Skip to main content
Erschienen in: Clinical and Experimental Medicine 3/2018

06.04.2018 | Original Article

The complex alteration in the network of IL-17-type cytokines in patients with hereditary angioedema

verfasst von: Francesco Arcoleo, Mariangela Lo Pizzo, Gabriella Misiano, Salvatore Milano, Giuseppina Colonna Romano, Vito Muggeo, Enrico Cillari

Erschienen in: Clinical and Experimental Medicine | Ausgabe 3/2018

Einloggen, um Zugang zu erhalten

Abstract

Hereditary angioedema (HAE) is a rare autosomic-dominant disorder characterized by a deficiency of C1 esterase inhibitor which causes episodic swellings of subcutaneous tissues, bowel walls and upper airways that are disabling and potentially life-threatening. We evaluated n = 17 patients with confirmed HAE diagnosis during attack and remission state and n = 19 healthy subjects. The samples were tested for a panel of IL (Interleukin)-17-type cytokines (IL-1β, IL-6, IL-10, granulocyte–macrophage colony stimulating factor (GM-CSF), IL-17, IL-21, IL-22, IL-23) and transforming growth factor-beta (TGF-β) subtypes. Data indicate that there are variations of cytokine levels in HAE subjects comparing the condition during the crisis respect to the value in the remission phase, in particular type 17 signature cytokines are increased, whereas IL-23 is unmodified and TGF-β3 is significantly reduced. When comparing healthy and HAE subjects in the remission state, we found a significant difference for IL-17, GM-CSF, IL-21, TGF-β1 and TGF-β2 cytokines. These results confirm and extend our previous findings indicating that in HAE there is operating an inflammatory activation process, which involves also T helper 17 (Th17) cytokines and TGF-β isoforms, associated with localized angioedema attacks and characterized by elevated bradykinin levels.
Literatur
1.
Zurück zum Zitat Agostoni A, Cicardi M. Hereditary and acquired C1-inhibitor deficiency: biological and clinical characteristics in 235 patients. Med (Baltimore). 1992;71(4):206–15.CrossRef Agostoni A, Cicardi M. Hereditary and acquired C1-inhibitor deficiency: biological and clinical characteristics in 235 patients. Med (Baltimore). 1992;71(4):206–15.CrossRef
2.
Zurück zum Zitat Cicardi M, Banerji A, Bracho F, et al. Icatibant, a new bradykinin-receptor antagonist, in hereditary angioedema. N Engl J Med. 2010;363(6):532–41.CrossRefPubMedPubMedCentral Cicardi M, Banerji A, Bracho F, et al. Icatibant, a new bradykinin-receptor antagonist, in hereditary angioedema. N Engl J Med. 2010;363(6):532–41.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Nussberger J, Cugno M, Amstutz C, Cicardi M, Pellacani A, Agostoni A. Plasma bradykinin in angio-oedema. Lancet. 1998;351:1693–7.CrossRefPubMed Nussberger J, Cugno M, Amstutz C, Cicardi M, Pellacani A, Agostoni A. Plasma bradykinin in angio-oedema. Lancet. 1998;351:1693–7.CrossRefPubMed
4.
Zurück zum Zitat Cugno M, Nussberger J, Cicardi M, Agostoni A. Bradykinin and the pathophysiology of angioedema. Int Immunopharmacol. 2003;3:311–7.CrossRefPubMed Cugno M, Nussberger J, Cicardi M, Agostoni A. Bradykinin and the pathophysiology of angioedema. Int Immunopharmacol. 2003;3:311–7.CrossRefPubMed
7.
Zurück zum Zitat Kusuma A, Relan A, Knulst AC, et al. Clinical impact of peripheral attacks in hereditary angioedema patients. Am J Med. 2012;125:937.e17–24.CrossRef Kusuma A, Relan A, Knulst AC, et al. Clinical impact of peripheral attacks in hereditary angioedema patients. Am J Med. 2012;125:937.e17–24.CrossRef
8.
Zurück zum Zitat Hofman ZLM, Relan A, Hack CE. Hereditary Angioedema attacks: local swelling at multiple sites. Clin Rev Allergy Immunol. 2016;50:34–40.CrossRefPubMed Hofman ZLM, Relan A, Hack CE. Hereditary Angioedema attacks: local swelling at multiple sites. Clin Rev Allergy Immunol. 2016;50:34–40.CrossRefPubMed
9.
Zurück zum Zitat Prematta MG, Kemp JG, Gibbs JG, Mende C, Rhoads C, Craig TJ. Fequency, timing, and type of prodromal symptoms associated with ereditary angioedema attacks. Allergy Asthma Proc. 2009;30:506–11.CrossRefPubMed Prematta MG, Kemp JG, Gibbs JG, Mende C, Rhoads C, Craig TJ. Fequency, timing, and type of prodromal symptoms associated with ereditary angioedema attacks. Allergy Asthma Proc. 2009;30:506–11.CrossRefPubMed
10.
Zurück zum Zitat Magerl M, Doumoulakis G, Kalkounou I, et al. Characterization of prodromal symptoms in a large population of patiets with hereditary angioedema. Clin Exp Dermatol. 2014;39:298–303.CrossRefPubMed Magerl M, Doumoulakis G, Kalkounou I, et al. Characterization of prodromal symptoms in a large population of patiets with hereditary angioedema. Clin Exp Dermatol. 2014;39:298–303.CrossRefPubMed
11.
Zurück zum Zitat Cillari E, Misiano G, Aricò M, et al. Modification of peripheral blood T-lymphocyte surface receptors and Langerhans cell numbers in hereditary angioedema. Am J Clin Pathol. 1986;85(3):305–11.CrossRefPubMed Cillari E, Misiano G, Aricò M, et al. Modification of peripheral blood T-lymphocyte surface receptors and Langerhans cell numbers in hereditary angioedema. Am J Clin Pathol. 1986;85(3):305–11.CrossRefPubMed
12.
Zurück zum Zitat Prada AE, Zahedi K, Davis AE. Regulation of C1 inhibitor synthesis. Immunobiology. 1998;199(2):377–88 (Review).CrossRefPubMed Prada AE, Zahedi K, Davis AE. Regulation of C1 inhibitor synthesis. Immunobiology. 1998;199(2):377–88 (Review).CrossRefPubMed
13.
Zurück zum Zitat Gluszko P, Undas A, Amenta S, Szczeklik A, Schmaier AH. Administration of gamma interferon in human subjects decreases plasminogen activation and fibrinolysis without influencing C1 inhibitor. J Lab Clin Med. 1994;123(2):232–40.PubMed Gluszko P, Undas A, Amenta S, Szczeklik A, Schmaier AH. Administration of gamma interferon in human subjects decreases plasminogen activation and fibrinolysis without influencing C1 inhibitor. J Lab Clin Med. 1994;123(2):232–40.PubMed
14.
Zurück zum Zitat Arcoleo F, Salemi M, La Porta A, et al. Upregulation of cytokines and IL-17 in patients with hereditary angioedema. Clin Chem Lab Med. 2014;52(5):e91–3.CrossRefPubMed Arcoleo F, Salemi M, La Porta A, et al. Upregulation of cytokines and IL-17 in patients with hereditary angioedema. Clin Chem Lab Med. 2014;52(5):e91–3.CrossRefPubMed
15.
Zurück zum Zitat Salemi M, Mandalà V, Muggeo V, et al. Growth factors and IL-17 in hereditary angioedema. Clin Exp Med. 2016;16(2):213–8.CrossRefPubMed Salemi M, Mandalà V, Muggeo V, et al. Growth factors and IL-17 in hereditary angioedema. Clin Exp Med. 2016;16(2):213–8.CrossRefPubMed
16.
Zurück zum Zitat Hofman ZLM, Relan A, Zeerleder S, Drouet C, Zuraw B, Hack CE. Angioedema attacks in patients with hereditary angioedema: local manifestations of a systemic activation process. J Allergy Clin Immunol. 2016;138:359–66.CrossRefPubMed Hofman ZLM, Relan A, Zeerleder S, Drouet C, Zuraw B, Hack CE. Angioedema attacks in patients with hereditary angioedema: local manifestations of a systemic activation process. J Allergy Clin Immunol. 2016;138:359–66.CrossRefPubMed
17.
Zurück zum Zitat Berrettini M, Lammle B, White T, et al. Detection of in vitro and in vivo cleavage of high molecular weight kininogen in human plasma by immunoblotting with monoclonal antibodies. Blood. 1986;68:455–61.PubMed Berrettini M, Lammle B, White T, et al. Detection of in vitro and in vivo cleavage of high molecular weight kininogen in human plasma by immunoblotting with monoclonal antibodies. Blood. 1986;68:455–61.PubMed
18.
Zurück zum Zitat Cua DJ, Tato CM. Innate IL-17 producing cells: the sentinels of the immune system. Nat Rev Immunol. 2010;10:479–89.CrossRefPubMed Cua DJ, Tato CM. Innate IL-17 producing cells: the sentinels of the immune system. Nat Rev Immunol. 2010;10:479–89.CrossRefPubMed
19.
Zurück zum Zitat Zuniga LA, Jain R, Haines C, Cua DJ. Th17 cell development: from the cradle to the grave. Immunol Rev. 2013;252:78–88.CrossRefPubMed Zuniga LA, Jain R, Haines C, Cua DJ. Th17 cell development: from the cradle to the grave. Immunol Rev. 2013;252:78–88.CrossRefPubMed
20.
Zurück zum Zitat Marks BR, Nowyhed HN, Choi JY, et al. Thymic self-reactivity selects natural interleukin 17-producing cells thet can regulate peripheral inflammation. Nat Immunol. 2009;10:1125–32.CrossRefPubMedPubMedCentral Marks BR, Nowyhed HN, Choi JY, et al. Thymic self-reactivity selects natural interleukin 17-producing cells thet can regulate peripheral inflammation. Nat Immunol. 2009;10:1125–32.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Romagnani S. Human Th17 cells. Arthr Res Therapy. 2008;10(2):206 (Review).CrossRef Romagnani S. Human Th17 cells. Arthr Res Therapy. 2008;10(2):206 (Review).CrossRef
22.
Zurück zum Zitat Acosta-Rodriguez EV, Rivino L, Geginat J, et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol. 2007;8(6):639–46.CrossRefPubMed Acosta-Rodriguez EV, Rivino L, Geginat J, et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol. 2007;8(6):639–46.CrossRefPubMed
23.
Zurück zum Zitat McGeachy MJ, Bak-Jensen KS, Chen Y, et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol. 2007;8(12):1390–7.CrossRefPubMed McGeachy MJ, Bak-Jensen KS, Chen Y, et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol. 2007;8(12):1390–7.CrossRefPubMed
24.
Zurück zum Zitat Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev Immunol. 2009;27:485–517 (Review).CrossRefPubMed Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev Immunol. 2009;27:485–517 (Review).CrossRefPubMed
26.
Zurück zum Zitat Korn T, Bettelli E, Gao W, et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature. 2001;448:484–7.CrossRef Korn T, Bettelli E, Gao W, et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature. 2001;448:484–7.CrossRef
27.
Zurück zum Zitat Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature. 2003;421:744–8.CrossRefPubMed Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature. 2003;421:744–8.CrossRefPubMed
28.
Zurück zum Zitat Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201:233–40.CrossRefPubMedPubMedCentral Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201:233–40.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Liang SC, Tan XY, Luxenberg DP, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med. 2006;203:2271–9.CrossRefPubMedPubMedCentral Liang SC, Tan XY, Luxenberg DP, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med. 2006;203:2271–9.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Alam MS, Maekawa Y, Kitamura A, et al. Notch signaling drives IL-22 secretion in CD4+ T cells by stimulating the aryl hydrocarbon receptor. Proc Natl Acad Sci USA. 2010;107:5943–8.CrossRefPubMed Alam MS, Maekawa Y, Kitamura A, et al. Notch signaling drives IL-22 secretion in CD4+ T cells by stimulating the aryl hydrocarbon receptor. Proc Natl Acad Sci USA. 2010;107:5943–8.CrossRefPubMed
31.
Zurück zum Zitat Zheng Y, Danilenko DM, Valdez P. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature. 2007;445:648–51.CrossRefPubMed Zheng Y, Danilenko DM, Valdez P. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature. 2007;445:648–51.CrossRefPubMed
32.
Zurück zum Zitat McGeachy MJ, Bak-Jensen KS, Chen Y, et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10by T cells and restrain Th17 cell-mediated pathology. Nat Immunol. 2007;8:1390–7.CrossRefPubMed McGeachy MJ, Bak-Jensen KS, Chen Y, et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10by T cells and restrain Th17 cell-mediated pathology. Nat Immunol. 2007;8:1390–7.CrossRefPubMed
33.
Zurück zum Zitat Esplugues E, Huber S, Gagliani N, et al. Control of Th17cells occurs in the small intestine. Nature. 2011;465:514–8.CrossRef Esplugues E, Huber S, Gagliani N, et al. Control of Th17cells occurs in the small intestine. Nature. 2011;465:514–8.CrossRef
34.
Zurück zum Zitat McGeachy MJ, Chen Y, Tato CM, et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17—producing effector T helper cells in vivo. Nat Immunol. 2009;10:314–24.CrossRefPubMedPubMedCentral McGeachy MJ, Chen Y, Tato CM, et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17—producing effector T helper cells in vivo. Nat Immunol. 2009;10:314–24.CrossRefPubMedPubMedCentral
35.
36.
Zurück zum Zitat Chen Y, Langrish CL, McKenzie B, et al. Anti IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Investig. 2006;116:1317–26.CrossRefPubMed Chen Y, Langrish CL, McKenzie B, et al. Anti IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Investig. 2006;116:1317–26.CrossRefPubMed
37.
Zurück zum Zitat Chackerian AA, Chen SJ, Brodie SJ, et al. Neutralization or absence of interleukin 23 pathway does not compromise immunity to mycobacterial infection. Infect Immun. 2006;74:6092–9.CrossRefPubMedPubMedCentral Chackerian AA, Chen SJ, Brodie SJ, et al. Neutralization or absence of interleukin 23 pathway does not compromise immunity to mycobacterial infection. Infect Immun. 2006;74:6092–9.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Lieberman LA, Cardillo F, Owyang AM, et al. IL 23 provides a limited meccanism of resistance to acute toxoplasmosis in the absence of IL-12. J Immunol. 2004;173:1887–93.CrossRefPubMed Lieberman LA, Cardillo F, Owyang AM, et al. IL 23 provides a limited meccanism of resistance to acute toxoplasmosis in the absence of IL-12. J Immunol. 2004;173:1887–93.CrossRefPubMed
39.
Zurück zum Zitat Roncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings MK. Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev. 2006;212:28–50.CrossRefPubMed Roncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings MK. Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev. 2006;212:28–50.CrossRefPubMed
41.
Zurück zum Zitat Leipe J, Grunke M, Dechant C, et al. Role of Th17 cells in human autoimmune arthritis. Arthr Rheumatol. 2010;62(10):2876–85.CrossRef Leipe J, Grunke M, Dechant C, et al. Role of Th17 cells in human autoimmune arthritis. Arthr Rheumatol. 2010;62(10):2876–85.CrossRef
42.
Zurück zum Zitat Chen W, Jin W, Hardegen N, et al. Conversion of peripheral CD4+ CD25- naive T cells to CD4+ CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med. 2003;198(12):1875–86.CrossRefPubMedPubMedCentral Chen W, Jin W, Hardegen N, et al. Conversion of peripheral CD4+ CD25- naive T cells to CD4+ CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med. 2003;198(12):1875–86.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Bas M, Adams V, Suvorava T, Niehues T, Hoffmann TK, Kojda G. Nonallergic angioedema: role of bradykinin. Allergy. 2007;10:842–56.CrossRef Bas M, Adams V, Suvorava T, Niehues T, Hoffmann TK, Kojda G. Nonallergic angioedema: role of bradykinin. Allergy. 2007;10:842–56.CrossRef
44.
Zurück zum Zitat Pan ZK, Zuraw BL, Lung CC, Prossnitz ER, Browning DD, Ye RD. Bradykinin stimulates NF-kappaB activation and interleukin 1-beta gene expression in cultured human fibroblasts. J Clin Investig. 1996;98:2042–9.CrossRefPubMed Pan ZK, Zuraw BL, Lung CC, Prossnitz ER, Browning DD, Ye RD. Bradykinin stimulates NF-kappaB activation and interleukin 1-beta gene expression in cultured human fibroblasts. J Clin Investig. 1996;98:2042–9.CrossRefPubMed
45.
Zurück zum Zitat Brovkovych V, Zhang Y, Brovkovych S, Minshall RD, Skidgel RA. A novel pathway for receptor-mediated post-translational activation of inducible nitric oxide synthase. J Cell Mol Med. 2011;15:258–69.CrossRefPubMed Brovkovych V, Zhang Y, Brovkovych S, Minshall RD, Skidgel RA. A novel pathway for receptor-mediated post-translational activation of inducible nitric oxide synthase. J Cell Mol Med. 2011;15:258–69.CrossRefPubMed
47.
Zurück zum Zitat Uzawa A, Mori M, Taniguchi J, Kuwabara S. Modulation of kallikrein/kinin system by the angiotensin-converting enzyme inhibitor alleviates experimental autoimmune encephalomyelitis. Clin Exp Immunol. 2014;178:245–52.CrossRefPubMedPubMedCentral Uzawa A, Mori M, Taniguchi J, Kuwabara S. Modulation of kallikrein/kinin system by the angiotensin-converting enzyme inhibitor alleviates experimental autoimmune encephalomyelitis. Clin Exp Immunol. 2014;178:245–52.CrossRefPubMedPubMedCentral
Metadaten
Titel
The complex alteration in the network of IL-17-type cytokines in patients with hereditary angioedema
verfasst von
Francesco Arcoleo
Mariangela Lo Pizzo
Gabriella Misiano
Salvatore Milano
Giuseppina Colonna Romano
Vito Muggeo
Enrico Cillari
Publikationsdatum
06.04.2018
Verlag
Springer International Publishing
Erschienen in
Clinical and Experimental Medicine / Ausgabe 3/2018
Print ISSN: 1591-8890
Elektronische ISSN: 1591-9528
DOI
https://doi.org/10.1007/s10238-018-0499-0

Weitere Artikel der Ausgabe 3/2018

Clinical and Experimental Medicine 3/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.