivera, M. R., et al. (2017). The R-enantiomer of ketorolac delays mammary tumor development in mouse mammary tumor virus-polyoma middle T antigen (MMTV-PyMT) Mice. American Journal of Pathology, 188(2), 515–524.CrossRef Peretti, A. S., Dominguez, D., Grimes, M. M., Hathaway, H. J., Prossnitz, E. R., Rivera, M. R., et al. (2017). The R-enantiomer of ketorolac delays mammary tumor development in mouse mammary tumor virus-polyoma middle T antigen (MMTV-PyMT) Mice. American Journal of Pathology, 188(2), 515–524.CrossRef
343.
Zurück zum Zitat Guo, Y., Kenney, S. R., Cook, L., Adams, S. F., Rutledge, T., Romero, E., et al. (2015). A Novel Pharmacologic Activity of Ketorolac for Therapeutic Benefit in Ovarian Cancer Patients. Clinical Cancer Research, 21(22), 5064–5072.PubMedPubMedCentralCrossRef Guo, Y., Kenney, S. R., Cook, L., Adams, S. F., Rutledge, T., Romero, E., et al. (2015). A Novel Pharmacologic Activity of Ketorolac for Therapeutic Benefit in Ovarian Cancer Patients. Clinical Cancer Research, 21(22), 5064–5072.PubMedPubMedCentralCrossRef
344.
Zurück zum Zitat Murray, B. W., Guo, C., Piraino, J., Westwick, J. K., Zhang, C., Lamerdin, J., et al. (2010). Small-molecule p21-activated kinase inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 107(20), 9446–9451.PubMedPubMedCentralCrossRef Murray, B. W., Guo, C., Piraino, J., Westwick, J. K., Zhang, C., Lamerdin, J., et al. (2010). Small-molecule p21-activated kinase inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 107(20), 9446–9451.PubMedPubMedCentralCrossRef
345.
Zurück zum Zitat Chow, H. Y., Jubb, A. M., Koch, J. N., Jaffer, Z. M., Stepanova, D., Campbell, D. A., et al. (2012). p21-Activated kinase 1 is required for efficient tumor formation and progression in a Ras-mediated skin cancer model. Cancer, 72(22), 5966–5975. Chow, H. Y., Jubb, A. M., Koch, J. N., Jaffer, Z. M., Stepanova, D., Campbell, D. A., et al. (2012). p21-Activated kinase 1 is required for efficient tumor formation and progression in a Ras-mediated skin cancer model. Cancer, 72(22), 5966–5975.
346.
Zurück zum Zitat Pitts, T. M., Kulikowski, G. N., Tan, A. C., Murray, B. W., Aicaroli, J. J., Tentler, J. J., et al. (2013). Association of the epithelial-to-mesenchymal transition phenotype with responsiveness to the p21-activated kinase inhibitor, PF-3758309, in colon cancer models. Frontiers in Pharmacology, 4, 35.PubMedPubMedCentralCrossRef Pitts, T. M., Kulikowski, G. N., Tan, A. C., Murray, B. W., Aicaroli, J. J., Tentler, J. J., et al. (2013). Association of the epithelial-to-mesenchymal transition phenotype with responsiveness to the p21-activated kinase inhibitor, PF-3758309, in colon cancer models. Frontiers in Pharmacology, 4, 35.PubMedPubMedCentralCrossRef
347.
Zurück zum Zitat Ong, C. C., Jubb, A. M., Jakubiak, D., Zhou, W., Rudolph, J., Haverty, P. M., et al. (2013). P21-activated kinase 1 (PAK1) as a therapeutic target in BRAF wild-type melanoma. Journal of the National Cancer Institute, 105(9), 606–607.PubMedCrossRef Ong, C. C., Jubb, A. M., Jakubiak, D., Zhou, W., Rudolph, J., Haverty, P. M., et al. (2013). P21-activated kinase 1 (PAK1) as a therapeutic target in BRAF wild-type melanoma. Journal of the National Cancer Institute, 105(9), 606–607.PubMedCrossRef
348.
Zurück zum Zitat Bradshaw-Pierce, E. L., Pitts, T. M., Tan, A. C., McPhilips, K., West, M., Gustafson, D. L., et al. (2013). Tumor P-Glycoprotein Correlates with Efficacy of PF-3758309 in in vitro and in vivo Models of Colorectal Cancer. Frontiers in Pharmacology, 4, 22.PubMedPubMedCentralCrossRef Bradshaw-Pierce, E. L., Pitts, T. M., Tan, A. C., McPhilips, K., West, M., Gustafson, D. L., et al. (2013). Tumor P-Glycoprotein Correlates with Efficacy of PF-3758309 in in vitro and in vivo Models of Colorectal Cancer. Frontiers in Pharmacology, 4, 22.PubMedPubMedCentralCrossRef
349.
Zurück zum Zitat Licciulli, S., Maksimoska, J., Zhou, C., Troutman, S., Kota, S., Liu, Q., et al. (2013). FRAX597, a small molecule inhibitor of the p21-activated kinases, inhibits tumorigenesis of neurofibromatosis type 2 (NF2)-associated Schwannomas. Journal of Biological Chemistry, 288(40), 29105–29114.CrossRef Licciulli, S., Maksimoska, J., Zhou, C., Troutman, S., Kota, S., Liu, Q., et al. (2013). FRAX597, a small molecule inhibitor of the p21-activated kinases, inhibits tumorigenesis of neurofibromatosis type 2 (NF2)-associated Schwannomas. Journal of Biological Chemistry, 288(40), 29105–29114.CrossRef
350.
Zurück zum Zitat Maksimoska, J., Feng, L., Harms, K., Yi, C., Kissil, J., Marmorstein, R., et al. (2008). Targeting large kinase active site with rigid, bulky octahedral ruthenium complexes. Journal of the American Chemical Society, 130(47), 15764–15765.PubMedPubMedCentralCrossRef Maksimoska, J., Feng, L., Harms, K., Yi, C., Kissil, J., Marmorstein, R., et al. (2008). Targeting large kinase active site with rigid, bulky octahedral ruthenium complexes. Journal of the American Chemical Society, 130(47), 15764–15765.PubMedPubMedCentralCrossRef
351.
Zurück zum Zitat Deacon, S. W., Beeser, A., Fukui, J. A., Rennehfart, U. E. E., Myers, C., Chernoff, J., et al. (2008). An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chemistry and Biology, 15(4), 322–331.PubMedCrossRef Deacon, S. W., Beeser, A., Fukui, J. A., Rennehfart, U. E. E., Myers, C., Chernoff, J., et al. (2008). An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chemistry and Biology, 15(4), 322–331.PubMedCrossRef
352.
Zurück zum Zitat Viaud, J., & Peterson, J. R. (2009). An allosteric kinase inhibitor binds the p21-activated kinase autoregulatory domain covalently. Molecular Cancer Therapy, 8(9), 2559–2565.CrossRef Viaud, J., & Peterson, J. R. (2009). An allosteric kinase inhibitor binds the p21-activated kinase autoregulatory domain covalently. Molecular Cancer Therapy, 8(9), 2559–2565.CrossRef
353.
Zurück zum Zitat Pelish, H. E., Peterson, J. R., Salvarezza, S. B., Rodriguez-Boulan, E., Chen, J. L., Stamnes, M., et al. (2006). Secramine inhibits Cdc42-dependent functions in cells and Cdc42 activation in vitro. Nature Chemical Biology, 2(1), 39–46.PubMedCrossRef Pelish, H. E., Peterson, J. R., Salvarezza, S. B., Rodriguez-Boulan, E., Chen, J. L., Stamnes, M., et al. (2006). Secramine inhibits Cdc42-dependent functions in cells and Cdc42 activation in vitro. Nature Chemical Biology, 2(1), 39–46.PubMedCrossRef
354.
Zurück zum Zitat Lu, J., Chan, L., Fiji, H. D., Dahl, R., Kwon, O., & Tamanoi, F. (2009). In vivo antitumor effect of a novel inhibitor of protein geranylgeranyltransferase-I. Moleular Cancer Therapy, 8(5), 1218–1226.CrossRef Lu, J., Chan, L., Fiji, H. D., Dahl, R., Kwon, O., & Tamanoi, F. (2009). In vivo antitumor effect of a novel inhibitor of protein geranylgeranyltransferase-I. Moleular Cancer Therapy, 8(5), 1218–1226.CrossRef
355.
Zurück zum Zitat Zimonjic, D. B., Chan, L. N., Tripathi, V., Lu, J., Kwon, O., Popescu, N. C., et al. (2013). In vitro and in vivo effects of geranylgeranyltransferase I inhibitor P61A6 on non-small cell lung cancer cells. BMC Cancer, 13, 198.PubMedPubMedCentralCrossRef Zimonjic, D. B., Chan, L. N., Tripathi, V., Lu, J., Kwon, O., Popescu, N. C., et al. (2013). In vitro and in vivo effects of geranylgeranyltransferase I inhibitor P61A6 on non-small cell lung cancer cells. BMC Cancer, 13, 198.PubMedPubMedCentralCrossRef
356.
Zurück zum Zitat Kazi, A., Carie, A., Blaskovich, M. A., Bucher, C., Thai, V., Moulder, S., et al. (2009). Blockade of Protein Geranylgeranylation Inhibits Cdk2-dependent p27Kip1 Phosphorylation on Thr187 and Accumulates p27Kip1 in the Nucleus: Implications for Breast Cancer Therapy. Molecular and Cellular Biology, 29(8), 2254–2263.PubMedPubMedCentralCrossRef Kazi, A., Carie, A., Blaskovich, M. A., Bucher, C., Thai, V., Moulder, S., et al. (2009). Blockade of Protein Geranylgeranylation Inhibits Cdk2-dependent p27Kip1 Phosphorylation on Thr187 and Accumulates p27Kip1 in the Nucleus: Implications for Breast Cancer Therapy. Molecular and Cellular Biology, 29(8), 2254–2263.PubMedPubMedCentralCrossRef
357.
Zurück zum Zitat Denoyelle, C., Vasse, M., Korner, M., Mishal, Z., Ganne, F., Vannier, J. P., et al. (2001). Cerivastatin, an inhibitor of HMG-CoA reductase, inhibits the signaling pathways involved in the invasiveness and metastatic properties of highly ivasive breast cancer cell lines: an in vitro study. Carcinogenesis, 22(8), 1139–1148.PubMedCrossRef Denoyelle, C., Vasse, M., Korner, M., Mishal, Z., Ganne, F., Vannier, J. P., et al. (2001). Cerivastatin, an inhibitor of HMG-CoA reductase, inhibits the signaling pathways involved in the invasiveness and metastatic properties of highly ivasive breast cancer cell lines: an in vitro study. Carcinogenesis, 22(8), 1139–1148.PubMedCrossRef
358.
Zurück zum Zitat Collisson, E. A., Kleer, C., Wu, M., De, A., Gambhir, S. S., Merajver, S. D., & Kolodney, M. S. (2003). Atorvastatin prevents Rho C isoprenylation, invasion, and metastasis in human melanoma cells. Molecular Cancer Therapy, 2(10), 941–948. Collisson, E. A., Kleer, C., Wu, M., De, A., Gambhir, S. S., Merajver, S. D., & Kolodney, M. S. (2003). Atorvastatin prevents Rho C isoprenylation, invasion, and metastasis in human melanoma cells. Molecular Cancer Therapy, 2(10), 941–948.
359.
Zurück zum Zitat Nubel, T., Dippold, W., Kleinert, H., Kaina, B., & Fritz, G. (2004). Lovastatin inhibits Rho-regulated expression of E-selectin by TNFalpha and attenuates tumor cell adhesion. Faseb Journal, 18(1), 140–142.PubMedCrossRef Nubel, T., Dippold, W., Kleinert, H., Kaina, B., & Fritz, G. (2004). Lovastatin inhibits Rho-regulated expression of E-selectin by TNFalpha and attenuates tumor cell adhesion. Faseb Journal, 18(1), 140–142.PubMedCrossRef
360.
Zurück zum Zitat Turner, S. J., Zhuang, S., Zhang, T., Boss, G. R., & Pilz, R. B. (2008). Effects of lovastatin on Rho isoform expression, activity, and association with guanine nucleotide dissociation inhibitors. Biochemical Pharmacology, 75(2), 405–413.PubMedCrossRef Turner, S. J., Zhuang, S., Zhang, T., Boss, G. R., & Pilz, R. B. (2008). Effects of lovastatin on Rho isoform expression, activity, and association with guanine nucleotide dissociation inhibitors. Biochemical Pharmacology, 75(2), 405–413.PubMedCrossRef
361.
Zurück zum Zitat Riganti, C., Doublier, S., Costamagna, C., Aldieri, E., Pescarmona, G., Ghigo, D., & Bosia, A. (2008). Activation of nuclear factor-kappa B pathway by simvastatin and RhoA silencing increases doxorubicin cytotoxicity in human color cancer HT29 cells. Molecular Pharmacology, 74(2), 476–484.PubMedCrossRef Riganti, C., Doublier, S., Costamagna, C., Aldieri, E., Pescarmona, G., Ghigo, D., & Bosia, A. (2008). Activation of nuclear factor-kappa B pathway by simvastatin and RhoA silencing increases doxorubicin cytotoxicity in human color cancer HT29 cells. Molecular Pharmacology, 74(2), 476–484.PubMedCrossRef
362.
Zurück zum Zitat Njardarson, J. T., Gaul, C., Shan, D., Huang, X. Y., & Danishefsky, S. J. (2004). Discovery of potent cell migration inhibitors through total synthesis: lessons from structure-activity studies of (+)-migrastatin. Journal of the American Chemical Society, 126, 1038–1040.PubMedCrossRef Njardarson, J. T., Gaul, C., Shan, D., Huang, X. Y., & Danishefsky, S. J. (2004). Discovery of potent cell migration inhibitors through total synthesis: lessons from structure-activity studies of (+)-migrastatin. Journal of the American Chemical Society, 126, 1038–1040.PubMedCrossRef
363.
Zurück zum Zitat Gaul, C., Njardarson, J. T., Shan, D., Dorn, D. C., Wu, K. D., Tong, W. P., et al. (2004). The migrastatin family: discovery of potent cell migration inhibitors by chemical synthesis. Journal of the American Chemical Society, 126(36), 11326–11337.PubMedCrossRef Gaul, C., Njardarson, J. T., Shan, D., Dorn, D. C., Wu, K. D., Tong, W. P., et al. (2004). The migrastatin family: discovery of potent cell migration inhibitors by chemical synthesis. Journal of the American Chemical Society, 126(36), 11326–11337.PubMedCrossRef
364.
Zurück zum Zitat Shan, D., Chen, L., Njardarson, J. T., Gaul, C., Ma, X., Danishefsky, S. J., et al. (2005). Synthetic analogues of migrastatin that inhibit mammary tumor metastasis in mice. Proceedings of the National Academy of Sciences of the United States of America, 102(10), 3772–3776.PubMedPubMedCentralCrossRef Shan, D., Chen, L., Njardarson, J. T., Gaul, C., Ma, X., Danishefsky, S. J., et al. (2005). Synthetic analogues of migrastatin that inhibit mammary tumor metastasis in mice. Proceedings of the National Academy of Sciences of the United States of America, 102(10), 3772–3776.PubMedPubMedCentralCrossRef
365.
Zurück zum Zitat Chen, L., Yang, S., Jakoncic, J., Zhang, J., & Huang, X. Y. (2010). Migrastatin analogues target fascin to block tumour metastasis. Nature, 464(7291), 1062–1066.PubMedPubMedCentralCrossRef Chen, L., Yang, S., Jakoncic, J., Zhang, J., & Huang, X. Y. (2010). Migrastatin analogues target fascin to block tumour metastasis. Nature, 464(7291), 1062–1066.PubMedPubMedCentralCrossRef
366.
Zurück zum Zitat Yang, S., Huang, F.K., Huang, J., Chen, S., Jakoncic, J., Leo-Macias, A., et al. (2013). Molecular mechanism of fascin function in filopodial formation. Journal of Biological Chemistry, 288(1), 274‐284. Yang, S., Huang, F.K., Huang, J., Chen, S., Jakoncic, J., Leo-Macias, A., et al. (2013). Molecular mechanism of fascin function in filopodial formation. Journal of Biological Chemistry, 288(1), 274‐284.
367.
Zurück zum Zitat Huang, F. K., Han, S., Xing, B., Huang, J., Liu, B., Bordeleau, F., et al. (2015). Targeted inhibition of fascin function blocks tumour invasion and metastatic colonization. Nature Communications, 6, 7465.PubMedCrossRef Huang, F. K., Han, S., Xing, B., Huang, J., Liu, B., Bordeleau, F., et al. (2015). Targeted inhibition of fascin function blocks tumour invasion and metastatic colonization. Nature Communications, 6, 7465.PubMedCrossRef
368.
Zurück zum Zitat Han, S., Huang, J., Liu, B., Xing, B., Bordeleau, F., Reinhart-King, C. A., et al. (2016). Improving fascin inhibitors to block tumor cell migration and metastasis. Molecular Oncology, 10(7), 966–980.PubMedPubMedCentralCrossRef Han, S., Huang, J., Liu, B., Xing, B., Bordeleau, F., Reinhart-King, C. A., et al. (2016). Improving fascin inhibitors to block tumor cell migration and metastasis. Molecular Oncology, 10(7), 966–980.PubMedPubMedCentralCrossRef
369.
Zurück zum Zitat Peterson, J. R., Lokey, R. S., Mitchison, T. J., & Kirschner, M. W. (2001). A Chemical Inhibitor of N-WASP Reveals a New Mechanism for Targeting Protein Interactions. Proceedings of the National Academy of Sciences of the United States of America, 98(19), 10624–10629.PubMedPubMedCentralCrossRef Peterson, J. R., Lokey, R. S., Mitchison, T. J., & Kirschner, M. W. (2001). A Chemical Inhibitor of N-WASP Reveals a New Mechanism for Targeting Protein Interactions. Proceedings of the National Academy of Sciences of the United States of America, 98(19), 10624–10629.PubMedPubMedCentralCrossRef
370.
Zurück zum Zitat Peterson, J. R., Bickford, L. C., Morgan, D., Kim, A. S., Ouerfelli, O., Kirschner, M. W., et al. (2004). Chemical Inhibition of N-WASP by Stabilization of a Native Autoinhibited Conformation. Nature Structural and Molecular Biology, 11(8), 747–755.PubMedCrossRef Peterson, J. R., Bickford, L. C., Morgan, D., Kim, A. S., Ouerfelli, O., Kirschner, M. W., et al. (2004). Chemical Inhibition of N-WASP by Stabilization of a Native Autoinhibited Conformation. Nature Structural and Molecular Biology, 11(8), 747–755.PubMedCrossRef
371.
Zurück zum Zitat Nolen, B. J., Tomasevic, N., Russell, A., Pierce, D. W., Jia, Z., McCormick, C. D., et al. (2009). Characterization of two classes of small molecule inhibitors of Arp2/3 complex. Nature, 460(7258), 1031–1034.PubMedPubMedCentralCrossRef Nolen, B. J., Tomasevic, N., Russell, A., Pierce, D. W., Jia, Z., McCormick, C. D., et al. (2009). Characterization of two classes of small molecule inhibitors of Arp2/3 complex. Nature, 460(7258), 1031–1034.PubMedPubMedCentralCrossRef
372.
Zurück zum Zitat Hetrick, B., Han, M. S., Helgeson, L. A., & Nolen, B. J. (2013). Small Molecules CK-666 and CK-869 Inhibit Actin Related Protein 2/3 Complex by Blocking an Activating Conformational Change. Chemistry and Biology, 20(5), 701–712.PubMedCrossRef Hetrick, B., Han, M. S., Helgeson, L. A., & Nolen, B. J. (2013). Small Molecules CK-666 and CK-869 Inhibit Actin Related Protein 2/3 Complex by Blocking an Activating Conformational Change. Chemistry and Biology, 20(5), 701–712.PubMedCrossRef
373.
Zurück zum Zitat To, C., Shilton, B. H., & Di Guglielmo, G. M. (2010). Synthetic triterpenoids target the Arp2/3 complex and inhibit branched actin polymerization. Journal of Biological Chemistry, 285(36), 27944–27957.CrossRef To, C., Shilton, B. H., & Di Guglielmo, G. M. (2010). Synthetic triterpenoids target the Arp2/3 complex and inhibit branched actin polymerization. Journal of Biological Chemistry, 285(36), 27944–27957.CrossRef
374.
Zurück zum Zitat Choi, J., Lee, J. Y., Yoon, Y., Kim, C. H., Park, S., Kim, S. Y., et al. (2019). Pimozide Suppresses Cancer Cell Migration and Tumor Metastasis Through Binding to ARPC2, a Subunit of the Arp2/3 Complex. Cancer Science, 110(12), 3788–3801.PubMedPubMedCentralCrossRef Choi, J., Lee, J. Y., Yoon, Y., Kim, C. H., Park, S., Kim, S. Y., et al. (2019). Pimozide Suppresses Cancer Cell Migration and Tumor Metastasis Through Binding to ARPC2, a Subunit of the Arp2/3 Complex. Cancer Science, 110(12), 3788–3801.PubMedPubMedCentralCrossRef
375.
Zurück zum Zitat Yoon, Y. J., Han, Y. M., Choi, J., Lee, Y. J., Yun, J., Lee, S. K., et al. (2019). Benproperine, an ARPC2 Inhibitor, Suppresses Cancer Cell Migration and Tumor Metastasis. Biochemical Pharmacology, 163, 46–59.PubMedCrossRef Yoon, Y. J., Han, Y. M., Choi, J., Lee, Y. J., Yun, J., Lee, S. K., et al. (2019). Benproperine, an ARPC2 Inhibitor, Suppresses Cancer Cell Migration and Tumor Metastasis. Biochemical Pharmacology, 163, 46–59.PubMedCrossRef
376.
Zurück zum Zitat Rizvi, S. A., Neidt, E. M., Cui, J., Feiger, Z., Skau, G., & M.L., et al. (2009). Identification and Characterization of a Small Molecule Inhibitor of Formin-Mediated Actin Assembly. Chemistry and Biology, 16(11), 1158–1168.PubMedCrossRef Rizvi, S. A., Neidt, E. M., Cui, J., Feiger, Z., Skau, G., & M.L., et al. (2009). Identification and Characterization of a Small Molecule Inhibitor of Formin-Mediated Actin Assembly. Chemistry and Biology, 16(11), 1158–1168.PubMedCrossRef
377.
Zurück zum Zitat Yang, C., Kwon, S., Kim, S. J., Jeong, M., Park, J. Y., Park, D., et al. (2017). Identification of indothiazinone as a natural antiplatelet agent. Chemical Biology & Drug Design, 90(5), 873–882.CrossRef Yang, C., Kwon, S., Kim, S. J., Jeong, M., Park, J. Y., Park, D., et al. (2017). Identification of indothiazinone as a natural antiplatelet agent. Chemical Biology & Drug Design, 90(5), 873–882.CrossRef
378.
Zurück zum Zitat Le, X. F., Almeida, M. I., Mao, W., Spizzo, R., Rossi, S., Nicoloso, M. S., et al. (2012). Modulation of MicroRNA-194 and cell migration by HER2-targeting trastuzumab in breast cancer. PLoS One, 7(7), e41170.PubMedPubMedCentralCrossRef Le, X. F., Almeida, M. I., Mao, W., Spizzo, R., Rossi, S., Nicoloso, M. S., et al. (2012). Modulation of MicroRNA-194 and cell migration by HER2-targeting trastuzumab in breast cancer. PLoS One, 7(7), e41170.PubMedPubMedCentralCrossRef
379.
Zurück zum Zitat Vanamala, J., Radhakrishnan, S., Reddivari, L., Bhat, V. B., & Ptitsyn, A. (2011). Resveratrol suppresses human colon cancer cell proliferation and induces apoptosis via targeting the pentose phosphate and the talin-FAK signaling pathways -A proteomic approach. Proteome Science, 9(1), 49.PubMedPubMedCentralCrossRef Vanamala, J., Radhakrishnan, S., Reddivari, L., Bhat, V. B., & Ptitsyn, A. (2011). Resveratrol suppresses human colon cancer cell proliferation and induces apoptosis via targeting the pentose phosphate and the talin-FAK signaling pathways -A proteomic approach. Proteome Science, 9(1), 49.PubMedPubMedCentralCrossRef
380.
Zurück zum Zitat Jang, M., Cai, L., Udeani, G. O., Slowing, K. V., Thomas, C. F., Beecher, C. W., et al. (1997). Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 275(5297), 218–220.PubMedCrossRef Jang, M., Cai, L., Udeani, G. O., Slowing, K. V., Thomas, C. F., Beecher, C. W., et al. (1997). Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 275(5297), 218–220.PubMedCrossRef
381.
Zurück zum Zitat Shaw, Y. J., Yang, Y. T., Garrison, J. B., Kyprianou, N., & Chen, C. S. (2004). Pharmacological exploitation of the alpha1-adrenoreceptor antagonist doxazosin to develop a novel class of antitumor agents that block intracellular protein kinase B/Akt activation. Journal of Medicinal Chemistry, 47(18), 4453–4462.PubMedCrossRef Shaw, Y. J., Yang, Y. T., Garrison, J. B., Kyprianou, N., & Chen, C. S. (2004). Pharmacological exploitation of the alpha1-adrenoreceptor antagonist doxazosin to develop a novel class of antitumor agents that block intracellular protein kinase B/Akt activation. Journal of Medicinal Chemistry, 47(18), 4453–4462.PubMedCrossRef
382.
Zurück zum Zitat Garrison, J. B., Shaw, Y. J., Chen, C. S., & Kyprianou, N. (2007). Novel quinazoline-based compounds impair prostate tumorigenesis by targeting tumor vascularity. Cancer Research, 67(23), 11344–11352.PubMedPubMedCentralCrossRef Garrison, J. B., Shaw, Y. J., Chen, C. S., & Kyprianou, N. (2007). Novel quinazoline-based compounds impair prostate tumorigenesis by targeting tumor vascularity. Cancer Research, 67(23), 11344–11352.PubMedPubMedCentralCrossRef
383.
Zurück zum Zitat Sakamoto, S., Schwarze, S., & Kyprianou, N. (2011). Anoikis disruption of focal adhesion-Akt signaling impairs renal cell carcinoma. European Urology, 59(5), 734–744.PubMedPubMedCentralCrossRef Sakamoto, S., Schwarze, S., & Kyprianou, N. (2011). Anoikis disruption of focal adhesion-Akt signaling impairs renal cell carcinoma. European Urology, 59(5), 734–744.PubMedPubMedCentralCrossRef
384.
Zurück zum Zitat Hensley, P. J., Desiniotis, A., Wang, C., Stromberg, A., Chen, C. S., & Kyprianou, N. (2014). Novel pharmacologic targeting of tight junctions and focal adhesions in prostate cancer cells. PLoS One, 9(1), e86238.PubMedPubMedCentralCrossRef Hensley, P. J., Desiniotis, A., Wang, C., Stromberg, A., Chen, C. S., & Kyprianou, N. (2014). Novel pharmacologic targeting of tight junctions and focal adhesions in prostate cancer cells. PLoS One, 9(1), e86238.PubMedPubMedCentralCrossRef
385.
Zurück zum Zitat Nakashima, S., Matsuda, H., Kurume, A., Oda, Y., Nakamura, S., Yamashita, M., & Yoshikawa, M. (2010). Cucurbitacin E as a new inhibitor of cofilin phosphorylation in human leukemia U937 cells. Bioorganic and Medicinal Chemistry Letters, 20(9), 2994–2997.PubMedCrossRef Nakashima, S., Matsuda, H., Kurume, A., Oda, Y., Nakamura, S., Yamashita, M., & Yoshikawa, M. (2010). Cucurbitacin E as a new inhibitor of cofilin phosphorylation in human leukemia U937 cells. Bioorganic and Medicinal Chemistry Letters, 20(9), 2994–2997.PubMedCrossRef
386.
Zurück zum Zitat Sörensen, P. M., Iacob, R. E., Fritzsche, M., Engen, J. R., Brieher, W. M., Charras, G., et al. (2012). The natural product cucurbitacin E inhibits depolymerization of actin filaments. ACS Chemical Biology, 7(9), 1502–1508.PubMedPubMedCentralCrossRef Sörensen, P. M., Iacob, R. E., Fritzsche, M., Engen, J. R., Brieher, W. M., Charras, G., et al. (2012). The natural product cucurbitacin E inhibits depolymerization of actin filaments. ACS Chemical Biology, 7(9), 1502–1508.PubMedPubMedCentralCrossRef
387.
Zurück zum Zitat Zhang, T., Li, J., Dong, Y., Dong, Z., Li, L., Dai, F., et al. (2012). Cucurbitacin E inhibits breast tumor metastasis by suppressing cell migration and invasion. Breast Cancer Research Treatment, 135(2), 445–458.PubMedCrossRef Zhang, T., Li, J., Dong, Y., Dong, Z., Li, L., Dai, F., et al. (2012). Cucurbitacin E inhibits breast tumor metastasis by suppressing cell migration and invasion. Breast Cancer Research Treatment, 135(2), 445–458.PubMedCrossRef
388.
Zurück zum Zitat Huang, X., Sun, D., Pan, Q., Weiwei, W., Yi, C., Chen, X. X., et al. (2014). JG6, a Novel Marine-Derived Oligosaccharide, Suppresses Breast Cancer Metastasis via Binding to Cofilin. Oncotarget, 5(11), 3568–3578.PubMedPubMedCentralCrossRef Huang, X., Sun, D., Pan, Q., Weiwei, W., Yi, C., Chen, X. X., et al. (2014). JG6, a Novel Marine-Derived Oligosaccharide, Suppresses Breast Cancer Metastasis via Binding to Cofilin. Oncotarget, 5(11), 3568–3578.PubMedPubMedCentralCrossRef
389.
Zurück zum Zitat Su, J., Zhou, Y., Pan, Z., Shi, L., Yang, J., Liao, A., et al. (2017). Downregulation of LIMK1-ADF/cofilin by DADS Inhibits the Migration and Invasion of Colon Cancer. Science Reports, 7, 45624.CrossRef Su, J., Zhou, Y., Pan, Z., Shi, L., Yang, J., Liao, A., et al. (2017). Downregulation of LIMK1-ADF/cofilin by DADS Inhibits the Migration and Invasion of Colon Cancer. Science Reports, 7, 45624.CrossRef
390.
Zurück zum Zitat Cooper, J. A. (1987). Effects of cytochalasin and phalloidin on actin. J. Effects of cytochalasin and phalloidin on actin. Journal of Cell Biology, 105(4), 1473–1478. Cooper, J. A. (1987). Effects of cytochalasin and phalloidin on actin. J. Effects of cytochalasin and phalloidin on actin. Journal of Cell Biology, 105(4), 1473–1478.
391.
Zurück zum Zitat Spector, I., Braet, F., Shochet, N. R., & Bubb, M. R. (1999). New anti-actin drugs in the study of the organization and function of the actin cytoskeleton. Microscopy Research and Technique, 47(1), 18–37.PubMedCrossRef Spector, I., Braet, F., Shochet, N. R., & Bubb, M. R. (1999). New anti-actin drugs in the study of the organization and function of the actin cytoskeleton. Microscopy Research and Technique, 47(1), 18–37.PubMedCrossRef
392.
Zurück zum Zitat Wulf, E., Deboben, A., Bautz, F. A., Faulstich, H., & Wieland, T. (1979). Fluorescent phallotoxin, a tool for the visualization of cellular actin. Proceedings of the National Academy of Sciences of the United States of America, 76(9), 4498–4502.PubMedPubMedCentralCrossRef Wulf, E., Deboben, A., Bautz, F. A., Faulstich, H., & Wieland, T. (1979). Fluorescent phallotoxin, a tool for the visualization of cellular actin. Proceedings of the National Academy of Sciences of the United States of America, 76(9), 4498–4502.PubMedPubMedCentralCrossRef
393.
Zurück zum Zitat Crews, P., Manes, L. V., & Boehler, M. (1986). Jasplakinolide, a cyclodepsipeptide from the marine sponge, Jaspis sp. Tetrahedron Letters, 27, 2797–2800.CrossRef Crews, P., Manes, L. V., & Boehler, M. (1986). Jasplakinolide, a cyclodepsipeptide from the marine sponge, Jaspis sp. Tetrahedron Letters, 27, 2797–2800.CrossRef
394.
Zurück zum Zitat Zabriskie, T. M., Klocke, J. A., Ireland, C. M., Marcus, A. H., Molinski, T. F., & Faulkner, D. J. (1986). Jaspamide, a modified peptide from a Jaspis sponge, with insecticidal and antifungal activity. Journal of American Chemical Society, 108(11), 3123–3124.CrossRef Zabriskie, T. M., Klocke, J. A., Ireland, C. M., Marcus, A. H., Molinski, T. F., & Faulkner, D. J. (1986). Jaspamide, a modified peptide from a Jaspis sponge, with insecticidal and antifungal activity. Journal of American Chemical Society, 108(11), 3123–3124.CrossRef
395.
Zurück zum Zitat Bubb, M. R., Senderowicz, A. M., Sausville, E. A., Duncan, K. L., & Korn, E. D. (1994). Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F actin. Journal of Biological Chemistry, 269(21), 14869–14871.CrossRef Bubb, M. R., Senderowicz, A. M., Sausville, E. A., Duncan, K. L., & Korn, E. D. (1994). Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F actin. Journal of Biological Chemistry, 269(21), 14869–14871.CrossRef
396.
Zurück zum Zitat McGrath, J. L., Tardy, Y., Dewey Jr., C. F., Meister, J. J., & Hartwig, J. H. (1998). Simultaneous measurements of actin filament turnover, filament fraction, and monomer diffusion in endothelial cells. Biophysical Journal, 75(4), 2070–2078.PubMedPubMedCentralCrossRef McGrath, J. L., Tardy, Y., Dewey Jr., C. F., Meister, J. J., & Hartwig, J. H. (1998). Simultaneous measurements of actin filament turnover, filament fraction, and monomer diffusion in endothelial cells. Biophysical Journal, 75(4), 2070–2078.PubMedPubMedCentralCrossRef
397.
Zurück zum Zitat Cramer, L. P. (1999). Role of actin-filament disassembly in lamellipodium protrusion in motile cells revealed using the drug jasplakinolide. Current Biology, 9(19), 1095–1105.PubMedCrossRef Cramer, L. P. (1999). Role of actin-filament disassembly in lamellipodium protrusion in motile cells revealed using the drug jasplakinolide. Current Biology, 9(19), 1095–1105.PubMedCrossRef
398.
Zurück zum Zitat Bubb, M. R., Spector, I., Beyer, B. B., & Fosen, K. M. (2000). Effects of jasplakinolide on the Kinetics of actin polymerization. An explanation for certain in vivo observations. Journal of Biological Chemistry, 275(7), 5163–5170.CrossRef Bubb, M. R., Spector, I., Beyer, B. B., & Fosen, K. M. (2000). Effects of jasplakinolide on the Kinetics of actin polymerization. An explanation for certain in vivo observations. Journal of Biological Chemistry, 275(7), 5163–5170.CrossRef
399.
Zurück zum Zitat Takeuchi, H., Ara, G., Sausville, E. A., & Teicher, B. (1998). Jasplakinolide: interaction with radiation and hyperthermia in human prostate carcinoma and Lewis lung carcinoma. Cancer Chemotherapy and Pharmacology, 42(6), 491–496.PubMedCrossRef Takeuchi, H., Ara, G., Sausville, E. A., & Teicher, B. (1998). Jasplakinolide: interaction with radiation and hyperthermia in human prostate carcinoma and Lewis lung carcinoma. Cancer Chemotherapy and Pharmacology, 42(6), 491–496.PubMedCrossRef
400.
Zurück zum Zitat Kunze, B., Jansen, R., Sasse, F., Höfle, G., & Reichenbach, H. (1995). Chondramides A approximately D, new antifungal and cytostatic depsipeptides from Chondromyces crocatus (myxobacteria). Production, physico-chemical and biological properties. The Journal of Antibiotics, 48(11), 1262–1266.PubMedCrossRef Kunze, B., Jansen, R., Sasse, F., Höfle, G., & Reichenbach, H. (1995). Chondramides A approximately D, new antifungal and cytostatic depsipeptides from Chondromyces crocatus (myxobacteria). Production, physico-chemical and biological properties. The Journal of Antibiotics, 48(11), 1262–1266.PubMedCrossRef
401.
Zurück zum Zitat Menhofer, M. H., Kubisch, R., Schreiner, L., Zorn, M., Foerster, F., Mueller, R., et al. (2014). The actin targeting compound Chondramide inhibits breast cancer metastasis via reduction of cellular contractility. PLoS One, 9(11), e112542.PubMedPubMedCentralCrossRef Menhofer, M. H., Kubisch, R., Schreiner, L., Zorn, M., Foerster, F., Mueller, R., et al. (2014). The actin targeting compound Chondramide inhibits breast cancer metastasis via reduction of cellular contractility. PLoS One, 9(11), e112542.PubMedPubMedCentralCrossRef
402.
Zurück zum Zitat Bai, R., Verdier-Pinard, P., Gangwar, S., Stessman, C. C., Mcclure, K. J., Sausville, E. A., et al. (2001). Dolastatin 11, a marine depsipeptide, arrests cells at cytokinesis and induces hyperpolymerization of purified actin. Molecular Pharmacology, 59(3), 462–469.PubMedCrossRef Bai, R., Verdier-Pinard, P., Gangwar, S., Stessman, C. C., Mcclure, K. J., Sausville, E. A., et al. (2001). Dolastatin 11, a marine depsipeptide, arrests cells at cytokinesis and induces hyperpolymerization of purified actin. Molecular Pharmacology, 59(3), 462–469.PubMedCrossRef
403.
Zurück zum Zitat Marquez, B. L., Watts, K. S., Yokochi, A., Roberts, M. A., Verdier-Pinard, P., Jimenez, J. I., et al. (2002). Structure and absolute stereochemistry of hectochlorin, a potent stimulator of actin assembly. Journal of Natural Products, 65(6), 866–871.PubMedCrossRef Marquez, B. L., Watts, K. S., Yokochi, A., Roberts, M. A., Verdier-Pinard, P., Jimenez, J. I., et al. (2002). Structure and absolute stereochemistry of hectochlorin, a potent stimulator of actin assembly. Journal of Natural Products, 65(6), 866–871.PubMedCrossRef
404.
Zurück zum Zitat Bai, R., Covell, D. G., Liu, C., Ghosh, A. K., & Hamel, E. (2002). (-)-Doliculide, a new macrocyclic depsipeptide enhancer of actin assembly. Journal of Biological Chemistry, 277(35), 32165–32171.CrossRef Bai, R., Covell, D. G., Liu, C., Ghosh, A. K., & Hamel, E. (2002). (-)-Doliculide, a new macrocyclic depsipeptide enhancer of actin assembly. Journal of Biological Chemistry, 277(35), 32165–32171.CrossRef
405.
Zurück zum Zitat Goddette, D. W., & Frieden, C. (1985). The binding of cytochalasin D to monomeric actin. Biochemical and Biophysical Research Communications, 128(3), 1087–1092.PubMedCrossRef Goddette, D. W., & Frieden, C. (1985). The binding of cytochalasin D to monomeric actin. Biochemical and Biophysical Research Communications, 128(3), 1087–1092.PubMedCrossRef
406.
Zurück zum Zitat Goddette, D. W., & Frieden, C. (1986). The kinetics of cytochalasin D binding to monomeric actin. Journal of Biological Chemistry, 261(34), 15970–15973.CrossRef Goddette, D. W., & Frieden, C. (1986). The kinetics of cytochalasin D binding to monomeric actin. Journal of Biological Chemistry, 261(34), 15970–15973.CrossRef
407.
Zurück zum Zitat Goddette, D. W., & Frieden, C. (1986). Actin polymerization. The mechanism of action of cytochalasin D. Journal of Biological Chemistry, 261(34), 15974–15980.CrossRef Goddette, D. W., & Frieden, C. (1986). Actin polymerization. The mechanism of action of cytochalasin D. Journal of Biological Chemistry, 261(34), 15974–15980.CrossRef
408.
Zurück zum Zitat Brenner, S. L., & Korn, E. D. (1980). The effects of cytochalasins on actin polymerization and actin ATPase provide insights into the mechanism of polymerization. Journal of Biological Chemistry, 255(3), 841–844.CrossRef Brenner, S. L., & Korn, E. D. (1980). The effects of cytochalasins on actin polymerization and actin ATPase provide insights into the mechanism of polymerization. Journal of Biological Chemistry, 255(3), 841–844.CrossRef
409.
Zurück zum Zitat Brenner, S. L., & Korn, E. D. (1981). Stimulation of actin ATPase activity by cytochalasins provides evidence for a new species of monomeric actin. Journal of Biological Chemistry, 256(16), 8663–8670.CrossRef Brenner, S. L., & Korn, E. D. (1981). Stimulation of actin ATPase activity by cytochalasins provides evidence for a new species of monomeric actin. Journal of Biological Chemistry, 256(16), 8663–8670.CrossRef
410.
Zurück zum Zitat Dancker, P., & Low, I. (1979). Complex influence of cytochalasin B on actin polymerization. Naturforschung Section C Journal of Biosciences, 34(7-8), 555–557.CrossRef Dancker, P., & Low, I. (1979). Complex influence of cytochalasin B on actin polymerization. Naturforschung Section C Journal of Biosciences, 34(7-8), 555–557.CrossRef
411.
Zurück zum Zitat Hartwig, J. H., & Stossel, T. P. (1979). Cytochalasin B and the structure of actin gels. Journal of Molecular Biology, 134(3), 539–553.PubMedCrossRef Hartwig, J. H., & Stossel, T. P. (1979). Cytochalasin B and the structure of actin gels. Journal of Molecular Biology, 134(3), 539–553.PubMedCrossRef
412.
Zurück zum Zitat Murray, D., Horgan, G., Macmathuna, P., & Doran, P. (2008). NET1-mediated RhoA activation facilitates lysophosphatidic acid-induced cell migration and invasion in gastric cancer. British Journal of Cancer, 99(8), 1322–1329.PubMedPubMedCentralCrossRef Murray, D., Horgan, G., Macmathuna, P., & Doran, P. (2008). NET1-mediated RhoA activation facilitates lysophosphatidic acid-induced cell migration and invasion in gastric cancer. British Journal of Cancer, 99(8), 1322–1329.PubMedPubMedCentralCrossRef
413.
Zurück zum Zitat Sun, W., Lim, C. T., & Kurniawan, N. A. (2014). Mechanistic adaptability of cancer cells strongly affects anti-migratory drug efficacy. Journal of the Royal Society Interface, 11(99), 20140638.PubMedCentralCrossRef Sun, W., Lim, C. T., & Kurniawan, N. A. (2014). Mechanistic adaptability of cancer cells strongly affects anti-migratory drug efficacy. Journal of the Royal Society Interface, 11(99), 20140638.PubMedCentralCrossRef
414.
Zurück zum Zitat Huang, F. Y., Mei, W. L., Tan, G. H., Dai, H. F., Li, Y. N., Guo, J. L., et al. (2013). Cytochalasin D promotes pulmonary metastasis of B16 melanoma through expression of tissue factor. Oncology Reports, 30(1), 478–484.PubMedCrossRef Huang, F. Y., Mei, W. L., Tan, G. H., Dai, H. F., Li, Y. N., Guo, J. L., et al. (2013). Cytochalasin D promotes pulmonary metastasis of B16 melanoma through expression of tissue factor. Oncology Reports, 30(1), 478–484.PubMedCrossRef
415.
Zurück zum Zitat Singh, J., & Hood, R. D. (1987). Effects of protein deficiency on the teratogenicity of cytochalasins in mice. Teratology, 35(1), 87–93.PubMedCrossRef Singh, J., & Hood, R. D. (1987). Effects of protein deficiency on the teratogenicity of cytochalasins in mice. Teratology, 35(1), 87–93.PubMedCrossRef
416.
Zurück zum Zitat Hagmar, B., & Ryd, W. (1977). Tumor cell locomotiona factor in metastasis formation? Influence of cytochalasin B on a tumor dissemination pattern. International Journal of Cancer, 19(49), 576–580.PubMedCrossRef Hagmar, B., & Ryd, W. (1977). Tumor cell locomotiona factor in metastasis formation? Influence of cytochalasin B on a tumor dissemination pattern. International Journal of Cancer, 19(49), 576–580.PubMedCrossRef
417.
Zurück zum Zitat Bousquet, P. F., Paulsen, L. A., Fondy, C., Lipski, K. M., Loucy, K. J., & Fondy, T. P. (1990). Effects of cytochalasin B in culture and in vivo on murine Madison 109 lung carcinoma and on B16 melanoma. Cancer Research, 50(5), 1431–1439.PubMed Bousquet, P. F., Paulsen, L. A., Fondy, C., Lipski, K. M., Loucy, K. J., & Fondy, T. P. (1990). Effects of cytochalasin B in culture and in vivo on murine Madison 109 lung carcinoma and on B16 melanoma. Cancer Research, 50(5), 1431–1439.PubMed
418.
Zurück zum Zitat Hart, I. R., Raz, A., & Fidler, I. J. (1980). Effect of cytoskeleton-disrupting agents on the metastatic behavior of melanoma cells. Journal of the National Cancer Institute, 64(4), 891–900.PubMed Hart, I. R., Raz, A., & Fidler, I. J. (1980). Effect of cytoskeleton-disrupting agents on the metastatic behavior of melanoma cells. Journal of the National Cancer Institute, 64(4), 891–900.PubMed
419.
Zurück zum Zitat Bogyo, D., Fondy, S. R., Finster, L., Fondy, C., Patil, S., & Fondy, T. P. (1991). Cytochalasin-B-induced immunosuppression of murine allogeneic anti-tumor response and the effect of recombinant human interleukin-2. Cancer Immunology and Immunotherapy, 32(6), 400–405.PubMedCrossRef Bogyo, D., Fondy, S. R., Finster, L., Fondy, C., Patil, S., & Fondy, T. P. (1991). Cytochalasin-B-induced immunosuppression of murine allogeneic anti-tumor response and the effect of recombinant human interleukin-2. Cancer Immunology and Immunotherapy, 32(6), 400–405.PubMedCrossRef
420.
Zurück zum Zitat Yarmola, E. G., Somasundaram, T., Boring, T. A., Spector, I., & Bubb, M. R. (2000). Actin-latrunculin A structure and function. Differential modulation of actin-binding protein function by latrunculin A. Journal of Biological Chemistry, 275(36), 28120–28127.CrossRef Yarmola, E. G., Somasundaram, T., Boring, T. A., Spector, I., & Bubb, M. R. (2000). Actin-latrunculin A structure and function. Differential modulation of actin-binding protein function by latrunculin A. Journal of Biological Chemistry, 275(36), 28120–28127.CrossRef
421.
Zurück zum Zitat Coué, M., Brenner, S. L., Spector, I., & Korn, E. D. (1987). Inhibition of actin polymerization by latrunculin A. FEBS Letters, 213(2), 316–318.PubMedCrossRef Coué, M., Brenner, S. L., Spector, I., & Korn, E. D. (1987). Inhibition of actin polymerization by latrunculin A. FEBS Letters, 213(2), 316–318.PubMedCrossRef
422.
Zurück zum Zitat Ayscough, K. R., Stryker, J., Pokala, N., Sanders, M., Crews, P., & Drubin, D. G. (1997). High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. Journal of Cell Biology, 137(2), 399–416.CrossRef Ayscough, K. R., Stryker, J., Pokala, N., Sanders, M., Crews, P., & Drubin, D. G. (1997). High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. Journal of Cell Biology, 137(2), 399–416.CrossRef
423.
Zurück zum Zitat Spector, I., Shochet, N. R., Kashman, Y., & Groweiss, A. (1983). Latrunculins: novel marine Toxins that disrupt microfilament organization in cultured cells. Science, 219(4584), 493–495.PubMedCrossRef Spector, I., Shochet, N. R., Kashman, Y., & Groweiss, A. (1983). Latrunculins: novel marine Toxins that disrupt microfilament organization in cultured cells. Science, 219(4584), 493–495.PubMedCrossRef
424.
Zurück zum Zitat Spector, I., Shochet, N. R., Blasberger, D., & Kashman, Y. (1989). Latrunculins - novel marine macrolides that disrupt microfilament organization and affect cell growth: I. Comparison With cytochalasin D. Cell Motility and the Cytoskeleton, 13(3), 127–144.PubMedCrossRef Spector, I., Shochet, N. R., Blasberger, D., & Kashman, Y. (1989). Latrunculins - novel marine macrolides that disrupt microfilament organization and affect cell growth: I. Comparison With cytochalasin D. Cell Motility and the Cytoskeleton, 13(3), 127–144.PubMedCrossRef
425.
Zurück zum Zitat Ayscough, K. (1998). Use of latrunculin-A, an actin monomer binding drug. Methods in Enzymology, 298, 18–25.PubMedCrossRef Ayscough, K. (1998). Use of latrunculin-A, an actin monomer binding drug. Methods in Enzymology, 298, 18–25.PubMedCrossRef
426.
Zurück zum Zitat Morton, W. M., Ayscough, K. R., & McLaughlin, P. J. (2000). Latrunculin alters the actin-monomer subunit interface to prevent polymerization. Nature Cell Biology, 2(6), 376–378.PubMedCrossRef Morton, W. M., Ayscough, K. R., & McLaughlin, P. J. (2000). Latrunculin alters the actin-monomer subunit interface to prevent polymerization. Nature Cell Biology, 2(6), 376–378.PubMedCrossRef
427.
Zurück zum Zitat Nummela, P., Yin, M., Kielosto, M., Leaner, V., Birrer, M. J., & Hölttä, E. (2006). Thymosin beta4 is a determinant of the transformed phenotype and invasiveness of S-adenosylmethionine decarboxylase-transfected fibroblasts. Cancer Research, 66(2), 701–712.PubMedCrossRef Nummela, P., Yin, M., Kielosto, M., Leaner, V., Birrer, M. J., & Hölttä, E. (2006). Thymosin beta4 is a determinant of the transformed phenotype and invasiveness of S-adenosylmethionine decarboxylase-transfected fibroblasts. Cancer Research, 66(2), 701–712.PubMedCrossRef
428.
Zurück zum Zitat Tolde, O., Rösel, D., Mierke, C. T., Panková, D., Folk, P., Vesely, P., et al. (2010). Neoplastic progression of the human breast cancer cell line G3S1 is associated with elevation of cytoskeletal dynamics and upregulation of MT1-MMP. International Journal of Oncology, 36(4), 833–839.PubMed Tolde, O., Rösel, D., Mierke, C. T., Panková, D., Folk, P., Vesely, P., et al. (2010). Neoplastic progression of the human breast cancer cell line G3S1 is associated with elevation of cytoskeletal dynamics and upregulation of MT1-MMP. International Journal of Oncology, 36(4), 833–839.PubMed
429.
Zurück zum Zitat Amornphimoltham, P., Rechache, K., Thompson, J., Masedunskas, A., Leelahavanichkul, K., Patel, V., et al. (2013). Rab25 regulates invasion and metastasis in head and neck cancer. Clinical Cancer Research, 19(6), 1375–1388.PubMedPubMedCentralCrossRef Amornphimoltham, P., Rechache, K., Thompson, J., Masedunskas, A., Leelahavanichkul, K., Patel, V., et al. (2013). Rab25 regulates invasion and metastasis in head and neck cancer. Clinical Cancer Research, 19(6), 1375–1388.PubMedPubMedCentralCrossRef
430.
Zurück zum Zitat Konishi, H., Kikuchi, S., Ochiai, T., Ikoma, H., Kubota, T., Ichikawa, D., et al. (2009). Latrunculin a has a strong anticancer effect in a peritoneal dissemination model of human gastric cancer in mice. Anticancer Research, 29(6), 2091–2097.PubMed Konishi, H., Kikuchi, S., Ochiai, T., Ikoma, H., Kubota, T., Ichikawa, D., et al. (2009). Latrunculin a has a strong anticancer effect in a peritoneal dissemination model of human gastric cancer in mice. Anticancer Research, 29(6), 2091–2097.PubMed
431.
Zurück zum Zitat Khanfar, M. A., Youssef, D. T., & El Sayed, K. A. (2010). Semisynthetic latrunculin derivatives as inhibitors of metastatic breast cancer: biological evaluations, preliminary structure-activity relationship and molecular modeling studies. ChemMedChem, 5(2), 274–285.PubMedPubMedCentralCrossRef Khanfar, M. A., Youssef, D. T., & El Sayed, K. A. (2010). Semisynthetic latrunculin derivatives as inhibitors of metastatic breast cancer: biological evaluations, preliminary structure-activity relationship and molecular modeling studies. ChemMedChem, 5(2), 274–285.PubMedPubMedCentralCrossRef
432.
Zurück zum Zitat Sayed, K. A., Khanfar, M. A., Shallal, H. M., Muralidharan, A., Awate, B., Youssef, D. T. A., et al. (2008). Latrunculin A and its C-17-O-carbamates inhibit prostate tumor cell invasion and HIF-1 activation in breast tumor cells. Journal of Natural Products, 71(3), 396–402.PubMedPubMedCentralCrossRef Sayed, K. A., Khanfar, M. A., Shallal, H. M., Muralidharan, A., Awate, B., Youssef, D. T. A., et al. (2008). Latrunculin A and its C-17-O-carbamates inhibit prostate tumor cell invasion and HIF-1 activation in breast tumor cells. Journal of Natural Products, 71(3), 396–402.PubMedPubMedCentralCrossRef
433.
Zurück zum Zitat Kitigawa, I., Kobayashi, M., Katori, T., & Yamashita, M. (1990). Absolute stereostructure of swinholide A, a potent cytotoxic macrolide, from the Okinawan marine sponge Theonella swinhoei. Journal of the American Chemical Society, 112(9), 3710–3712.CrossRef Kitigawa, I., Kobayashi, M., Katori, T., & Yamashita, M. (1990). Absolute stereostructure of swinholide A, a potent cytotoxic macrolide, from the Okinawan marine sponge Theonella swinhoei. Journal of the American Chemical Society, 112(9), 3710–3712.CrossRef
434.
Zurück zum Zitat Bubb, M. R., Spector, I., Bershadsky, A. D., & Korn, E. D. (1995). Swinholide A is a microfilament disrupting marine toxin that stabilizes actin dimers and severs actin filaments. Journal of Biological Chemistry, 270(8), 3463–3466.CrossRef Bubb, M. R., Spector, I., Bershadsky, A. D., & Korn, E. D. (1995). Swinholide A is a microfilament disrupting marine toxin that stabilizes actin dimers and severs actin filaments. Journal of Biological Chemistry, 270(8), 3463–3466.CrossRef
435.
Zurück zum Zitat Saito, S. Y., Watabe, S., Ozaki, H., Kobayashi, M., Suzuki, T., Kobayashi, H., et al. (1998). Actin depolymerising effect of dimeric macrolides, bistheonellide A and swinholide A. Journal of Biochemistry, 123(4), 571–578.PubMedCrossRef Saito, S. Y., Watabe, S., Ozaki, H., Kobayashi, M., Suzuki, T., Kobayashi, H., et al. (1998). Actin depolymerising effect of dimeric macrolides, bistheonellide A and swinholide A. Journal of Biochemistry, 123(4), 571–578.PubMedCrossRef
436.
Zurück zum Zitat Sakai, R., Higa, T., & Kashman, Y. (1986). (1986). Misakinolide-A, anantitumor macrolide from the marine sponge Theonella sp. Chem. Lett., 15(9), 1499–1415.CrossRef Sakai, R., Higa, T., & Kashman, Y. (1986). (1986). Misakinolide-A, anantitumor macrolide from the marine sponge Theonella sp. Chem. Lett., 15(9), 1499–1415.CrossRef
437.
Zurück zum Zitat Terry, D. R., Spector, I., Higa, T., & Bubb, M. R. (1997). Misakinolide A is a marine macrolide that caps but does not sever filamentous actin. Journal of Biological Chemistry, 272(12), 7841–7845.CrossRef Terry, D. R., Spector, I., Higa, T., & Bubb, M. R. (1997). Misakinolide A is a marine macrolide that caps but does not sever filamentous actin. Journal of Biological Chemistry, 272(12), 7841–7845.CrossRef
438.
Zurück zum Zitat Smith, C. D., Carmeli, S., Moore, R. E., & Patterson, G. M. (1993). Scytophycins, novel microfilament-depolymerizing agents which circumvent P-glycoprotein-mediated multidrug resistance. Cancer Research, 53(6), 1343–1347.PubMed Smith, C. D., Carmeli, S., Moore, R. E., & Patterson, G. M. (1993). Scytophycins, novel microfilament-depolymerizing agents which circumvent P-glycoprotein-mediated multidrug resistance. Cancer Research, 53(6), 1343–1347.PubMed
439.
Zurück zum Zitat Fusetani, N., Yasumuro, K., Matsunaga, S., & Hashimoto, K. (1989). Mycalolides-A-C, hybrid macrolides of Ulapualides and Halichondramide from a sponde of the genus Mycale. Tetrahedron Letters, 30(21), 2809–2812.CrossRef Fusetani, N., Yasumuro, K., Matsunaga, S., & Hashimoto, K. (1989). Mycalolides-A-C, hybrid macrolides of Ulapualides and Halichondramide from a sponde of the genus Mycale. Tetrahedron Letters, 30(21), 2809–2812.CrossRef
440.
Zurück zum Zitat Saito, S., Watabe, S., Ozaki, H., Fusetani, N., & Karaki, H. (1994). Mycalolide B, a novel actin depolymerizing agent. Journal of Biological Chemistry, 269(47), 29710–29714.CrossRef Saito, S., Watabe, S., Ozaki, H., Fusetani, N., & Karaki, H. (1994). Mycalolide B, a novel actin depolymerizing agent. Journal of Biological Chemistry, 269(47), 29710–29714.CrossRef
441.
Zurück zum Zitat Saito, S., & Karaki, H. (1996). A family of novel actin-inhibiting marine toxins. Clinical Experimental Pharmacology and Physiology, 23(8), 743–746.CrossRef Saito, S., & Karaki, H. (1996). A family of novel actin-inhibiting marine toxins. Clinical Experimental Pharmacology and Physiology, 23(8), 743–746.CrossRef
442.
Zurück zum Zitat Wada, S., Matsunaga, S., Saito, S., Fusetani, N., & Watabe, S. (1998). Actin-binding specificity of marine macrolide toxins,mycalolide B and kabiramide D. Journal of Biochemistry, 123(5), 946–952.PubMedCrossRef Wada, S., Matsunaga, S., Saito, S., Fusetani, N., & Watabe, S. (1998). Actin-binding specificity of marine macrolide toxins,mycalolide B and kabiramide D. Journal of Biochemistry, 123(5), 946–952.PubMedCrossRef
443.
Zurück zum Zitat Straight, A. F. (2003). Dissecting temporal and spatial control of cytokinesis with a myosin II inhibitor. Science, 299(5613), 1743–1747.PubMedCrossRef Straight, A. F. (2003). Dissecting temporal and spatial control of cytokinesis with a myosin II inhibitor. Science, 299(5613), 1743–1747.PubMedCrossRef
444.
Zurück zum Zitat Allingham, J. S., Smith, R., & Rayment, I. (2005). The structural basis of blebbistatin inhibition and specificity for myosin II. Nature Structural & Molecular Biology, 12(4), 378–379.CrossRef Allingham, J. S., Smith, R., & Rayment, I. (2005). The structural basis of blebbistatin inhibition and specificity for myosin II. Nature Structural & Molecular Biology, 12(4), 378–379.CrossRef
445.
Zurück zum Zitat Coureux, P. D., Wells, A. L., Ménétrey, J., Csizmadia, A., & Sellers, J. R. (2004). Mechanism of blebbistatin inhibition of myosin II. Journal of Biological Chemistry, 279(34), 35557–35563.CrossRef Coureux, P. D., Wells, A. L., Ménétrey, J., Csizmadia, A., & Sellers, J. R. (2004). Mechanism of blebbistatin inhibition of myosin II. Journal of Biological Chemistry, 279(34), 35557–35563.CrossRef
446.
Zurück zum Zitat Ramamurthy, B., Yengo, C. M., Straight, A. F., Mitchison, T. J., & Sweeney, H. L. (2004). Kinetic mechanism of blebbistatin inhibition of nonmuscle myosin IIb. Biochemistry, 43(46), 14832–14839.PubMedCrossRef Ramamurthy, B., Yengo, C. M., Straight, A. F., Mitchison, T. J., & Sweeney, H. L. (2004). Kinetic mechanism of blebbistatin inhibition of nonmuscle myosin IIb. Biochemistry, 43(46), 14832–14839.PubMedCrossRef
447.
Zurück zum Zitat Limouze, J., Straight, A. F., Mitchison, T., & Sellers, J. R. (2004). Specificity of blebbistatin, an inhibitor of myosin II. Journal of Muscle Research and Cellular Motility, 25(4–5), 337–334.CrossRef Limouze, J., Straight, A. F., Mitchison, T., & Sellers, J. R. (2004). Specificity of blebbistatin, an inhibitor of myosin II. Journal of Muscle Research and Cellular Motility, 25(4–5), 337–334.CrossRef
448.
Zurück zum Zitat Kolega, J. (2004). Phototoxicity and photoinactivation of blebbistatin in UV and visible light. Biochemical and Biophysical Research Communictaions, 320(3), 1020–1025.CrossRef Kolega, J. (2004). Phototoxicity and photoinactivation of blebbistatin in UV and visible light. Biochemical and Biophysical Research Communictaions, 320(3), 1020–1025.CrossRef
449.
Zurück zum Zitat Gavin, C. F., Rubio, M. D., Young, E., Miller, C., & Rumbaugh, G. (2012). Myosin II motor activity in the lateral amygdala is required for fear memory consolidation. Learning & Memory, 19(1), 9–14.CrossRef Gavin, C. F., Rubio, M. D., Young, E., Miller, C., & Rumbaugh, G. (2012). Myosin II motor activity in the lateral amygdala is required for fear memory consolidation. Learning & Memory, 19(1), 9–14.CrossRef
450.
Zurück zum Zitat Moore, C. C., Lakner, A. M., Yengo, C. M., & Schrum, L. W. (2011). Nonmuscle myosin II regulates migration but not contraction in rat hepatic stellate cells. World Journal of Hepatology, 3(7), 184–197.PubMedPubMedCentralCrossRef Moore, C. C., Lakner, A. M., Yengo, C. M., & Schrum, L. W. (2011). Nonmuscle myosin II regulates migration but not contraction in rat hepatic stellate cells. World Journal of Hepatology, 3(7), 184–197.PubMedPubMedCentralCrossRef
451.
Zurück zum Zitat Kim, J. H., Wang, A., Conti, M. A., & Adelstein, R. S. (2012). Nonmuscle myosin II is required for internalization of the epidermal growth factor receptor and modulation of downstream signaling. Journal of Biological Chemistry, 287(33), 27345–27358.CrossRef Kim, J. H., Wang, A., Conti, M. A., & Adelstein, R. S. (2012). Nonmuscle myosin II is required for internalization of the epidermal growth factor receptor and modulation of downstream signaling. Journal of Biological Chemistry, 287(33), 27345–27358.CrossRef
452.
Zurück zum Zitat Perry, C. G., Kane, D. A., Lin, C. T., Kozy, R., Cathey, B. L., & Lark, D. S. (2011). Inhibiting myosin-ATPase reveals a dynamic range of mitochondrial respiratory control in skeletal muscle. Biochemical Journal, 437(2), 215–222.CrossRef Perry, C. G., Kane, D. A., Lin, C. T., Kozy, R., Cathey, B. L., & Lark, D. S. (2011). Inhibiting myosin-ATPase reveals a dynamic range of mitochondrial respiratory control in skeletal muscle. Biochemical Journal, 437(2), 215–222.CrossRef
453.
Zurück zum Zitat Matsui, Y., Nakayama, Y., Okamoto, M., Fukumoto, Y., & Yamaguchi, N. (2012). Enrichment of cell populations in metaphase, anaphase, and telophase by synchronization using nocodazole and blebbistatin: a novel method suitable for examining dynamic changes in proteins during mitotic progression. Europena Journal of Cell Biology, 91(5), 413–419.CrossRef Matsui, Y., Nakayama, Y., Okamoto, M., Fukumoto, Y., & Yamaguchi, N. (2012). Enrichment of cell populations in metaphase, anaphase, and telophase by synchronization using nocodazole and blebbistatin: a novel method suitable for examining dynamic changes in proteins during mitotic progression. Europena Journal of Cell Biology, 91(5), 413–419.CrossRef
454.
Zurück zum Zitat Duxbury, M. S., Ashley, S. W., & Whang, E. E. (2004). Inhibition of pancreatic adenocarcinoma cellularinvasiveness by blebbistatin: a novelmyosin II inhibitor. Biochemical and Biophysical Research Communications, 313(4), 992–997.PubMedCrossRef Duxbury, M. S., Ashley, S. W., & Whang, E. E. (2004). Inhibition of pancreatic adenocarcinoma cellularinvasiveness by blebbistatin: a novelmyosin II inhibitor. Biochemical and Biophysical Research Communications, 313(4), 992–997.PubMedCrossRef
455.
Zurück zum Zitat Wilkinson, S., Paterson, H. F., & Marshall, C. J. (2005). Cdc42-MRCK and Rho-ROCK signalling cooperate in myosin phosphorylation and cell invasion. Nature Cell Biology, 7(3), 255–261.PubMedCrossRef Wilkinson, S., Paterson, H. F., & Marshall, C. J. (2005). Cdc42-MRCK and Rho-ROCK signalling cooperate in myosin phosphorylation and cell invasion. Nature Cell Biology, 7(3), 255–261.PubMedCrossRef
456.
Zurück zum Zitat Derycke, L., Stove, C., Vercoutter-Edouart, A. S., De Wever, O., Dollé, L., & Colpaert, N. (2011). The role of non-muscle myosin IIA in aggregation and invasion of human MCF-7 breast cancer cells. International Journal of Developmental Biology, 55(7-9), 835–840.CrossRef Derycke, L., Stove, C., Vercoutter-Edouart, A. S., De Wever, O., Dollé, L., & Colpaert, N. (2011). The role of non-muscle myosin IIA in aggregation and invasion of human MCF-7 breast cancer cells. International Journal of Developmental Biology, 55(7-9), 835–840.CrossRef
457.
Zurück zum Zitat Kim, J. H., & Adelstein, R. S. (2011). LPA(1)-induced migration requires non muscle myosin II light chain phosphorylation in breast cancer cells. Journal of Cellular Physiology, 226(11), 2881–2893.PubMedPubMedCentralCrossRef Kim, J. H., & Adelstein, R. S. (2011). LPA(1)-induced migration requires non muscle myosin II light chain phosphorylation in breast cancer cells. Journal of Cellular Physiology, 226(11), 2881–2893.PubMedPubMedCentralCrossRef
458.
Zurück zum Zitat Arozarena, I., Sanchez-Laorden, B., Packer, L., Hidalgo-Carcedo, C., Hayward, R., Viros, A., et al. (2011). Oncogenic BRAF induces melanoma cell invasion by downregulating the cGMP-specific phosphodiesterase PDE5A. Cancer Cell, 19(1), 45–57.PubMedCrossRef Arozarena, I., Sanchez-Laorden, B., Packer, L., Hidalgo-Carcedo, C., Hayward, R., Viros, A., et al. (2011). Oncogenic BRAF induces melanoma cell invasion by downregulating the cGMP-specific phosphodiesterase PDE5A. Cancer Cell, 19(1), 45–57.PubMedCrossRef
459.
Zurück zum Zitat Kosla, J., Paňková, D., Plachý, J., Tolde, O., Bicanová, K., Dvořák, M., et al. (2013). Metastasis of aggressive amoeboid sarcoma cells is dependent on Rho/ROCK/MLC signaling. Cell Communication and Signaling, 11, 51.PubMedPubMedCentralCrossRef Kosla, J., Paňková, D., Plachý, J., Tolde, O., Bicanová, K., Dvořák, M., et al. (2013). Metastasis of aggressive amoeboid sarcoma cells is dependent on Rho/ROCK/MLC signaling. Cell Communication and Signaling, 11, 51.PubMedPubMedCentralCrossRef
460.
Zurück zum Zitat Seifert, S., & Sontheimer, H. (2014). Bradykinin enhances invasion of malignant glioma into the brain parenchyma by inducing cells to undergo amoeboid migration. Journal of Physiology, 592(22), 5109–5127.CrossRef Seifert, S., & Sontheimer, H. (2014). Bradykinin enhances invasion of malignant glioma into the brain parenchyma by inducing cells to undergo amoeboid migration. Journal of Physiology, 592(22), 5109–5127.CrossRef
461.
Zurück zum Zitat Cheung, A., Dantzig, J. A., Hollingworth, S., Baylor, S. M., Goldman, Y. E., & Mitchison, T. J. (2002). A small-molecule inhibitor of skeletal muscle myosin II. Nature Cell Biology, 4(1), 83–88.PubMedCrossRef Cheung, A., Dantzig, J. A., Hollingworth, S., Baylor, S. M., Goldman, Y. E., & Mitchison, T. J. (2002). A small-molecule inhibitor of skeletal muscle myosin II. Nature Cell Biology, 4(1), 83–88.PubMedCrossRef
462.
Zurück zum Zitat Herrmann, C., Wray, J., Travers, F., & Barman, T. (1992). Effect of 2,3-Butanedione monoxime on myosin and myofibrillar ATPases. An example of an uncompetitive inhibitor. Biochemistry, 31(48), 12227–12232.PubMedCrossRef Herrmann, C., Wray, J., Travers, F., & Barman, T. (1992). Effect of 2,3-Butanedione monoxime on myosin and myofibrillar ATPases. An example of an uncompetitive inhibitor. Biochemistry, 31(48), 12227–12232.PubMedCrossRef
463.
Zurück zum Zitat Dou, Y., Andersson-Lendahl, M., & Arner, A. (2008). Structure and function of skeletal muscle in zebrafish early larvae. Journal of General Physiology, 131(5), 445–453.CrossRef Dou, Y., Andersson-Lendahl, M., & Arner, A. (2008). Structure and function of skeletal muscle in zebrafish early larvae. Journal of General Physiology, 131(5), 445–453.CrossRef
464.
Zurück zum Zitat Sellin, L. C., & McArdle, J. J. (1994). Multiple effects of 2,3-Butanedione monoxime. Pharmacology and Toxicology, 74(6), 305–313.PubMedCrossRef Sellin, L. C., & McArdle, J. J. (1994). Multiple effects of 2,3-Butanedione monoxime. Pharmacology and Toxicology, 74(6), 305–313.PubMedCrossRef
465.
Zurück zum Zitat Stapleton, M. T., Fuchsbauer, C. M., & Allshire, A. P. (1998). BDM drives protein dephosphorylation and inhibits adenine nucleotide exchange in cardiomyocytes. American Journal of Physiology, 275((4) Pt 2), H1260–H1266. Stapleton, M. T., Fuchsbauer, C. M., & Allshire, A. P. (1998). BDM drives protein dephosphorylation and inhibits adenine nucleotide exchange in cardiomyocytes. American Journal of Physiology, 275((4) Pt 2), H1260–H1266.
466.
Zurück zum Zitat Wu, X., Sun, Z., Foskett, A., Trzeciakowski, J. P., Meininger, G. A., & Muthuchamy, M. (2010). Cardiomyocyte contractile status is associated with differences in fibronectin and integrin interactions. American Journal Physiology Heart and Circulatory Physiology, 298(6), H2071–H2081.CrossRef Wu, X., Sun, Z., Foskett, A., Trzeciakowski, J. P., Meininger, G. A., & Muthuchamy, M. (2010). Cardiomyocyte contractile status is associated with differences in fibronectin and integrin interactions. American Journal Physiology Heart and Circulatory Physiology, 298(6), H2071–H2081.CrossRef
467.
Zurück zum Zitat Thum, T., & Borlak, J. (2001). Butanedione monoxime cardiomyocytes in primary cultures. Cardiovascular Toxicology, 1(1), 61–72.PubMedCrossRef Thum, T., & Borlak, J. (2001). Butanedione monoxime cardiomyocytes in primary cultures. Cardiovascular Toxicology, 1(1), 61–72.PubMedCrossRef
468.
Zurück zum Zitat Kabaeva, Z., Zhao, M., & Michele, D. E. (2008). Blebbistatin extends culture life of adult mouse cardiac myocytes and allows efficient and stable transgene expression. American Journal Physiology Heart and Circulatory Physiology, 294(4), H1667–H1674.CrossRef Kabaeva, Z., Zhao, M., & Michele, D. E. (2008). Blebbistatin extends culture life of adult mouse cardiac myocytes and allows efficient and stable transgene expression. American Journal Physiology Heart and Circulatory Physiology, 294(4), H1667–H1674.CrossRef
469.
Zurück zum Zitat Pisarenko, O. I., Shul’zhenko, V. S., & Studneva, I. M. (2009). The effect of myosin ATPase inhibition on metabolic and functional recovery of isolated rat heart after global ischemia. Biomeditsinskaya Khimiya, 55(4), 451–461. Pisarenko, O. I., Shul’zhenko, V. S., & Studneva, I. M. (2009). The effect of myosin ATPase inhibition on metabolic and functional recovery of isolated rat heart after global ischemia. Biomeditsinskaya Khimiya, 55(4), 451–461.
470.
Zurück zum Zitat Thum, T., & Borlak, J. (2001). Reprogramming of gene expression in cultured cardiomyocytes and in explanted hearts by the myosin ATPase inhibitor Butanedione monoxime. Transplantation, 71(4), 543–552.PubMedCrossRef Thum, T., & Borlak, J. (2001). Reprogramming of gene expression in cultured cardiomyocytes and in explanted hearts by the myosin ATPase inhibitor Butanedione monoxime. Transplantation, 71(4), 543–552.PubMedCrossRef
471.
Zurück zum Zitat Chinthalapudi, K., Taft, M. H., Martin, R., Heissler, S. M., Preller, M., Hartmann, F. K., et al. (2011). Mechanism and specificity of pentachloropseudilin-mediated inhibition of myosin motor activity. Journal of Biological Chemistry, 286(34), 29700–29708.CrossRef Chinthalapudi, K., Taft, M. H., Martin, R., Heissler, S. M., Preller, M., Hartmann, F. K., et al. (2011). Mechanism and specificity of pentachloropseudilin-mediated inhibition of myosin motor activity. Journal of Biological Chemistry, 286(34), 29700–29708.CrossRef
472.
Zurück zum Zitat Preller, M., Chinthalapudi, K., & Martin, R. (1966). Production of a pyrrole antibiotic by a marine bacterium. Applied Microbiology, 14(4), 649–653.CrossRef Preller, M., Chinthalapudi, K., & Martin, R. (1966). Production of a pyrrole antibiotic by a marine bacterium. Applied Microbiology, 14(4), 649–653.CrossRef
473.
Zurück zum Zitat Martin, R., Jäger, A., Böhl, M., et al. (2009). Total synthesis of pentabromo- and pentachloropseudilin, and synthetic analogues–allosteric inhibitors of myosin ATPase. Angewandte Chemie International, 48(43), 8042–8046.CrossRef Martin, R., Jäger, A., Böhl, M., et al. (2009). Total synthesis of pentabromo- and pentachloropseudilin, and synthetic analogues–allosteric inhibitors of myosin ATPase. Angewandte Chemie International, 48(43), 8042–8046.CrossRef
474.
Zurück zum Zitat Heissler, S. M., Selvadurai, J., Bond, L. M., Fedorov, R., Kendrick-Jones, J., Buss, F., et al. (2012). Kinetic properties and small-molecule inhibition of human myosin VI. FEBS Letters, 586(19), 3208–3214.PubMedPubMedCentralCrossRef Heissler, S. M., Selvadurai, J., Bond, L. M., Fedorov, R., Kendrick-Jones, J., Buss, F., et al. (2012). Kinetic properties and small-molecule inhibition of human myosin VI. FEBS Letters, 586(19), 3208–3214.PubMedPubMedCentralCrossRef
475.
Zurück zum Zitat Coombes, J. D., Schevzov, G., Kan, C. Y., Petti, C., Maritz, M. F., Whittaker, S., et al. (2015). Ras transformation overrides a proliferation defect induced by Tpm3.1 knockout. Cellular and Molecular Biology Letters, 20(4), 626–646.PubMedCrossRef Coombes, J. D., Schevzov, G., Kan, C. Y., Petti, C., Maritz, M. F., Whittaker, S., et al. (2015). Ras transformation overrides a proliferation defect induced by Tpm3.1 knockout. Cellular and Molecular Biology Letters, 20(4), 626–646.PubMedCrossRef
476.
Zurück zum Zitat Kee, A. J., Chagan, J., Chan, J. Y., Bryce, N. S., Lucas, C. A., Zeng, J., et al. (2018). On-target action of anti tropomyosin drugs regulates glucose metabolism. Science Reports, 8(1), 4604.CrossRef Kee, A. J., Chagan, J., Chan, J. Y., Bryce, N. S., Lucas, C. A., Zeng, J., et al. (2018). On-target action of anti tropomyosin drugs regulates glucose metabolism. Science Reports, 8(1), 4604.CrossRef
477.
Zurück zum Zitat Bonello, T. T., Janco, M., Hook, J., Byun, A., Appaduray, M., Dedova, I., et al. (2016). A small molecule inhibitor of tropomyosin dissociates actin binding from tropomyosin-directed regulation of actin dynamics. Science Reports, 25(6), 19816.CrossRef Bonello, T. T., Janco, M., Hook, J., Byun, A., Appaduray, M., Dedova, I., et al. (2016). A small molecule inhibitor of tropomyosin dissociates actin binding from tropomyosin-directed regulation of actin dynamics. Science Reports, 25(6), 19816.CrossRef
478.
Zurück zum Zitat Arous, C., & Halban, P. A. (2015). The skeleton in the closet: actin cytoskeletal remodeling in β-cell function. American Journal of Physiology, Endocrinology and Metabolism, 309(7), E611–E620.PubMedCrossRef Arous, C., & Halban, P. A. (2015). The skeleton in the closet: actin cytoskeletal remodeling in β-cell function. American Journal of Physiology, Endocrinology and Metabolism, 309(7), E611–E620.PubMedCrossRef
479.
Zurück zum Zitat Klip, A., Sun, Y., Chiu, T. T., & Foley, K. P. (2014). Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation. American Journal of Physiology, Endocrinology and Metabolism, 306(10), C879–C886. Klip, A., Sun, Y., Chiu, T. T., & Foley, K. P. (2014). Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation. American Journal of Physiology, Endocrinology and Metabolism, 306(10), C879–C886.
480.
Zurück zum Zitat Uehata, M., Ishizaki, T., Satoh, H., Ono, T., Kawahara, T., Morishita, T., et al. (1997). Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature, 389(6654), 990–994.PubMedCrossRef Uehata, M., Ishizaki, T., Satoh, H., Ono, T., Kawahara, T., Morishita, T., et al. (1997). Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature, 389(6654), 990–994.PubMedCrossRef
481.
Zurück zum Zitat Itoh, K., Yoshioka, K., Akedo, H., Uehata, M., Ishizaki, T., & Narumiya, S. (1999). An essential part for Rho-associated kinase in the transcellular invasion of tumor cells. Nature Medicine, 5(2), 221–225.PubMedCrossRef Itoh, K., Yoshioka, K., Akedo, H., Uehata, M., Ishizaki, T., & Narumiya, S. (1999). An essential part for Rho-associated kinase in the transcellular invasion of tumor cells. Nature Medicine, 5(2), 221–225.PubMedCrossRef
482.
Zurück zum Zitat Takamura, M., Sakamoto, M., Genda, T., Ichida, T., Asakura, H., & Hirohashi, S. (2001). Inhibition of intrahepatic metastasis of human hepatocellular carcinoma by Rho-associated protein kinase inhibitor Y-27632. Hepatology, 33(3), 577–581.PubMedCrossRef Takamura, M., Sakamoto, M., Genda, T., Ichida, T., Asakura, H., & Hirohashi, S. (2001). Inhibition of intrahepatic metastasis of human hepatocellular carcinoma by Rho-associated protein kinase inhibitor Y-27632. Hepatology, 33(3), 577–581.PubMedCrossRef
483.
Zurück zum Zitat Matsubara, M., & Bissell, M. J. (2016). Inhibitors of Rho kinase (ROCK) signaling revert the malignant phenotype of breast cancer cells in 3D context. Oncotarget, 7(22), 31602–31622.PubMedPubMedCentralCrossRef Matsubara, M., & Bissell, M. J. (2016). Inhibitors of Rho kinase (ROCK) signaling revert the malignant phenotype of breast cancer cells in 3D context. Oncotarget, 7(22), 31602–31622.PubMedPubMedCentralCrossRef
484.
Zurück zum Zitat Sahai, E., & Marshall, C. J. (2003). Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nature Cell Biolgy, 5(8), 711–719.CrossRef Sahai, E., & Marshall, C. J. (2003). Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nature Cell Biolgy, 5(8), 711–719.CrossRef
485.
Zurück zum Zitat Saurin, J. C., Fallavier, M., Sordat, B., Gevrey, J. C., Chayvialle, J. A., & Abello, J. (2002). Bombesin stimulates invasion and migration of Isreco1 colon carcinoma cells in a Rho-dependent manner. Cancer research, 62(16), 4829–4835.PubMed Saurin, J. C., Fallavier, M., Sordat, B., Gevrey, J. C., Chayvialle, J. A., & Abello, J. (2002). Bombesin stimulates invasion and migration of Isreco1 colon carcinoma cells in a Rho-dependent manner. Cancer research, 62(16), 4829–4835.PubMed
486.
Zurück zum Zitat Wang, D. S., Dou, K. F., Li, K. Z., & Song, Z. S. (2004). Enhancement of migration and invasion of hepatoma cells via a Rho GTPase signaling pathway. World journal of gastroenterology, 10(2), 299–302.PubMedPubMedCentralCrossRef Wang, D. S., Dou, K. F., Li, K. Z., & Song, Z. S. (2004). Enhancement of migration and invasion of hepatoma cells via a Rho GTPase signaling pathway. World journal of gastroenterology, 10(2), 299–302.PubMedPubMedCentralCrossRef
487.
Zurück zum Zitat Jeong, K. J., Park, S. Y., Cho, K. H., Sohn, J. S., Lee, J., Kim, Y. K., et al. (2019). The Rho/ROCK pathway for lysophosphatidic acid-induced proteolytic enzyme expression and ovarian cancer cell invasion. Oncogene, 38(25), 5108–5110.PubMedCrossRef Jeong, K. J., Park, S. Y., Cho, K. H., Sohn, J. S., Lee, J., Kim, Y. K., et al. (2019). The Rho/ROCK pathway for lysophosphatidic acid-induced proteolytic enzyme expression and ovarian cancer cell invasion. Oncogene, 38(25), 5108–5110.PubMedCrossRef
488.
Zurück zum Zitat Lawler, K., Foran, E., O'Sullivan, G., Long, A., & Kenny, D. (2006). Mobility and invasiveness of metastatic esophageal cancer are potentiated by shear stress in a ROCK- and Ras-dependent manner. American journal of physiology. Cell physiology, 291(4), C668–C677.PubMedCrossRef Lawler, K., Foran, E., O'Sullivan, G., Long, A., & Kenny, D. (2006). Mobility and invasiveness of metastatic esophageal cancer are potentiated by shear stress in a ROCK- and Ras-dependent manner. American journal of physiology. Cell physiology, 291(4), C668–C677.PubMedCrossRef
489.
Zurück zum Zitat Hakuma, N., Kinoshita, I., Shimizu, Y., Yamazaki, K., Yoshida, K., Nishimura, M., & Dosaka-Akita, H. (2005). E1AF/PEA3 activates the Rho/Rho-associated kinase pathway to increase the malignancy potential of non-small-cell lung cancer cells. Cancer research, 65(23), 10776–10782.PubMedCrossRef Hakuma, N., Kinoshita, I., Shimizu, Y., Yamazaki, K., Yoshida, K., Nishimura, M., & Dosaka-Akita, H. (2005). E1AF/PEA3 activates the Rho/Rho-associated kinase pathway to increase the malignancy potential of non-small-cell lung cancer cells. Cancer research, 65(23), 10776–10782.PubMedCrossRef
490.
Zurück zum Zitat Routhier, A., Astuccio, M., Lahey, D., Monfredo, N., Johnson, A., Callahan, W., et al. (2010). Pharmacological inhibition of Rho-kinase signaling with Y-27632 blocks melanoma tumor growth. Oncology reports, 23(3), 861–867.PubMed Routhier, A., Astuccio, M., Lahey, D., Monfredo, N., Johnson, A., Callahan, W., et al. (2010). Pharmacological inhibition of Rho-kinase signaling with Y-27632 blocks melanoma tumor growth. Oncology reports, 23(3), 861–867.PubMed
491.
Zurück zum Zitat Zhong, W. B., Liang, Y. C., Wang, C. Y., Chang, T. C., & Lee, & W.S. (2005). Lovastatin suppresses invasiveness of anaplastic thyroid cancer cells by inhibiting Rho geranylgeranylation and RhoA/ROCK signaling. Endocrine-related cancer, 12(3), 615–629.PubMedCrossRef Zhong, W. B., Liang, Y. C., Wang, C. Y., Chang, T. C., & Lee, & W.S. (2005). Lovastatin suppresses invasiveness of anaplastic thyroid cancer cells by inhibiting Rho geranylgeranylation and RhoA/ROCK signaling. Endocrine-related cancer, 12(3), 615–629.PubMedCrossRef
492.
Zurück zum Zitat An, L., Liu, Y., Wu, A., & Guan, Y. (2013). microRNA-124 inhibits migration and invasion by down-regulating ROCK1 in glioma. PLoS One, 8(7), e69478.PubMedPubMedCentralCrossRef An, L., Liu, Y., Wu, A., & Guan, Y. (2013). microRNA-124 inhibits migration and invasion by down-regulating ROCK1 in glioma. PLoS One, 8(7), e69478.PubMedPubMedCentralCrossRef
493.
Zurück zum Zitat Wang, J., Liu, X. H., Yang, Z. J., Xie, B., & Zhong, Y. S. (2014). The effect of ROCK-1 activity change on the adhesive and invasive ability of Y79 retinoblastoma cells. BMC cancer, 14, 89.PubMedPubMedCentralCrossRef Wang, J., Liu, X. H., Yang, Z. J., Xie, B., & Zhong, Y. S. (2014). The effect of ROCK-1 activity change on the adhesive and invasive ability of Y79 retinoblastoma cells. BMC cancer, 14, 89.PubMedPubMedCentralCrossRef
494.
Zurück zum Zitat Wang, Z. M., Yang, D. S., Liu, J., Liu, H. B., Ye, M., & Zhang, Y. F. (2016). ROCK inhibitor Y-27632 inhibits the growth, migration, and invasion of Tca8113 and CAL-27 cells in tongue squamous cell carcinoma. Tumour biology, 37(3), 3757–3764.PubMedCrossRef Wang, Z. M., Yang, D. S., Liu, J., Liu, H. B., Ye, M., & Zhang, Y. F. (2016). ROCK inhibitor Y-27632 inhibits the growth, migration, and invasion of Tca8113 and CAL-27 cells in tongue squamous cell carcinoma. Tumour biology, 37(3), 3757–3764.PubMedCrossRef
495.
Zurück zum Zitat Zhao, M., Xu, H., He, X., Hua, H., Luo, Y., & Zuo, L. (2013). Expression of serum response factor in gastric carcinoma and its molecular mechanisms involved in the regulation of the invasion and migration of SGC-7901 cells. Cancer biotherapy & radiopharmaceuticals, 28(2), 146–152.CrossRef Zhao, M., Xu, H., He, X., Hua, H., Luo, Y., & Zuo, L. (2013). Expression of serum response factor in gastric carcinoma and its molecular mechanisms involved in the regulation of the invasion and migration of SGC-7901 cells. Cancer biotherapy & radiopharmaceuticals, 28(2), 146–152.CrossRef
496.
Zurück zum Zitat de Toledo, M., Anguille, C., Roger, L., Roux, P., & Gadea, G. (2012). Cooperative anti-invasive effect of Cdc42/Rac1 activation and ROCK inhibition in SW620 colorectal cancer cells with elevated blebbing activity. PloS one, 7(11), e48344.PubMedPubMedCentralCrossRef de Toledo, M., Anguille, C., Roger, L., Roux, P., & Gadea, G. (2012). Cooperative anti-invasive effect of Cdc42/Rac1 activation and ROCK inhibition in SW620 colorectal cancer cells with elevated blebbing activity. PloS one, 7(11), e48344.PubMedPubMedCentralCrossRef
497.
Zurück zum Zitat Zhang, L. L., Liu, J., Lei, S., Zhang, J., Zhou, W., & Yu, H. G. (2014). PTEN inhibits the invasion and metastasis of gastric cancer via downregulation of FAK expression. Cellular signalling, 26(5), 1011–1020.PubMedCrossRef Zhang, L. L., Liu, J., Lei, S., Zhang, J., Zhou, W., & Yu, H. G. (2014). PTEN inhibits the invasion and metastasis of gastric cancer via downregulation of FAK expression. Cellular signalling, 26(5), 1011–1020.PubMedCrossRef
498.
Zurück zum Zitat Somlyo, A. V., Bradshaw, D., Ramos, S., Murphy, C., Myers, C. E., & Somlyo, A. P. (2000). Rho-kinase inhibitor retards migration and in vivo dissemination of human prostate cancer cells. Biochemical and biophysical research communications, 269(3), 652–659.PubMedCrossRef Somlyo, A. V., Bradshaw, D., Ramos, S., Murphy, C., Myers, C. E., & Somlyo, A. P. (2000). Rho-kinase inhibitor retards migration and in vivo dissemination of human prostate cancer cells. Biochemical and biophysical research communications, 269(3), 652–659.PubMedCrossRef
499.
Zurück zum Zitat Xue, F., Takahara, T., Yata, Y., Xia, Q., Nonome, K., Shinno, E., et al. (2008). Blockade of Rho/Rho-associated coiled coil-forming kinase signaling can prevent progression of hepatocellular carcinoma in matrix metalloproteinase-dependent manner. Hepatology research : the official journal of the Japan Society of Hepatology, 38(8), 810–817.CrossRef Xue, F., Takahara, T., Yata, Y., Xia, Q., Nonome, K., Shinno, E., et al. (2008). Blockade of Rho/Rho-associated coiled coil-forming kinase signaling can prevent progression of hepatocellular carcinoma in matrix metalloproteinase-dependent manner. Hepatology research : the official journal of the Japan Society of Hepatology, 38(8), 810–817.CrossRef
500.
Zurück zum Zitat Voorneveld, P. W., Kodach, L. L., Jacobs, R. J., Liv, N., Zonnevylle, A. C., Hoogenboom, J. P., et al. (2014). Loss of SMAD4 alters BMP signaling to promote colorectal cancer cell metastasis via activation of Rho and ROCK. Gastroenterology, 147(1), 196–208.e13.PubMedCrossRef Voorneveld, P. W., Kodach, L. L., Jacobs, R. J., Liv, N., Zonnevylle, A. C., Hoogenboom, J. P., et al. (2014). Loss of SMAD4 alters BMP signaling to promote colorectal cancer cell metastasis via activation of Rho and ROCK. Gastroenterology, 147(1), 196–208.e13.PubMedCrossRef
501.
Zurück zum Zitat Adachi, S., Yasuda, I., Nakashima, M., Yamauchi, T., Yoshioka, T., Okano, Y., et al. (2011). Rho-kinase inhibitor upregulate smigration by altering focal adhesion formation via the Akt pathway in colon cancer cells. European Journal of Pharmacology, 650(1), 145–150.PubMedCrossRef Adachi, S., Yasuda, I., Nakashima, M., Yamauchi, T., Yoshioka, T., Okano, Y., et al. (2011). Rho-kinase inhibitor upregulate smigration by altering focal adhesion formation via the Akt pathway in colon cancer cells. European Journal of Pharmacology, 650(1), 145–150.PubMedCrossRef
502.
Zurück zum Zitat Vishnubhotla, R., Bharadwaj, S., Sun, S., Metlushko, V., & Glover, S. C. (2012). Treatment with Y-27632, a ROCK inhibitor, increases the proinvasive nature of SW620 cells on 3D collagentype 1 matrix. International Journal of Cell Biology, 2012, 259142.PubMedPubMedCentralCrossRef Vishnubhotla, R., Bharadwaj, S., Sun, S., Metlushko, V., & Glover, S. C. (2012). Treatment with Y-27632, a ROCK inhibitor, increases the proinvasive nature of SW620 cells on 3D collagentype 1 matrix. International Journal of Cell Biology, 2012, 259142.PubMedPubMedCentralCrossRef
504.
Zurück zum Zitat Chang, F., Zhang, Y., Mi, J., Zhou, Q., Bai, F., Xu, X., et al. (2018). ROCK inhibitor enhances the growth and migration of BRAF-mutant skin melanoma cells. Cancer Science, 109(11), 3428–3437.PubMedPubMedCentralCrossRef Chang, F., Zhang, Y., Mi, J., Zhou, Q., Bai, F., Xu, X., et al. (2018). ROCK inhibitor enhances the growth and migration of BRAF-mutant skin melanoma cells. Cancer Science, 109(11), 3428–3437.PubMedPubMedCentralCrossRef
505.
Zurück zum Zitat Nakashima, M., Adachi, S., Yasuda, I., Yamauchi, T., Kawaguchi, J., Hanamatsu, T., et al. (2011). Inhibition of Rho-associated coiled-coil containing protein kinase enhances the activation of epidermal growth factor receptor in pancreatic cancer cells. Molecular Cancer, 3(10), 79.CrossRef Nakashima, M., Adachi, S., Yasuda, I., Yamauchi, T., Kawaguchi, J., Hanamatsu, T., et al. (2011). Inhibition of Rho-associated coiled-coil containing protein kinase enhances the activation of epidermal growth factor receptor in pancreatic cancer cells. Molecular Cancer, 3(10), 79.CrossRef
506.
Zurück zum Zitat Nagumo, H., Sasaki, Y., Ono, Y., Okamoto, H., Seto, M., & Takuwa, Y. (2000). Rho kinase inhibitor HA-1077 prevents Rho-mediated myosin phosphatase inhibition in smooth muscle cells. American journal of physiology. Cell physiology, 278(1), C57–C65.PubMedCrossRef Nagumo, H., Sasaki, Y., Ono, Y., Okamoto, H., Seto, M., & Takuwa, Y. (2000). Rho kinase inhibitor HA-1077 prevents Rho-mediated myosin phosphatase inhibition in smooth muscle cells. American journal of physiology. Cell physiology, 278(1), C57–C65.PubMedCrossRef
507.
Zurück zum Zitat Nakashima, S., Tabuchi, K., Shimokawa, S., Fukuyama, K., Mineta, T., & Abe, M. (1998). Combination therapy of fasudil hydrochloride and ozagrel sodium for cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Neurologia medico-chirurgica, 38(12), 805–811.PubMedCrossRef Nakashima, S., Tabuchi, K., Shimokawa, S., Fukuyama, K., Mineta, T., & Abe, M. (1998). Combination therapy of fasudil hydrochloride and ozagrel sodium for cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Neurologia medico-chirurgica, 38(12), 805–811.PubMedCrossRef
508.
Zurück zum Zitat Zhu, F., Zhang, Z., Wu, G., Li, Z., Zhang, R., Ren, J., & Nong, L. (2011). Rho kinase inhibitor fasudil suppresses migration and invasion though down-regulating the expression of VEGF in lung cancer cell line A549. Medical oncology, 28(2), 565–571.PubMedCrossRef Zhu, F., Zhang, Z., Wu, G., Li, Z., Zhang, R., Ren, J., & Nong, L. (2011). Rho kinase inhibitor fasudil suppresses migration and invasion though down-regulating the expression of VEGF in lung cancer cell line A549. Medical oncology, 28(2), 565–571.PubMedCrossRef
509.
Zurück zum Zitat Yang, X., Zhang, Y., Wang, S., & Shi, W. (2010). Effect of fasudil on growth, adhesion, invasion, and migration of 95D lung carcinoma cells in vitro. Canadian journal of physiology and pharmacology, 88(9), 874–879.PubMedCrossRef Yang, X., Zhang, Y., Wang, S., & Shi, W. (2010). Effect of fasudil on growth, adhesion, invasion, and migration of 95D lung carcinoma cells in vitro. Canadian journal of physiology and pharmacology, 88(9), 874–879.PubMedCrossRef
510.
Zurück zum Zitat Yang X., Di, J., Zhang, Y., Zhang, S., Lu, J., Liu, J., & Shi, W. (2012). The Rho-kinase inhibitor inhibits proliferation and metastasis of small cell lung cancer. Biomedicine & pharmacotherapy, 66(3), 221–227.CrossRef Yang X., Di, J., Zhang, Y., Zhang, S., Lu, J., Liu, J., & Shi, W. (2012). The Rho-kinase inhibitor inhibits proliferation and metastasis of small cell lung cancer. Biomedicine & pharmacotherapy, 66(3), 221–227.CrossRef
511.
Zurück zum Zitat Hu, K., Wang, Z., & Tao, Y. (2014). Suppression of hepatocellular carcinoma invasion and metastasis by Rho-kinase inhibitor Fasudil through inhibition of BTBD7-ROCK2 signaling pathway. Journal of Central South University. Medical sciences, 39(12), 1221–1227. Hu, K., Wang, Z., & Tao, Y. (2014). Suppression of hepatocellular carcinoma invasion and metastasis by Rho-kinase inhibitor Fasudil through inhibition of BTBD7-ROCK2 signaling pathway. Journal of Central South University. Medical sciences, 39(12), 1221–1227.
512.
Zurück zum Zitat Moreira Carboni, S., Rodrigues Lima, N. A., Pinheiro, N. M., Tavares-Murta, B. M., & Crema, V. O. (2015). HA-1077 inhibits cell migration/invasion of oral squamous cell carcinoma. Anti-cancer drugs, 26(9), 923–930.CrossRef Moreira Carboni, S., Rodrigues Lima, N. A., Pinheiro, N. M., Tavares-Murta, B. M., & Crema, V. O. (2015). HA-1077 inhibits cell migration/invasion of oral squamous cell carcinoma. Anti-cancer drugs, 26(9), 923–930.CrossRef
513.
Zurück zum Zitat Ying, H., Biroc, S. L., Li, W. W., Alicke, B., Xuan, J. A., Pagila, R., et al. (2006). The Rho kinase inhibitor fasudil inhibits tumor progression in human and rat tumor models. Molecular cancer therapeutics, 5(9), 2158–2164.PubMedCrossRef Ying, H., Biroc, S. L., Li, W. W., Alicke, B., Xuan, J. A., Pagila, R., et al. (2006). The Rho kinase inhibitor fasudil inhibits tumor progression in human and rat tumor models. Molecular cancer therapeutics, 5(9), 2158–2164.PubMedCrossRef
514.
Zurück zum Zitat Deng, L., Li, G., Li, R., Liu, Q., He, Q., & Zhang, J. (2010). Rho-kinase inhibitor, fasudil, suppresses glioblastoma cell line progression in vitro and in vivo. Cancer biology & therapy, 9(11), 875–884.CrossRef Deng, L., Li, G., Li, R., Liu, Q., He, Q., & Zhang, J. (2010). Rho-kinase inhibitor, fasudil, suppresses glioblastoma cell line progression in vitro and in vivo. Cancer biology & therapy, 9(11), 875–884.CrossRef
515.
Zurück zum Zitat Ogata, S., Morishige, K., Sawada, K., Hashimoto, K., Mabuchi, S., Kawase, C., et al. (2009). Fasudil inhibits lysophosphatidic acid-induced invasiveness of human ovarian cancer cells. International journal of gynecological cancer, 19(9), 1473–1480.PubMedCrossRef Ogata, S., Morishige, K., Sawada, K., Hashimoto, K., Mabuchi, S., Kawase, C., et al. (2009). Fasudil inhibits lysophosphatidic acid-induced invasiveness of human ovarian cancer cells. International journal of gynecological cancer, 19(9), 1473–1480.PubMedCrossRef
516.
Zurück zum Zitat Rath, N., Munro, J., Cutiongco, M. F., Jagiełło, A., Gadegaard, N., McGarry, L., et al. (2018). Rho Kinase Inhibition by AT13148 Blocks Pancreatic Ductal Adenocarcinoma Invasion and Tumor Growth. Cancer research, 78(12), 3321–3336.PubMedPubMedCentralCrossRef Rath, N., Munro, J., Cutiongco, M. F., Jagiełło, A., Gadegaard, N., McGarry, L., et al. (2018). Rho Kinase Inhibition by AT13148 Blocks Pancreatic Ductal Adenocarcinoma Invasion and Tumor Growth. Cancer research, 78(12), 3321–3336.PubMedPubMedCentralCrossRef
517.
Zurück zum Zitat Ikenoya, M., Hidaka, H., Hosoya, T., Suzuki, M., Yamamoto, N., & Sasaki, Y. (2002). Inhibition of rho-kinase-induced myristoylated alanine-rich C kinase substrate (MARCKS) phosphorylation in human neuronal cells by H-1152, a novel and specific Rho-kinase inhibitor. Journal of neurochemistry, 81(1), 9–16.PubMedCrossRef Ikenoya, M., Hidaka, H., Hosoya, T., Suzuki, M., Yamamoto, N., & Sasaki, Y. (2002). Inhibition of rho-kinase-induced myristoylated alanine-rich C kinase substrate (MARCKS) phosphorylation in human neuronal cells by H-1152, a novel and specific Rho-kinase inhibitor. Journal of neurochemistry, 81(1), 9–16.PubMedCrossRef
518.
Zurück zum Zitat Fagan-Solis, K. D., Schneider, S. S., Pentecost, B. T., Bentley, B. A., Otis, C. N., Gierthy, J. F., & Arcaro, K. F. (2013). The RhoA pathway mediates MMP-2 and MMP-9-independent invasive behavior in a triple-negative breast cancer cell line. Journal of cellular biochemistry, 114(6), 1385–1394.PubMedCrossRef Fagan-Solis, K. D., Schneider, S. S., Pentecost, B. T., Bentley, B. A., Otis, C. N., Gierthy, J. F., & Arcaro, K. F. (2013). The RhoA pathway mediates MMP-2 and MMP-9-independent invasive behavior in a triple-negative breast cancer cell line. Journal of cellular biochemistry, 114(6), 1385–1394.PubMedCrossRef
519.
Zurück zum Zitat Patel, R. A., Forinash, K. D., Pireddu, R., Sun, Y., Sun, N., Martin, M. P., et al. (2012). RKI-1447 is a potent inhibitor of the Rho-associated ROCK kinases with anti-invasive and antitumor activities in breast cancer. Cancer research, 72(19), 5025–5034.PubMedPubMedCentralCrossRef Patel, R. A., Forinash, K. D., Pireddu, R., Sun, Y., Sun, N., Martin, M. P., et al. (2012). RKI-1447 is a potent inhibitor of the Rho-associated ROCK kinases with anti-invasive and antitumor activities in breast cancer. Cancer research, 72(19), 5025–5034.PubMedPubMedCentralCrossRef
520.
Zurück zum Zitat Patel, R. A., Liu, Y., Wang, B., Li, R., & Sebti, S. M. (2014). Identification of novel ROCK inhibitors with anti-migratory and anti-invasive activities. Oncogene, 33(5), 550–555.PubMedCrossRef Patel, R. A., Liu, Y., Wang, B., Li, R., & Sebti, S. M. (2014). Identification of novel ROCK inhibitors with anti-migratory and anti-invasive activities. Oncogene, 33(5), 550–555.PubMedCrossRef
521.
Zurück zum Zitat Tsai, C. C., Liu, H. F., Hsu, K. C., Yang, J. M., Chen, C., Liu, K. K., et al. (2011). 7-Chloro-6-piperidin-1-yl-quinoline-5,8-dione (PT-262), a novel ROCK inhibitor blocks cytoskeleton function and cell migration. Biochemical pharmacology, 81(7), 856–865.PubMedCrossRef Tsai, C. C., Liu, H. F., Hsu, K. C., Yang, J. M., Chen, C., Liu, K. K., et al. (2011). 7-Chloro-6-piperidin-1-yl-quinoline-5,8-dione (PT-262), a novel ROCK inhibitor blocks cytoskeleton function and cell migration. Biochemical pharmacology, 81(7), 856–865.PubMedCrossRef
522.
Zurück zum Zitat Vigil, D., Kim, T. Y., Plachco, A., Garton, A. J., Castaldo, L., Pachter, J. A., et al. (2012). ROCK1 and ROCK2 are required for non-small cell lung cancer anchorage-independent growth and invasion. Cancer research, 72(20), 5338–5347.PubMedCrossRef Vigil, D., Kim, T. Y., Plachco, A., Garton, A. J., Castaldo, L., Pachter, J. A., et al. (2012). ROCK1 and ROCK2 are required for non-small cell lung cancer anchorage-independent growth and invasion. Cancer research, 72(20), 5338–5347.PubMedCrossRef
523.
Zurück zum Zitat Sadok, A., McCarthy, A., Caldwell, J., Collins, I., Garrett, M. D., Yeo, M., et al. (2015). Rho kinase inhibitors block melanoma cell migration and inhibit metastasis. Cancer research, 75(11), 2272–2284.PubMedCrossRef Sadok, A., McCarthy, A., Caldwell, J., Collins, I., Garrett, M. D., Yeo, M., et al. (2015). Rho kinase inhibitors block melanoma cell migration and inhibit metastasis. Cancer research, 75(11), 2272–2284.PubMedCrossRef
524.
Zurück zum Zitat Yap, T. A., Walton, M. I., Grimshaw, K. M., Te Poele, R. H., Eve, P. D., Valenti, M. R., et al. (2012). AT13148 is a novel, oral multi-AGC kinase inhibitor with potent pharmacodynamic and antitumor activity. Clinical cancer research, 18(14), 3912–3923.PubMedCrossRef Yap, T. A., Walton, M. I., Grimshaw, K. M., Te Poele, R. H., Eve, P. D., Valenti, M. R., et al. (2012). AT13148 is a novel, oral multi-AGC kinase inhibitor with potent pharmacodynamic and antitumor activity. Clinical cancer research, 18(14), 3912–3923.PubMedCrossRef
525.
Zurück zum Zitat Kumar, R., Mateo, J., Smith, A. D., Khan, K. H., Ruddle, R., Swales, K. E., et al. (2014). First-in-human, first-in-class phase 1 study of a novel oral multi-AGC kinase inhibitor AT13148 in patients (pts) with advanced solid tumors. Journal of Clinical Oncology, 32(15), 2554–2554.CrossRef Kumar, R., Mateo, J., Smith, A. D., Khan, K. H., Ruddle, R., Swales, K. E., et al. (2014). First-in-human, first-in-class phase 1 study of a novel oral multi-AGC kinase inhibitor AT13148 in patients (pts) with advanced solid tumors. Journal of Clinical Oncology, 32(15), 2554–2554.CrossRef
526.
Zurück zum Zitat Nakajima, M., Hayashi, K., Egi, Y., Katayama, K., Amano, Y., Uehata, M., et al. (2003). Effect of Wf-536, a novel ROCK inhibitor, against metastasis of B16 melanoma. Cancer chemotherapy and pharmacology, 52(4), 319–324.PubMedCrossRef Nakajima, M., Hayashi, K., Egi, Y., Katayama, K., Amano, Y., Uehata, M., et al. (2003). Effect of Wf-536, a novel ROCK inhibitor, against metastasis of B16 melanoma. Cancer chemotherapy and pharmacology, 52(4), 319–324.PubMedCrossRef
527.
Zurück zum Zitat Wei, L., Surma, M., Shi, S., Lambert-Cheatham, N., & Shi, J. (2016). Novel Insights into the Roles of Rho Kinase in Cancer. Archivum immunologiae et therapiae experimentalis, 64(4), 259–278.PubMedPubMedCentralCrossRef Wei, L., Surma, M., Shi, S., Lambert-Cheatham, N., & Shi, J. (2016). Novel Insights into the Roles of Rho Kinase in Cancer. Archivum immunologiae et therapiae experimentalis, 64(4), 259–278.PubMedPubMedCentralCrossRef
528.
Zurück zum Zitat Kale, V. P., Hengst, J. A., Desai, D. H., Amin, S. G., & Yun, J. K. (2015). The regulatory roles of ROCK and MRCK kinases in the plasticity of cancer cell migration. Cancer letters, 361(2), 185–196.PubMedCrossRef Kale, V. P., Hengst, J. A., Desai, D. H., Amin, S. G., & Yun, J. K. (2015). The regulatory roles of ROCK and MRCK kinases in the plasticity of cancer cell migration. Cancer letters, 361(2), 185–196.PubMedCrossRef
529.
Zurück zum Zitat Castro, D. J., Maurer, J., Hebbard, L., & Oshima, R. G. (2013). ROCK1 inhibition promotes the self-renewal of a novel mouse mammary cancer stem cell. Stem cells, 31(1), 12–22.PubMedPubMedCentralCrossRef Castro, D. J., Maurer, J., Hebbard, L., & Oshima, R. G. (2013). ROCK1 inhibition promotes the self-renewal of a novel mouse mammary cancer stem cell. Stem cells, 31(1), 12–22.PubMedPubMedCentralCrossRef
530.
Zurück zum Zitat Ohata, H., Ishiguro, T., Aihara, Y., Sato, A., Sakai, H., Sekine, S., et al. (2012). Induction of the stem-like cell regulator CD44 by Rho kinase inhibition contributes to the maintenance of colon cancer-initiating cells. Cancer research, 72(19), 5101–5110.PubMedCrossRef Ohata, H., Ishiguro, T., Aihara, Y., Sato, A., Sakai, H., Sekine, S., et al. (2012). Induction of the stem-like cell regulator CD44 by Rho kinase inhibition contributes to the maintenance of colon cancer-initiating cells. Cancer research, 72(19), 5101–5110.PubMedCrossRef
531.
Zurück zum Zitat Zhao, Z., & Manser, E. (2015). Myotonic dystrophy kinase-related Cdc42-binding kinases (MRCK), the ROCK-like effectors of Cdc42 and Rac1. Small GTPases, 6(2), 81–88.PubMedPubMedCentralCrossRef Zhao, Z., & Manser, E. (2015). Myotonic dystrophy kinase-related Cdc42-binding kinases (MRCK), the ROCK-like effectors of Cdc42 and Rac1. Small GTPases, 6(2), 81–88.PubMedPubMedCentralCrossRef
532.
Zurück zum Zitat Leroux, A. E., Schulze, J. O., & Biondi, R. M. (2018). AGC kinases, mechanisms of regulation and innovative drug development. Seminars in cancer biology, 48, 1–17.PubMedCrossRef Leroux, A. E., Schulze, J. O., & Biondi, R. M. (2018). AGC kinases, mechanisms of regulation and innovative drug development. Seminars in cancer biology, 48, 1–17.PubMedCrossRef
533.
Zurück zum Zitat Unbekandt, M., & Olson, M. F. (2014). The actin-myosin regulatory MRCK kinases: regulation, biological functions and associations with human cancer. Journal of molecular medicine, 92(3), 217–225.PubMedCrossRef Unbekandt, M., & Olson, M. F. (2014). The actin-myosin regulatory MRCK kinases: regulation, biological functions and associations with human cancer. Journal of molecular medicine, 92(3), 217–225.PubMedCrossRef
534.
Zurück zum Zitat Wilkinson, S., Paterson, H. F., & Marshall, C. J. (2005). Cdc42-MRCK and Rho-ROCK signalling cooperate in myosin phosphorylation and cell invasion. Nature cell biology, 7(3), 255–261.PubMedCrossRef Wilkinson, S., Paterson, H. F., & Marshall, C. J. (2005). Cdc42-MRCK and Rho-ROCK signalling cooperate in myosin phosphorylation and cell invasion. Nature cell biology, 7(3), 255–261.PubMedCrossRef
535.
Zurück zum Zitat Kale, V. P., Hengst, J. A., Desai, D. H., Dick, T. E., Choe, K. N., Colledge, A. L., et al. (2014). A novel selective multikinase inhibitor of ROCK and MRCK effectively blocks cancer cell migration and invasion. Cancer letters, 354(2), 299–310.PubMedPubMedCentralCrossRef Kale, V. P., Hengst, J. A., Desai, D. H., Dick, T. E., Choe, K. N., Colledge, A. L., et al. (2014). A novel selective multikinase inhibitor of ROCK and MRCK effectively blocks cancer cell migration and invasion. Cancer letters, 354(2), 299–310.PubMedPubMedCentralCrossRef
536.
Zurück zum Zitat Unbekandt, M., Belshaw, S., Bower, J., Clarke, M., Cordes, J., Crighton, D., et al. (2018). Discovery of Potent and Selective MRCK Inhibitors with Therapeutic Effect on Skin Cancer. Cancer research, 78(8), 2096–2114.PubMedPubMedCentralCrossRef Unbekandt, M., Belshaw, S., Bower, J., Clarke, M., Cordes, J., Crighton, D., et al. (2018). Discovery of Potent and Selective MRCK Inhibitors with Therapeutic Effect on Skin Cancer. Cancer research, 78(8), 2096–2114.PubMedPubMedCentralCrossRef
537.
Zurück zum Zitat Gu, L. Z., Hu, W. Y., Antic, N., Mehta, R., Turner, J. R., & de Lanerolle, P. (2006). Inhibiting myosin light chain kinase retards the growth of mammary and prostate cancer cells. European journal of cancer, 42(7), 948–957.PubMedCrossRef Gu, L. Z., Hu, W. Y., Antic, N., Mehta, R., Turner, J. R., & de Lanerolle, P. (2006). Inhibiting myosin light chain kinase retards the growth of mammary and prostate cancer cells. European journal of cancer, 42(7), 948–957.PubMedCrossRef
538.
Zurück zum Zitat Jordan, M. A., & Wilson, L. (2004). Microtubules as a target for anticancer drugs. Nature Reviews Cancer, 4(4), 253–265.PubMedCrossRef Jordan, M. A., & Wilson, L. (2004). Microtubules as a target for anticancer drugs. Nature Reviews Cancer, 4(4), 253–265.PubMedCrossRef
539.
Zurück zum Zitat Kavallaris, M. (2010). Microtubules and resistance to tubulin-binding agents. Nature Reviews Cancer, 10(3), 194–204.PubMedCrossRef Kavallaris, M. (2010). Microtubules and resistance to tubulin-binding agents. Nature Reviews Cancer, 10(3), 194–204.PubMedCrossRef
540.
Zurück zum Zitat Gan, P. P., Pasquier, E., & Kavallaris, M. (2007). Class III beta-tubulin mediates sensitivity to chemotherapeutic drugs in non small cell lung cancer. Cancer research, 67(19), 9356–9363.PubMedCrossRef Gan, P. P., Pasquier, E., & Kavallaris, M. (2007). Class III beta-tubulin mediates sensitivity to chemotherapeutic drugs in non small cell lung cancer. Cancer research, 67(19), 9356–9363.PubMedCrossRef
541.
Zurück zum Zitat McCarroll, J. A., Gan, P. P., Liu, M., & Kavallaris, M. (2010). betaIII-tubulin is a multifunctional protein involved in drug sensitivity and tumorigenesis in non-small cell lung cancer. Cancer research, 70(12), 4995–5003.PubMedCrossRef McCarroll, J. A., Gan, P. P., Liu, M., & Kavallaris, M. (2010). betaIII-tubulin is a multifunctional protein involved in drug sensitivity and tumorigenesis in non-small cell lung cancer. Cancer research, 70(12), 4995–5003.PubMedCrossRef
542.
Zurück zum Zitat Jiang, H., Yu, X. M., Zhou, X. M., Wang, X. H., & Su, D. (2013). Correlation between microtubule-associated gene expression and chemosensitivity of patients with stage II non-small cell lung cancer. Experimental and therapeutic medicine, 5(5), 1506–1510.PubMedPubMedCentralCrossRef Jiang, H., Yu, X. M., Zhou, X. M., Wang, X. H., & Su, D. (2013). Correlation between microtubule-associated gene expression and chemosensitivity of patients with stage II non-small cell lung cancer. Experimental and therapeutic medicine, 5(5), 1506–1510.PubMedPubMedCentralCrossRef
543.
Zurück zum Zitat Akhshi, T. K., Wernike, D., & Piekny, A. (2014). Microtubules and actin crosstalk in cell migration and division. Cytoskeleton, 71(1), 1–23.PubMedCrossRef Akhshi, T. K., Wernike, D., & Piekny, A. (2014). Microtubules and actin crosstalk in cell migration and division. Cytoskeleton, 71(1), 1–23.PubMedCrossRef
544.
Zurück zum Zitat Etienne-Manneville, S., & Hall, A. (2001). Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKC zeta. Cell, 106(4), 489–498.PubMedCrossRef Etienne-Manneville, S., & Hall, A. (2001). Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKC zeta. Cell, 106(4), 489–498.PubMedCrossRef
545.
Zurück zum Zitat Palazzo, A. F., Cook, T. A., Alberts, A. S., & Gundersen, G. G. (2001). mDia mediates Rho-regulated formation and orientation of stable microtubules. Nature Cell Biology, 3(8), 723–729.PubMedCrossRef Palazzo, A. F., Cook, T. A., Alberts, A. S., & Gundersen, G. G. (2001). mDia mediates Rho-regulated formation and orientation of stable microtubules. Nature Cell Biology, 3(8), 723–729.PubMedCrossRef
546.
Zurück zum Zitat Tzima, E., Kiosses, W. B., delPozo, M. A., & Schwartz, M. A. (2003). Localized cdc42 activation, detected using a novel assay, mediates microtubule organizing center positioning in endothelial cells in response to fluid shear stress. Journal of Biological Chemistry, 278(33), 31020–31023.CrossRef Tzima, E., Kiosses, W. B., delPozo, M. A., & Schwartz, M. A. (2003). Localized cdc42 activation, detected using a novel assay, mediates microtubule organizing center positioning in endothelial cells in response to fluid shear stress. Journal of Biological Chemistry, 278(33), 31020–31023.CrossRef
547.
Zurück zum Zitat Vaughan, S., & Dawe, H. R. (2011). Common themes in centriole and centrosome movements. Trends in Cell Biology, 21(1), 57–66.PubMedCrossRef Vaughan, S., & Dawe, H. R. (2011). Common themes in centriole and centrosome movements. Trends in Cell Biology, 21(1), 57–66.PubMedCrossRef
548.
549.
Zurück zum Zitat Yoon, S. O., Shin, S., & Mercurio, A. M. (2005). Hypoxia stimulates carcinoma invasion by stabilizing microtubules and promoting the Rab11 trafficking of the alpha 6 beta 4 integrin. Cancer research, 65(7), 2761–2769.PubMedCrossRef Yoon, S. O., Shin, S., & Mercurio, A. M. (2005). Hypoxia stimulates carcinoma invasion by stabilizing microtubules and promoting the Rab11 trafficking of the alpha 6 beta 4 integrin. Cancer research, 65(7), 2761–2769.PubMedCrossRef
550.
Zurück zum Zitat Morrison, E. E. (2007). Action and interactions at microtubule ends. Cellular and molecular life sciences, 64(3), 307–317.PubMedCrossRef Morrison, E. E. (2007). Action and interactions at microtubule ends. Cellular and molecular life sciences, 64(3), 307–317.PubMedCrossRef
551.
Zurück zum Zitat Schuyler, S. C., & Pellman, D. (2001). Microtubule "plus-end-tracking proteins": The end is just the beginning. Cell, 105(4), 421–424.PubMedCrossRef Schuyler, S. C., & Pellman, D. (2001). Microtubule "plus-end-tracking proteins": The end is just the beginning. Cell, 105(4), 421–424.PubMedCrossRef
552.
Zurück zum Zitat Dong, X., Liu, F., Sun, L., Li, D., Su, D., Zhu, Z., et al. (2010). Oncogenic function of microtubule end-binding protein 1 in breast cancer. Journal of Pathology, 220(3), 361–369.CrossRef Dong, X., Liu, F., Sun, L., Li, D., Su, D., Zhu, Z., et al. (2010). Oncogenic function of microtubule end-binding protein 1 in breast cancer. Journal of Pathology, 220(3), 361–369.CrossRef
553.
Zurück zum Zitat Wen, Y., Eng, C. H., Schmoranzer, J., Cabrera-Poch, N., Morris, E. J., Chen, M., et al. (2004). EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nature cell biology, 6(9), 820–830.PubMedCrossRef Wen, Y., Eng, C. H., Schmoranzer, J., Cabrera-Poch, N., Morris, E. J., Chen, M., et al. (2004). EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nature cell biology, 6(9), 820–830.PubMedCrossRef
554.
Zurück zum Zitat Molina, A., Velot, L., Ghouinem, L., Abdelkarim, M., Bouchet, B. P., Luissint, A. C., et al. (2013). ATIP3, a novel prognostic marker of breast cancer patient survival, limits cancer cell migration and slows metastatic progression by regulating microtubule dynamics. Cancer research, 73(9), 2905–2915.PubMedCrossRef Molina, A., Velot, L., Ghouinem, L., Abdelkarim, M., Bouchet, B. P., Luissint, A. C., et al. (2013). ATIP3, a novel prognostic marker of breast cancer patient survival, limits cancer cell migration and slows metastatic progression by regulating microtubule dynamics. Cancer research, 73(9), 2905–2915.PubMedCrossRef
555.
Zurück zum Zitat Rodrigues-Ferreira, S., Di Tommaso, A., Dimitrov, A., Cazaubon, S., Gruel, N., Colasson, H., et al. (2009). 8p22 MTUS1 gene product ATIP3 is a novel anti-mitotic protein underexpressed in invasive breast carcinoma of poor prognosis. PloS one, 4(10), e7239.PubMedPubMedCentralCrossRef Rodrigues-Ferreira, S., Di Tommaso, A., Dimitrov, A., Cazaubon, S., Gruel, N., Colasson, H., et al. (2009). 8p22 MTUS1 gene product ATIP3 is a novel anti-mitotic protein underexpressed in invasive breast carcinoma of poor prognosis. PloS one, 4(10), e7239.PubMedPubMedCentralCrossRef
556.
Zurück zum Zitat Rodrigues-Ferreira, S., Nehlig, A., Monchecourt, C., Nasr, S., Fuhrmann, L., Lacroix-Triki, M., et al. (2019). Combinatorial expression of microtubule-associated EB1 and ATIP3 biomarkers improves breast cancer prognosis. Breast cancer research and treatment, 173(3), 573–583.PubMedCrossRef Rodrigues-Ferreira, S., Nehlig, A., Monchecourt, C., Nasr, S., Fuhrmann, L., Lacroix-Triki, M., et al. (2019). Combinatorial expression of microtubule-associated EB1 and ATIP3 biomarkers improves breast cancer prognosis. Breast cancer research and treatment, 173(3), 573–583.PubMedCrossRef
557.
Zurück zum Zitat Omary, M. B., Coulombe, P. A., & McLean, W. H. (2004). Intermediate filament proteins and their associated diseases. New England Journal of Medicine, 351(20), 2087–2100.CrossRef Omary, M. B., Coulombe, P. A., & McLean, W. H. (2004). Intermediate filament proteins and their associated diseases. New England Journal of Medicine, 351(20), 2087–2100.CrossRef
558.
Zurück zum Zitat Kokkinos, M. I., Wafai, R., Wong, M. K., Newgreen, D. F., Thompson, E. W., & Waltham, M. (2007). Vimentin and epithelial-mesenchymal transition in human breast cancer--observations in vitro and in vivotadokoro. Cells, tissues, organs, 185(1-3), 191–203.PubMedCrossRef Kokkinos, M. I., Wafai, R., Wong, M. K., Newgreen, D. F., Thompson, E. W., & Waltham, M. (2007). Vimentin and epithelial-mesenchymal transition in human breast cancer--observations in vitro and in vivotadokoro. Cells, tissues, organs, 185(1-3), 191–203.PubMedCrossRef
559.
Zurück zum Zitat Satelli, A., & Li, S. (2011). Vimentin in cancer and its potential as a molecular target for cancer therapy. Cellular and molecular life sciences, 68(18), 3033–3046.PubMedCrossRef Satelli, A., & Li, S. (2011). Vimentin in cancer and its potential as a molecular target for cancer therapy. Cellular and molecular life sciences, 68(18), 3033–3046.PubMedCrossRef
560.
Zurück zum Zitat Karantza, V. (2011). Keratins in health and cancer: more than mere epithelial cell markers. Oncogene, 30(2), 127–138.PubMedCrossRef Karantza, V. (2011). Keratins in health and cancer: more than mere epithelial cell markers. Oncogene, 30(2), 127–138.PubMedCrossRef
561.
Zurück zum Zitat Esue, O., Carson, A. A., Tseng, Y., & Wirtz, D. (2006). A direct interaction between actin and vimentin filaments mediated by the tail domain of vimentin. The Journal of biological chemistry, 281(41), 30393–30399.PubMedCrossRef Esue, O., Carson, A. A., Tseng, Y., & Wirtz, D. (2006). A direct interaction between actin and vimentin filaments mediated by the tail domain of vimentin. The Journal of biological chemistry, 281(41), 30393–30399.PubMedCrossRef
562.
Zurück zum Zitat Hookway, C., Ding, L., Davidson, M. W., Rappoport, J. Z., Danuser, G., & Gelfand, V. I. (2015). Microtubule-dependent transport and dynamics of vimentin intermediate filaments. Molecular biology of the cell, 26(9), 1675–1686.PubMedPubMedCentralCrossRef Hookway, C., Ding, L., Davidson, M. W., Rappoport, J. Z., Danuser, G., & Gelfand, V. I. (2015). Microtubule-dependent transport and dynamics of vimentin intermediate filaments. Molecular biology of the cell, 26(9), 1675–1686.PubMedPubMedCentralCrossRef
563.
Zurück zum Zitat Schoumacher, M., Goldman, R. D., Louvard, D., & Vignjevic, D. M. (2010). Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia. The Journal of cell biology, 189(3), 541–556.PubMedPubMedCentralCrossRef Schoumacher, M., Goldman, R. D., Louvard, D., & Vignjevic, D. M. (2010). Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia. The Journal of cell biology, 189(3), 541–556.PubMedPubMedCentralCrossRef
564.
Zurück zum Zitat De Pascalis, C., Pérez-González, C., Seetharaman, S., Boëda, B., Vianay, B., Burute, M., et al. (2018). Intermediate filaments control collective migration by restricting traction forces and sustaining cell-cell contacts. The Journal of cell biology, 217(9), 3031–3044.PubMedPubMedCentralCrossRef De Pascalis, C., Pérez-González, C., Seetharaman, S., Boëda, B., Vianay, B., Burute, M., et al. (2018). Intermediate filaments control collective migration by restricting traction forces and sustaining cell-cell contacts. The Journal of cell biology, 217(9), 3031–3044.PubMedPubMedCentralCrossRef
565.
Zurück zum Zitat Chu, Y. W., Seftor, E. A., Romer, L. H., & Hendrix, M. J. (1996). Experimental coexpression of vimentin and keratin intermediate filaments in human melanoma cells augments motility. The American journal of pathology, 148(1), 63–69.PubMedPubMedCentral Chu, Y. W., Seftor, E. A., Romer, L. H., & Hendrix, M. J. (1996). Experimental coexpression of vimentin and keratin intermediate filaments in human melanoma cells augments motility. The American journal of pathology, 148(1), 63–69.PubMedPubMedCentral
566.
Zurück zum Zitat Havel, L. S., Kline, E. R., Salgueiro, A. M., & Marcus, A. I. (2015). Vimentin regulates lung cancer cell adhesion through a VAV2-Rac1 pathway to control focal adhesion kinase activity. Oncogene, 34(15), 1979–1990.PubMedCrossRef Havel, L. S., Kline, E. R., Salgueiro, A. M., & Marcus, A. I. (2015). Vimentin regulates lung cancer cell adhesion through a VAV2-Rac1 pathway to control focal adhesion kinase activity. Oncogene, 34(15), 1979–1990.PubMedCrossRef
567.
Zurück zum Zitat Tadokoro, A., Kanaji, N., Liu, D., Yokomise, H., Haba, R., Ishii, T., et al. (2016). Vimentin Regulates Invasiveness and Is a Poor Prognostic Marker in Non-small Cell Lung Cancer. Anticancer research, 36(4), 1545–1551.PubMed Tadokoro, A., Kanaji, N., Liu, D., Yokomise, H., Haba, R., Ishii, T., et al. (2016). Vimentin Regulates Invasiveness and Is a Poor Prognostic Marker in Non-small Cell Lung Cancer. Anticancer research, 36(4), 1545–1551.PubMed
568.
Zurück zum Zitat Dmello, C., Sawant, S., Alam, H., Gangadaran, P., Tiwari, R., Dongre, H., et al. (2016). Vimentin-mediated regulation of cell motility through modulation of beta4 integrin protein levels in oral tumor derived cells. The international journal of biochemistry & cell biology, 70, 161–172.CrossRef Dmello, C., Sawant, S., Alam, H., Gangadaran, P., Tiwari, R., Dongre, H., et al. (2016). Vimentin-mediated regulation of cell motility through modulation of beta4 integrin protein levels in oral tumor derived cells. The international journal of biochemistry & cell biology, 70, 161–172.CrossRef
569.
Zurück zum Zitat Virtakoivu, R., Mai, A., Mattila, E., De Franceschi, N., Imanishi, S. Y., Corthals, G., et al. (2015). Vimentin-ERK Signaling Uncouples Slug Gene Regulatory Function. Cancer research, 75(11), 2349–2362.PubMedCrossRef Virtakoivu, R., Mai, A., Mattila, E., De Franceschi, N., Imanishi, S. Y., Corthals, G., et al. (2015). Vimentin-ERK Signaling Uncouples Slug Gene Regulatory Function. Cancer research, 75(11), 2349–2362.PubMedCrossRef
570.
Zurück zum Zitat Vuoriluoto, K., Haugen, H., Kiviluoto, S., Mpindi, J. P., Nevo, J., Gjerdrum, C., et al. (2011). Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene, 30(12), 1436–1448.PubMedCrossRef Vuoriluoto, K., Haugen, H., Kiviluoto, S., Mpindi, J. P., Nevo, J., Gjerdrum, C., et al. (2011). Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene, 30(12), 1436–1448.PubMedCrossRef
571.
Zurück zum Zitat Colburn, Z. T., & Jones, J. (2018). Complexes of α6β4 integrin and vimentin act as signaling hubs to regulate epithelial cell migration. Journal of cell science, 131(14), jcs214593.PubMedPubMedCentralCrossRef Colburn, Z. T., & Jones, J. (2018). Complexes of α6β4 integrin and vimentin act as signaling hubs to regulate epithelial cell migration. Journal of cell science, 131(14), jcs214593.PubMedPubMedCentralCrossRef
572.
Zurück zum Zitat Zhu, Q. S., Rosenblatt, K., Huang, K. L., Lahat, G., Brobey, R., Bolshakov, S., et al. (2011). Vimentin is a novel AKT1 target mediating motility and invasion. Oncogene, 30(4), 457–470.PubMedCrossRef Zhu, Q. S., Rosenblatt, K., Huang, K. L., Lahat, G., Brobey, R., Bolshakov, S., et al. (2011). Vimentin is a novel AKT1 target mediating motility and invasion. Oncogene, 30(4), 457–470.PubMedCrossRef
573.
Zurück zum Zitat Yang, C. Y., Chang, P. W., Hsu, W. H., Chang, H. C., Chen, C. L., Lai, C. C., Chiu, W. T., & Chen, H. C. (2019). Src and SHP2 coordinately regulate the dynamics and organization of vimentin filaments during cell migration. Oncogene, 38(21), 4075–4094.PubMedPubMedCentralCrossRef Yang, C. Y., Chang, P. W., Hsu, W. H., Chang, H. C., Chen, C. L., Lai, C. C., Chiu, W. T., & Chen, H. C. (2019). Src and SHP2 coordinately regulate the dynamics and organization of vimentin filaments during cell migration. Oncogene, 38(21), 4075–4094.PubMedPubMedCentralCrossRef
574.
Zurück zum Zitat Liu, S., Liu, L., Ye, W., Ye, D., Wang, T., Guo, W., et al. (2016). High Vimentin Expression Associated with Lymph Node Metastasis and Predicated a Poor Prognosis in Oral Squamous Cell Carcinoma. Scientific reports, 6, 38834.PubMedPubMedCentralCrossRef Liu, S., Liu, L., Ye, W., Ye, D., Wang, T., Guo, W., et al. (2016). High Vimentin Expression Associated with Lymph Node Metastasis and Predicated a Poor Prognosis in Oral Squamous Cell Carcinoma. Scientific reports, 6, 38834.PubMedPubMedCentralCrossRef
575.
Zurück zum Zitat Richardson, A. M., Havel, L. S., Koyen, A. E., Konen, J. M., Shupe, J., Wiles 4th, W. G., et al. (2018). Vimentin Is Required for Lung Adenocarcinoma Metastasis via Heterotypic Tumor Cell-Cancer-Associated Fibroblast Interactions during Collective Invasion. Clinical cancer research, 24(2), 420–432.PubMedCrossRef Richardson, A. M., Havel, L. S., Koyen, A. E., Konen, J. M., Shupe, J., Wiles 4th, W. G., et al. (2018). Vimentin Is Required for Lung Adenocarcinoma Metastasis via Heterotypic Tumor Cell-Cancer-Associated Fibroblast Interactions during Collective Invasion. Clinical cancer research, 24(2), 420–432.PubMedCrossRef
576.
Zurück zum Zitat Seltmann, K., Fritsch, A. W., Käs, J. A., & Magin, T. M. (2013). Keratins significantly contribute to cell stiffness and impact invasive behavior. Proceedings of the National Academy of Sciences of the United States of America, 110(46), 18507–18512.PubMedPubMedCentralCrossRef Seltmann, K., Fritsch, A. W., Käs, J. A., & Magin, T. M. (2013). Keratins significantly contribute to cell stiffness and impact invasive behavior. Proceedings of the National Academy of Sciences of the United States of America, 110(46), 18507–18512.PubMedPubMedCentralCrossRef
577.
Zurück zum Zitat Cheung, K. J., Gabrielson, E., Werb, Z., & Ewald, A. J. (2013). Collective invasion in breast cancer requires a conserved basal epithelial program. Cell, 155(7), 1639–1651.PubMedPubMedCentralCrossRef Cheung, K. J., Gabrielson, E., Werb, Z., & Ewald, A. J. (2013). Collective invasion in breast cancer requires a conserved basal epithelial program. Cell, 155(7), 1639–1651.PubMedPubMedCentralCrossRef
578.
Zurück zum Zitat Gao, X. L., Wu, J. S., Cao, M. X., Gao, S. Y., Cen, X., Jiang, Y. P., et al. (2017). Cytokeratin-14 contributes to collective invasion of salivary adenoid cystic carcinoma. PloS one, 12(2), e0171341.PubMedPubMedCentralCrossRef Gao, X. L., Wu, J. S., Cao, M. X., Gao, S. Y., Cen, X., Jiang, Y. P., et al. (2017). Cytokeratin-14 contributes to collective invasion of salivary adenoid cystic carcinoma. PloS one, 12(2), e0171341.PubMedPubMedCentralCrossRef
579.
Zurück zum Zitat Ju, J. H., Yang, W., Lee, K. M., Oh, S., Nam, K., Shim, S., et al. (2013). Regulation of cell proliferation and migration by keratin19-induced nuclear import of early growth response-1 in breast cancer cells. Clinical cancer research, 19(16), 4335–4346.PubMedCrossRef Ju, J. H., Yang, W., Lee, K. M., Oh, S., Nam, K., Shim, S., et al. (2013). Regulation of cell proliferation and migration by keratin19-induced nuclear import of early growth response-1 in breast cancer cells. Clinical cancer research, 19(16), 4335–4346.PubMedCrossRef
580.
Zurück zum Zitat Crowe, D. L., Milo, G. E., & Shuler, C. F. (1999). Keratin 19 downregulation by oral squamous cell carcinoma lines increases invasive potential. Journal of dental research, 78(6), 1256–1263.PubMedCrossRef Crowe, D. L., Milo, G. E., & Shuler, C. F. (1999). Keratin 19 downregulation by oral squamous cell carcinoma lines increases invasive potential. Journal of dental research, 78(6), 1256–1263.PubMedCrossRef
581.
Zurück zum Zitat Tang, J., Zhuo, H., Zhang, X., Jiang, R., Ji, J., Deng, L., Qian, X., Zhang, F., & Sun, B. (2014). A novel biomarker Linc00974 interacting with KRT19 promotes proliferation and metastasis in hepatocellular carcinoma. Cell death & disease, 5(12), e1549.CrossRef Tang, J., Zhuo, H., Zhang, X., Jiang, R., Ji, J., Deng, L., Qian, X., Zhang, F., & Sun, B. (2014). A novel biomarker Linc00974 interacting with KRT19 promotes proliferation and metastasis in hepatocellular carcinoma. Cell death & disease, 5(12), e1549.CrossRef
582.
Zurück zum Zitat Alix-Panabières, C., Vendrell, J. P., Slijper, M., Pellé, O., Barbotte, E., Mercier, G., et al. (2009). Full-length cytokeratin-19 is released by human tumor cells: a potential role in metastatic progression of breast cancer. Breast cancer research, 11(3), R39.PubMedPubMedCentralCrossRef Alix-Panabières, C., Vendrell, J. P., Slijper, M., Pellé, O., Barbotte, E., Mercier, G., et al. (2009). Full-length cytokeratin-19 is released by human tumor cells: a potential role in metastatic progression of breast cancer. Breast cancer research, 11(3), R39.PubMedPubMedCentralCrossRef
583.
Zurück zum Zitat Ding, S. J., Li, Y., Tan, Y. X., Jiang, M. R., Tian, B., Liu, Y. K., et al. (2004). From proteomic analysis to clinical significance: overexpression of cytokeratin 19 correlates with hepatocellular carcinoma metastasis. Molecular & cellular proteomics, 3(1), 73–81.CrossRef Ding, S. J., Li, Y., Tan, Y. X., Jiang, M. R., Tian, B., Liu, Y. K., et al. (2004). From proteomic analysis to clinical significance: overexpression of cytokeratin 19 correlates with hepatocellular carcinoma metastasis. Molecular & cellular proteomics, 3(1), 73–81.CrossRef
584.
Zurück zum Zitat Kabir, N. N., Rönnstrand, L., & Kazi, J. U. (2014). Keratin 19 expression correlates with poor prognosis in breast cancer. Molecular biology reports, 41(12), 7729–7735.PubMedCrossRef Kabir, N. N., Rönnstrand, L., & Kazi, J. U. (2014). Keratin 19 expression correlates with poor prognosis in breast cancer. Molecular biology reports, 41(12), 7729–7735.PubMedCrossRef
585.
Zurück zum Zitat Kim, H., Choi, G. H., Na, D. C., Ahn, E. Y., Kim, G. I., Lee, J. E., et al. (2011). Human hepatocellular carcinomas with "Stemness"-related marker expression: keratin 19 expression and a poor prognosis. Hepatology, 54(5), 1707–1717.PubMedCrossRef Kim, H., Choi, G. H., Na, D. C., Ahn, E. Y., Kim, G. I., Lee, J. E., et al. (2011). Human hepatocellular carcinomas with "Stemness"-related marker expression: keratin 19 expression and a poor prognosis. Hepatology, 54(5), 1707–1717.PubMedCrossRef
586.
Zurück zum Zitat Saloustros, E., Perraki, M., Apostolaki, S., Kallergi, G., Xyrafas, A., Kalbakis, K., et al. (2011). Cytokeratin-19 mRNA-positive circulating tumor cells during follow-up of patients with operable breast cancer: prognostic relevance for late relapse. Breast cancer research, 13(3), R60.PubMedPubMedCentralCrossRef Saloustros, E., Perraki, M., Apostolaki, S., Kallergi, G., Xyrafas, A., Kalbakis, K., et al. (2011). Cytokeratin-19 mRNA-positive circulating tumor cells during follow-up of patients with operable breast cancer: prognostic relevance for late relapse. Breast cancer research, 13(3), R60.PubMedPubMedCentralCrossRef
587.
Zurück zum Zitat Bambang, I. F., Lu, D., Li, H., Chiu, L. L., Lau, Q. C., Koay, E., & Zhang, D. (2009). Cytokeratin 19 regulates endoplasmic reticulum stress and inhibits ERp29 expression via p38 MAPK/XBP-1 signaling in breast cancer cells. Experimental cell research, 315(11), 1964–1974.PubMedCrossRef Bambang, I. F., Lu, D., Li, H., Chiu, L. L., Lau, Q. C., Koay, E., & Zhang, D. (2009). Cytokeratin 19 regulates endoplasmic reticulum stress and inhibits ERp29 expression via p38 MAPK/XBP-1 signaling in breast cancer cells. Experimental cell research, 315(11), 1964–1974.PubMedCrossRef
588.
Zurück zum Zitat Woelfle, U., Sauter, G., Santjer, S., Brakenhoff, R., & Pantel, K. (2004). Down-regulated expression of cytokeratin 18 promotes progression of human breast cancer. Clinical cancer research, 10(8), 2670–2674.PubMedCrossRef Woelfle, U., Sauter, G., Santjer, S., Brakenhoff, R., & Pantel, K. (2004). Down-regulated expression of cytokeratin 18 promotes progression of human breast cancer. Clinical cancer research, 10(8), 2670–2674.PubMedCrossRef
589.
Zurück zum Zitat Bordeleau, F., Galarneau, L., Gilbert, S., Loranger, A., & Marceau, N. (2010). Keratin 8/18 modulation of protein kinase C-mediated integrin-dependent adhesion and migration of liver epithelial cells. Molecular biology of the cell, 21(10), 1698–1713.PubMedPubMedCentralCrossRef Bordeleau, F., Galarneau, L., Gilbert, S., Loranger, A., & Marceau, N. (2010). Keratin 8/18 modulation of protein kinase C-mediated integrin-dependent adhesion and migration of liver epithelial cells. Molecular biology of the cell, 21(10), 1698–1713.PubMedPubMedCentralCrossRef
590.
Zurück zum Zitat Fortier, A. M., Asselin, E., & Cadrin, M. (2013). Keratin 8 and 18 loss in epithelial cancer cells increases collective cell migration and cisplatin sensitivity through claudin1 up-regulation. The Journal of biological chemistry, 288(16), 11555–11571.PubMedPubMedCentralCrossRef Fortier, A. M., Asselin, E., & Cadrin, M. (2013). Keratin 8 and 18 loss in epithelial cancer cells increases collective cell migration and cisplatin sensitivity through claudin1 up-regulation. The Journal of biological chemistry, 288(16), 11555–11571.PubMedPubMedCentralCrossRef
591.
Zurück zum Zitat Omary, M. B., Ku, N. O., Strnad, P., & Hanada, S. (2009). Toward unraveling the complexity of simple epithelial keratins in human disease. The Journal of clinical investigation, 119(7), 1794–1805.PubMedPubMedCentralCrossRef Omary, M. B., Ku, N. O., Strnad, P., & Hanada, S. (2009). Toward unraveling the complexity of simple epithelial keratins in human disease. The Journal of clinical investigation, 119(7), 1794–1805.PubMedPubMedCentralCrossRef
592.
Zurück zum Zitat Tan, H. S., Jiang, W. H., He, Y., Wang, D. S., Wu, Z. J., Wu, D. S., et al. (2017). KRT8 upregulation promotes tumor metastasis and is predictive of a poor prognosis in clear cell renal cell carcinoma. Oncotarget, 8(44), 76189–76203.PubMedPubMedCentralCrossRef Tan, H. S., Jiang, W. H., He, Y., Wang, D. S., Wu, Z. J., Wu, D. S., et al. (2017). KRT8 upregulation promotes tumor metastasis and is predictive of a poor prognosis in clear cell renal cell carcinoma. Oncotarget, 8(44), 76189–76203.PubMedPubMedCentralCrossRef
Metadaten
Titel
Targeting the cytoskeleton against metastatic dissemination
verfasst von
Carmen Ruggiero
Enzo Lalli
Publikationsdatum
20.01.2021
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1/2021
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-020-09936-0

Weitere Artikel der Ausgabe 1/2021

Cancer and Metastasis Reviews 1/2021 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.