Skip to main content
Erschienen in: Journal of Orthopaedic Surgery and Research 1/2020

Open Access 01.12.2020 | Research article

The one-in-all diagnostic value of 99mTc-MDP bone scan combining with single-photon emission tomography (SPECT)/CT imaging in spinal osteoblastoma

verfasst von: Wenhui Ma, Zhiyong Quan, Jing Wang, Xiangdong Li, Guoquan Li

Erschienen in: Journal of Orthopaedic Surgery and Research | Ausgabe 1/2020

Abstract

Background

Osteoblastoma (OB) is an intermediate lesion, which makes the accurate preoperative diagnosis very important. 99mTc-methylene diphosphonate (99mTc-MDP) bone scan and SPECT/CT imaging were evaluated for their diagnostic value in spinal OB.

Methods

This study was a retrospective analysis of patients with spinal OB lesions confirmed by pathology and diagnosed with bone scan and SPECT/CT for preoperative diagnosis from January 2008 to December 2018. The uptake levels of OB on planar bone scan were divided into low, medium, and high groups by visual assessment referring to the uptake of the normal rib, spine, and bladder. X-ray, CT, MRI, bone scan, and SPECT/CT imaging of the patients were analyzed for characteristics summary.

Results

Twenty-five patients were diagnosed for spinal OB (17 males and 8 females with a proportion of 2.1:1), and the average age was 26.8 ± 10.8 years (range 5~59). There were 8 lesions located in the cervical, 6 in the thoracic, and 11 in the lumbar vertebrae. Twenty-four lesions involved posterior elements, especially the pedicles (14/25). Symptoms were predominantly painful with a duration of 18.3 ± 13.9 months (range 0.5~60 months). The lesion size ranged from 9 to 35 mm. All the lesions were low to high uptake in the planar bone scan, and the percentages of low to high levels were 1 (4%), 8 (32%), and 16 (64%) cases.

Conclusions

Spinal OB mainly involved the posterior area, and elderly patients should be considered as well. SPECT/CT combined the characteristics of bone uptake and anatomical features of bone tumors, proving its one-in-all diagnostic value for spinal OB and other osteogenic tumors.
Hinweise
Wenhui Ma and Zhiyong Quan contributed equally to this work.
A correction to this article is available online at https://​doi.​org/​10.​1186/​s13018-020-01738-y.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
99mTc-MDP
99mTc-methylene diphosphonate
AP
Anterior approach
BS
Bone scan
CT
Computed tomography
MRI
Magnetic resonance imaging
OB
Osteoblastoma
OO
Osteoid osteoma
PA
Posterior approach
RFA
Radiofrequency ablation
SPECT
Single-photon emission tomography

Introduction

Osteoblastoma (OB) is a rare and primary bone neoplasm which was first described by Jaffe and Lichtenstein in the 1950s, accounting for 1% of all primary bone tumors and around 3% of benign bone tumors [13]. OB is commonly located in the spine (35–50%) and usually in the posterior elements. Other frequently involved sites are the femur (16.4%), humerus (7%), and tibia (6%) [2]. OB is histological similar to osteoid osteoma (OO) but differs in size and more aggressive than OO biologically and can infiltrate extraskeletal tissues. When the diameter of lesions exceeds 1.5 cm, the diagnosis is highly suggestive of OB [46]. Malignant transformation in 12–25% of lesions has been described in the literature [7, 8]. Spinal OB most commonly affects the posterior aspects of the spine (laminae, pedicles, or spinous processes). The main clinical manifestations are of neurological nature and include progressive focal or radicular pain exacerbated by movement [6, 9]. Surgical resection is the main treatment method with high recurrence rates debated by the subtotal resection [1012]. The effective treatment of spinal OB relies on precise diagnosis based on a crucial image. However, the radiographic features of OB can differ according to its location and type.
The diagnostic methods for spinal OB mainly include plain X-ray, computed tomography (CT), magnetic resonance imaging (MRI), and bone scan (BS). Plain radiography is usually the first diagnostic approach but has low sensitivity [13]. It often fails to reveal the tumor because of their relatively small size and complex anatomy around the vertebral column. The average delay in diagnosis is approximately 18–24 months in reports [7]. CT can present OB as a sclerotic or osteolytic expansive lesion with a central nidus and surrounding reactive soft tissue change. Sometimes, the presence of bone marrow and soft tissue changes of OB is characterized by a hypointense signal on T1-weighted sequence and high signal on T2-weighted in MRI, whereas 99mTc-methylene diphosphonate (99mTc-MDP) bone scan is commonly used in OB diagnosis because of its osteogenic feature, especially for those with ambiguous or negative radiographic results. It is especially helpful in children since the exact site of pain is difficult to elicit. However, the limitation of the planar bone scan results from false negative. It is hard to differentiate with another osteogenic disease especially in the diagnostic specificity and reduced sensitivity for bone marrow disease. Thus, the specificity of bone scan remains a concern.
By combining functional and anatomical information in a single imaging method, SPECT/CT gained widespread popularity in the last few years and has become a one-stop cancer imaging modality [14]. A few case reports have also demonstrated the usefulness of 99mTc-MDP SPECT/CT for the diagnosis of osteoid osteoma but not OB [1517]. However, to date, there is no systematic study evaluating the utility of 99mTc-MDP SPECT/CT in spinal osteoblastoma. Therefore, we evaluated the role of SPECT/CT as a one-in-all imaging modality for the diagnosis of spinal OB in this study.

Materials and methods

Twenty-five patients were confirmed as spinal OB in histopathology and treated from January 2008 to December 2018. All procedures were in accordance with the ethics committee of Xijing Hospital and with the Helsinki Declaration of 1975 (revised in 2008). All patients were investigated by the following imaging resources performed in our hospital: plain X-rays, CT scan, MRI, bone scan, and SPECT/CT. Two experienced radiologists and nuclear medicine physicians reviewed the imaging results respectively.

Radiotracer injection, planar bone scanning, and SPECT/CT acquisition

The patients were intravenously injected with ~ 10 MBq/kg (260–300 μCi/kg) of 99mTc-MDP for planar BS and SPECT/CT imaging. Images were acquired on SPECT/CT dual-head gamma camera (Symbia T2 or GE670, USA). Parallel-hole and low-energy high-resolution collimators were used with a 140-keV photopeak and a 20% symmetrical window. Delayed planar BS was performed 3~4 h after radiotracer injection. Anterior and posterior whole-body planar images were acquired in a continuous mode with the patient in the supine position (matrix 256 × 1024). The acquisition orbits of SPECT/CT were body contour orbits over 360° arcs, each of 6° for 60 stops. Emission data were acquired for 15 s per stop. The image acquisition matrix was 128 × 128.

Processing and analysis of images

All studies were uniformly processed with commercially available E.soft software (Siemens, USA) on a Syngo nuclear medicine workstation (Siemens, USA). SPECT images were reconstructed with the Flash-3D software (Siemens Medical Solutions, USA) with 8 subsets and 4 iterations. Subsequently, tomographic slices were generated and displayed as transaxial, coronal, and sagittal slices. SPECT emission images were co-registered and fused with CT images using the object versus the target matrix method.

Image interpretation

X-ray, CT, and MR images were evaluated by two experienced radiologists. The imaging features of the lesions were recorded such as tumor nidus, surrounding sclerosis, signal changes of the lesion, and surrounding tissues. Planar bone scan and SPECT/CT images were analyzed by two experienced nuclear medicine physicians. The readers were aware of the patients’ clinical information but were blind to other imaging findings. The interpreters visually divided the relative uptake of lesions into four levels, negative uptake as the background, low uptake as the ribs, medium uptake as the spine, and high uptake as the bladder (Fig. 1) [18]. For SPECT/ CT, OB was diagnosed based on abnormal focal uptake and SPECT along with specific features on CT.

Surgical treatment

The procedure was performed under general anesthesia. The surgical method (posterior approach, anterior approach, or combined approach) was selected based on the location and range of the lesion. The posterior approach (PA) was chosen if the lesion involved posterior elements of the spine, such as laminae, pedicles, or the transverse and spinous processes. Anterior approach (AA) and combined approach (AA+PA) should be taken into consideration if the lesion involved vertebral body. The treatment approach, length of stay, duration of the surgery, and blood loss were recorded.

Results

Patient characteristics

Twenty-five patients (17 males and 8 females) with a mean age of 26.8 ± 10.8 years (range, 5–59 years) were scanned with the 99mTc-MDP planar bone scan and SPECT/CT to detect spinal OB. Although 80~90% of cases are diagnosed before 30 years of age reported in the literature, 36% of patients (9/25) in our study were diagnosed after 30 years old. There were 8 lesions located in the cervical vertebra, 6 lesions in the thoracic vertebra, and 11 lesions in the lumbar vertebra. According to the location, OB usually involved the posterior area of the spine (24/25), especially in the pedicle of the vertebral arch (14/25). The symptom caused by OB was usually pain with or without numbness or weakness. The duration of the symptom was 18.3 ± 13.9 months (range, 0.5~60 months) depending on the lesion’s location, treatment methods, and individual tolerance level. The characteristics of the patients were demonstrated in Table 1.
Table 1
Patient demographics, location of spinal OB, symptoms, and duration of symptoms
https://static-content.springer.com/image/art%3A10.1186%2Fs13018-020-01653-2/MediaObjects/13018_2020_1653_Tab1_HTML.png

Imaging results

The imaging appearance of OB commonly mimics that of osteoid osteoma. However, it is usually larger in size (> 2 cm) and may have aggressive features according to the World Health Organization definitions published in 2013. The diameter of lesions in this study was from 9 to 35 mm. The imaging features with a detailed description of X-ray, CT, MRI, planar bone scan, and SPECT/CT were shown in Table 2.
Table 2
Imaging findings with more specific descriptions of the abnormalities
https://static-content.springer.com/image/art%3A10.1186%2Fs13018-020-01653-2/MediaObjects/13018_2020_1653_Tab2_HTML.png
The radiographic features in classic OB include a well-circumscribed, osteolytic-osteosclerotic lesion with an expansive, scalloped, or lobulated appearance. The detection of OB in the axial skeleton, complex anatomy, and adjacent articular region was limited on account of the superposition of other structures. Therefore, the imaging findings on X-ray usually included uneven density and expansive changes, making it difficult to distinguish from other lesions. CT is considered as the diagnostic modality of choice for tumor detection, which is based on the demonstration imaging features such as central nidus with surrounding sclerosis (Fig. 2). It could accurately show the extent of the lesion, presence or absence of matrix mineralization, location of the lesion (i.e., cortical or medullary) and surrounding bone changes. Sometimes there is erosion of the cortex, and a common finding is the presence of a sclerotic rim representing a reaction from the bone and periosteum. MR may overestimate the aggressiveness of OB, due to the associated marked inflammation or edema illustrated as “flare response” (Fig. 2). MRI features were non-specific with typically low to isointense T1- and T2-weighted signal, decreased signal due to matrix calcification (if present), and intense enhancement representing the highly vascular nature of the lesion.
OB belongs to osteogenic lesions, and all 25 patients were found to have spinal lesions with positive 99mTc-MDP uptake (low~high level) result in BS (Table 2). The number of patients with low-, medium-, and high-level uptake in planar BS was 1 (4%), 8 (32%), and 16 (64%), respectively. SPECT/CT was a much more specific and valuable modality in the differential diagnosis of pathologic osseous conditions. The morphologic CT appearance of the scintigraphic positive lesion could achieve accurate differentiation between benign lesions and metastases based on the whole-body bone scan.
Malignant characteristics may occur in OB lesions sometimes, such as thinning, erosion of the cortex, and associated soft tissue mass. For example, patient no. 24 was diagnosed with tuberculosis based on CT with atypical imaging features and unclear boundary with surrounding tissue. Meantime, MRI showed defects in the bone lesion and exaggerated peripheral response especially when the bone lesion was small, so the initial diagnosis was left lumbar curvature. Patient no. 17 (Fig. 3) and 21 displayed transverbrate lesions, indicating malignancy, which may also lead to a misdiagnosis as a metastatic lesion.

Surgical results

The symptoms, operative time, blood loss, and treatment approach of the patients were summarized in Table 3. The mean operative time was 202.0 ± 22.4 min (range, 120~360 min), and the average blood loss was 656.0 ± 428.2 mL (range, 100~4000 mL). The range of blood transfusion was 370~1420 mL. The mean length of hospital stay was 15.9 ± 5.8 days (range, 8~24 days). The symptoms of the pain were obviously relieved in the majority of the patients immediately after surgery. There were no leakage of cerebrospinal fluid, infectious complications, and neurological injury during the procedure. Histology confirmed OB in all patients after the surgery.
Table 3
Brief summary of spinal OB’s surgical treatment
 
Value
Length of stay (days)
15.9 ± 5.8
Duration of the procedure (min)
202.0 ± 22.4
Blood loss (mL)
656.0 ± 428.6
Treatment approach
PA (23), PA + AA (2)
Red blood cell transfusion (IU)
4 ~ 10
Serum transfusion (mL)
370 ~ 1420

Discussion

Osteoblastoma occurs rarely in people older than 50 years of age, but sporadic cases of adulthood were described in the literature [2, 7, 19, 20]. In our study, four patients’ age was older than 40 years old, and the oldest age was up to 59 years old. Therefore, OB is not a young person’s exclusive illness. OB should be considered in the differential diagnosis of bone lesions of the spine in adulthood and in the elderly (which includes osteoblastic metastases like prostate and breast, vertebral hemangioma, osteochondroma, giant cell tumor, chondrosarcoma, chordoma, osteogenic sarcoma, or Paget disease) to reach a diagnosis rapidly and to avoid a delay in the definitive treatment.
CT is best for the observation of the fine structure, the intensity of cortical destruction, and the formation of a bone shell and soft tissue masses. A round or oval lytic lesion with soft tissue or hyperdense nidus surrounded by variable amounts of osteosclerosis was taken as positive imaging features for OB on CT [21]. According to our study, the spinal lesions usually involve the transverse process and the spinous process. OB cases (Fig. 4) may mimic malignancy, particularly when there was expansion, destruction of the bone cortex, new periosteal bone formation, or involving more than one vertebra. The aggressive nature of OB was also well illustrated in a study by Raskas et al., in which 56.6% of OB invaded the epidural space. However, the features occurred in none of 159 OO [22, 23]. If the radiologic findings suggest an aggressive lesion, biopsy should be done, including the periphery of the tumor or the cortical bone surrounding the tumor. MRI has a limited role in primary osseous tumors, because it poorly visualizes the bone marrow which can result in an inaccurate diagnosis of aggressive or malignant lesions [24]. Some patients were misdiagnosed with inflammatory diseases based on the less defined margin between osseous and soft tissues. Prevalent diffusion in young patients is probably due to the greater activity of osteoblasts, but the stromal component could explain the presentation.
Bone scintigraphy combined with CT or MRI becomes the most common method to diagnose and follow up skeletal metastases. However, using hybrid SPECT/CT can improve the specificity in cancer patients by accurately differentiating uptake between benign and malignant sites. Most patients with skeletal muscle metastases generally had markedly widespread involvement which led to an unusual appearance on SPECT/CT imaging. In spite of benign pathologic characteristics of OB, intense glucose metabolism of the tumor on FDG PET/CT suggested a malignancy [25]. Moreover, SPECT/CT provided an accurate identification of tumor viability that was useful for differential diagnosis, treatment planning, and follow-up. Osteoproliferative sclerosis needs to be differentiated from bone infection or osteosarcoma [26]. Both of them can be characterized by extensive bone sclerosis and involving soft tissue change. It was unique to find out whether there is a classical tumor nest. MRI showed a low or mixed signal and needs to be differentiated from chondroblastoma. When OB was associated with an aneurysmal bone cyst, it indicated a hybrid signal in MRI or mixed density on CT. Because of overlapping clinical and pathologic features between OB and OO, differential diagnosis is often unclear and difficult [27]. OB exacerbates pain that is non-responsive to non-steroidal anti-inflammatory drugs, and it usually—but not always—involves axial skeleton. There were certain defects in the lesions according to their diameter or size, such as unclear tumor boundaries, incomplete cortical bones or tumor infiltration through the intervertebral space into the spinal canal, fluid-level or secondary aneurysmal bone cysts, or lesions growing. Whether or not the diameter is bigger than 2 cm, OB should be considered. Aggressive behavior is within the biologic spectrum of OB, and histopathology alone does not appear to be a reliable predictor. Some patients may benefit from SPECT/CT in the following therapy.
The treatment option for OB mainly depends on its size and location. RFA is still a debatable procedure for the management of OB [28]. Surgery represents the first-line treatment in OB because it is the only strategy that ensures complete disease healing. Surgery decreases the risk of local recurrence and enables us to offer the best quality of life in correlation with life expectancy considering the fact that it mainly afflicts young people [29]. Since this study was a retrospective analysis, the incomplete data and low incidence rate of OB made a large number of studies necessary in the future. However, orthopedic oncology surgeons become more and more dependent on the accurate diagnoses of bone tumors with planar scanning and SPECT/CT.

Conclusions

Spinal OB mainly involved the posterior area, and middle-aged or elderly patients should be considered as well. SPECT/CT combined the characteristics of bone uptake and anatomical features of bone tumors, indicating an excellent way for one-in-all diagnosis and differentiation of spinal OB and other osteogenic tumors. With the popularity of SPECT/CT, it will show great potential for diagnosing the ambiguous bone disease and be helpful for further treatment in the future.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 81601521). The authors wish to thank Guiyu Li, Keke Xin, and Zhiping Yang from the Fourth Military Medical University for the image work.
All procedures were in accordance with the ethics committee of Xijing Hospital and with the Helsinki Declaration of 1975 (revised in 2008).
All authors have approved for the publication.

Competing interests

The authors declare no competing financial interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Lichtenstein L. Benign osteoblastoma; a category of osteoid-and bone-forming tumors other than classical osteoid osteoma, which may be mistaken for giant-cell tumor or osteogenic sarcoma. Cancer. 1956;9(5):1044–52.CrossRef Lichtenstein L. Benign osteoblastoma; a category of osteoid-and bone-forming tumors other than classical osteoid osteoma, which may be mistaken for giant-cell tumor or osteogenic sarcoma. Cancer. 1956;9(5):1044–52.CrossRef
2.
Zurück zum Zitat Yalcinkaya U, Doganavsargil B, Sezak M, Kececi B, Argin M, Basdemir G, Oztop F. Clinical and morphological characteristics of osteoid osteoma and osteoblastoma: a retrospective single-center analysis of 204 patients. Ann Diagn Pathol. 2014;18(6):319–25.CrossRef Yalcinkaya U, Doganavsargil B, Sezak M, Kececi B, Argin M, Basdemir G, Oztop F. Clinical and morphological characteristics of osteoid osteoma and osteoblastoma: a retrospective single-center analysis of 204 patients. Ann Diagn Pathol. 2014;18(6):319–25.CrossRef
3.
Zurück zum Zitat Li Z, Zhao Y, Hou S, Mao N, Yu S, Hou T. Clinical features and surgical management of spinal osteoblastoma: a retrospective study in 18 cases. PLoS One. 2013;8(9):e74635.CrossRef Li Z, Zhao Y, Hou S, Mao N, Yu S, Hou T. Clinical features and surgical management of spinal osteoblastoma: a retrospective study in 18 cases. PLoS One. 2013;8(9):e74635.CrossRef
4.
Zurück zum Zitat Chotel F, Franck F, Solla F, Dijoud F, Kohler R, Berard J, Abelin Genevois K. Osteoid osteoma transformation into osteoblastoma: fact or fiction? Orthop Traumatol Surg Res. 2012;98(6 Suppl):S98–104.CrossRef Chotel F, Franck F, Solla F, Dijoud F, Kohler R, Berard J, Abelin Genevois K. Osteoid osteoma transformation into osteoblastoma: fact or fiction? Orthop Traumatol Surg Res. 2012;98(6 Suppl):S98–104.CrossRef
5.
Zurück zum Zitat Youssef BA, Haddad MC, Zahrani A, Sharif HS, Morgan JL, al-Shahed M, al-Sabty A, Choudary R. Osteoid osteoma and osteoblastoma: MRI appearances and the significance of ring enhancement. Eur Radiol. 1996;6(3):291–6. Youssef BA, Haddad MC, Zahrani A, Sharif HS, Morgan JL, al-Shahed M, al-Sabty A, Choudary R. Osteoid osteoma and osteoblastoma: MRI appearances and the significance of ring enhancement. Eur Radiol. 1996;6(3):291–6.
6.
Zurück zum Zitat Samdani A, Torre-Healy A, Chou D, Cahill AM, Storm PB. Treatment of osteoblastoma at C7: a multidisciplinary approach. A case report and review of the literature. Eur Spine J. 2009;18(Suppl 2):196–200.CrossRef Samdani A, Torre-Healy A, Chou D, Cahill AM, Storm PB. Treatment of osteoblastoma at C7: a multidisciplinary approach. A case report and review of the literature. Eur Spine J. 2009;18(Suppl 2):196–200.CrossRef
7.
Zurück zum Zitat Boriani S, Amendola L, Bandiera S, Simoes CE, Alberghini M, Di Fiore M, Gasbarrini A. Staging and treatment of osteoblastoma in the mobile spine: a review of 51 cases. Eur Spine J. 2012;21(10):2003–10.CrossRef Boriani S, Amendola L, Bandiera S, Simoes CE, Alberghini M, Di Fiore M, Gasbarrini A. Staging and treatment of osteoblastoma in the mobile spine: a review of 51 cases. Eur Spine J. 2012;21(10):2003–10.CrossRef
8.
Zurück zum Zitat Weber MA, Sprengel SD, Omlor GW, Lehner B, Wiedenhofer B, Kauczor HU, Rehnitz C. Clinical long-term outcome, technical success, and cost analysis of radiofrequency ablation for the treatment of osteoblastomas and spinal osteoid osteomas in comparison to open surgical resection. Skeletal Radiol. 2015;44(7):981–93.CrossRef Weber MA, Sprengel SD, Omlor GW, Lehner B, Wiedenhofer B, Kauczor HU, Rehnitz C. Clinical long-term outcome, technical success, and cost analysis of radiofrequency ablation for the treatment of osteoblastomas and spinal osteoid osteomas in comparison to open surgical resection. Skeletal Radiol. 2015;44(7):981–93.CrossRef
9.
Zurück zum Zitat Lucas DR. Osteoblastoma. Arch Pathol Lab Med. 2010;134(10):1460–6.PubMed Lucas DR. Osteoblastoma. Arch Pathol Lab Med. 2010;134(10):1460–6.PubMed
10.
Zurück zum Zitat Marsh BW, Bonfiglio M, Brady LP, Enneking WF. Benign osteoblastoma: range of manifestations. J Bone Joint Surg Am. 1975;57(1):1–9.CrossRef Marsh BW, Bonfiglio M, Brady LP, Enneking WF. Benign osteoblastoma: range of manifestations. J Bone Joint Surg Am. 1975;57(1):1–9.CrossRef
11.
Zurück zum Zitat Harrop JS, Schmidt MH, Boriani S, Shaffrey CI. Aggressive “benign” primary spine neoplasms: osteoblastoma, aneurysmal bone cyst, and giant cell tumor. Spine (Phila Pa 1976). 2009;34(22 Suppl):S39–47.CrossRef Harrop JS, Schmidt MH, Boriani S, Shaffrey CI. Aggressive “benign” primary spine neoplasms: osteoblastoma, aneurysmal bone cyst, and giant cell tumor. Spine (Phila Pa 1976). 2009;34(22 Suppl):S39–47.CrossRef
12.
Zurück zum Zitat Galgano MA, Goulart CR, Iwenofu H, Chin LS, Lavelle W, Mendel E. Osteoblastomas of the spine: a comprehensive review. Neurosurg Focus. 2016;41(2):E4.CrossRef Galgano MA, Goulart CR, Iwenofu H, Chin LS, Lavelle W, Mendel E. Osteoblastomas of the spine: a comprehensive review. Neurosurg Focus. 2016;41(2):E4.CrossRef
13.
Zurück zum Zitat Greenspan A. Benign bone-forming lesions: osteoma, osteoid osteoma, and osteoblastoma. Clinical, imaging, pathologic, and differential considerations. Skeletal Radiol. 1993;22(7):485–500.CrossRef Greenspan A. Benign bone-forming lesions: osteoma, osteoid osteoma, and osteoblastoma. Clinical, imaging, pathologic, and differential considerations. Skeletal Radiol. 1993;22(7):485–500.CrossRef
14.
Zurück zum Zitat Abikhzer G, Keidar Z. SPECT/CT and tumour imaging. Eur J Nucl Med Mol Imaging. 2014;41(Suppl 1):S67–80.CrossRef Abikhzer G, Keidar Z. SPECT/CT and tumour imaging. Eur J Nucl Med Mol Imaging. 2014;41(Suppl 1):S67–80.CrossRef
15.
Zurück zum Zitat Hephzibah J, Theodore B, Oommen R, David K, Moses V, Shah S, Panicker J. Use of single-photon emission computed tomography/low-resolution computed tomography fusion imaging in detecting an unusually presenting osteoid osteoma of the lumbar vertebra. Am J Orthop (Belle Mead NJ). 2009;38(3):117–9. Hephzibah J, Theodore B, Oommen R, David K, Moses V, Shah S, Panicker J. Use of single-photon emission computed tomography/low-resolution computed tomography fusion imaging in detecting an unusually presenting osteoid osteoma of the lumbar vertebra. Am J Orthop (Belle Mead NJ). 2009;38(3):117–9.
16.
Zurück zum Zitat Farid K, El-Deeb G, Caillat Vigneron N. SPECT-CT improves scintigraphic accuracy of osteoid osteoma diagnosis. Clin Nucl Med. 2010;35(3):170–1.CrossRef Farid K, El-Deeb G, Caillat Vigneron N. SPECT-CT improves scintigraphic accuracy of osteoid osteoma diagnosis. Clin Nucl Med. 2010;35(3):170–1.CrossRef
17.
Zurück zum Zitat Xing Y, Zhao J, Wang T. A case of paranasal sinuses osteoma detected on bone SPECT/CT. Clin Nucl Med. 2011;36(3):224–6.CrossRef Xing Y, Zhao J, Wang T. A case of paranasal sinuses osteoma detected on bone SPECT/CT. Clin Nucl Med. 2011;36(3):224–6.CrossRef
18.
Zurück zum Zitat Helms CA. Osteoid osteoma. The double density sign. Clin Orthop Relat Res. 1987;222:167–73. Helms CA. Osteoid osteoma. The double density sign. Clin Orthop Relat Res. 1987;222:167–73.
19.
Zurück zum Zitat Jiang L, Liu XG, Wang C, Yang SM, Liu C, Wei F, Wu FL, Zhou H, Dang L, Liu ZJ. Surgical treatment options for aggressive osteoblastoma in the mobile spine. Eur Spine J. 2015;24(8):1778–85.CrossRef Jiang L, Liu XG, Wang C, Yang SM, Liu C, Wei F, Wu FL, Zhou H, Dang L, Liu ZJ. Surgical treatment options for aggressive osteoblastoma in the mobile spine. Eur Spine J. 2015;24(8):1778–85.CrossRef
20.
Zurück zum Zitat Lucas DR, Unni KK, McLeod RA, O’Connor MI, Sim FH. Osteoblastoma: clinicopathologic study of 306 cases. Hum Pathol. 1994;25(2):117–34.CrossRef Lucas DR, Unni KK, McLeod RA, O’Connor MI, Sim FH. Osteoblastoma: clinicopathologic study of 306 cases. Hum Pathol. 1994;25(2):117–34.CrossRef
21.
Zurück zum Zitat Flemming DJ, Murphey MD, Carmichael BB, Bernard SA. Primary tumors of the spine. Semin Musculoskelet Radiol. 2000;4(3):299–320.CrossRef Flemming DJ, Murphey MD, Carmichael BB, Bernard SA. Primary tumors of the spine. Semin Musculoskelet Radiol. 2000;4(3):299–320.CrossRef
22.
Zurück zum Zitat Hladky JP, Lejeune JP, Singer B, Lecomte-Houcke M, Herbaux B, Dhellemmes P. Osteoblastoma of the odontoid process. Pediatr Neurosurg. 1994;21(4):260–2.CrossRef Hladky JP, Lejeune JP, Singer B, Lecomte-Houcke M, Herbaux B, Dhellemmes P. Osteoblastoma of the odontoid process. Pediatr Neurosurg. 1994;21(4):260–2.CrossRef
23.
Zurück zum Zitat Cheung FM, Wu WC, Lam CK, Fu YK. Diagnostic criteria for pseudomalignant osteoblastoma. Histopathology. 1997;31(2):196–200.CrossRef Cheung FM, Wu WC, Lam CK, Fu YK. Diagnostic criteria for pseudomalignant osteoblastoma. Histopathology. 1997;31(2):196–200.CrossRef
24.
Zurück zum Zitat Davies M, Cassar-Pullicino VN, Davies AM, McCall IW, Tyrrell PN. The diagnostic accuracy of MR imaging in osteoid osteoma. Skeletal Radiol. 2002;31(10):559–69.CrossRef Davies M, Cassar-Pullicino VN, Davies AM, McCall IW, Tyrrell PN. The diagnostic accuracy of MR imaging in osteoid osteoma. Skeletal Radiol. 2002;31(10):559–69.CrossRef
25.
Zurück zum Zitat Jeong YJ, Sohn MH, Lim ST, Kim DW, Jeong HJ, Jang KY, Yim CY. Osteoblastoma in the nasal cavity: F-18 FDG PET/CT and Tc-99 m MDP 3-phase bone scan findings with pathologic correlation. Clin Nucl Med. 2011;36(3):214–7.CrossRef Jeong YJ, Sohn MH, Lim ST, Kim DW, Jeong HJ, Jang KY, Yim CY. Osteoblastoma in the nasal cavity: F-18 FDG PET/CT and Tc-99 m MDP 3-phase bone scan findings with pathologic correlation. Clin Nucl Med. 2011;36(3):214–7.CrossRef
26.
Zurück zum Zitat Yin H, Zhou W, Yu H, Li B, Zhang D, Wu Z, Liu T, Xiao J. Clinical characteristics and treatment options for two types of osteoblastoma in the mobile spine: a retrospective study of 32 cases and outcomes. Eur Spine J. 2014;23(2):411–6.CrossRef Yin H, Zhou W, Yu H, Li B, Zhang D, Wu Z, Liu T, Xiao J. Clinical characteristics and treatment options for two types of osteoblastoma in the mobile spine: a retrospective study of 32 cases and outcomes. Eur Spine J. 2014;23(2):411–6.CrossRef
27.
Zurück zum Zitat Barlow E, Davies AM, Cool WP, Barlow D, Mangham DC. Osteoid osteoma and osteoblastoma: novel histological and immunohistochemical observations as evidence for a single entity. J Clin Pathol. 2013;66(9):768–74.CrossRef Barlow E, Davies AM, Cool WP, Barlow D, Mangham DC. Osteoid osteoma and osteoblastoma: novel histological and immunohistochemical observations as evidence for a single entity. J Clin Pathol. 2013;66(9):768–74.CrossRef
28.
Zurück zum Zitat Stavridis SI, Pingel A, Schnake KJ, Kandziora F. Diagnosis and treatment of a C2-osteoblastoma encompassing the vertebral artery. Eur Spine J. 2013;22(11):2504–12.CrossRef Stavridis SI, Pingel A, Schnake KJ, Kandziora F. Diagnosis and treatment of a C2-osteoblastoma encompassing the vertebral artery. Eur Spine J. 2013;22(11):2504–12.CrossRef
29.
Zurück zum Zitat Charles YP, Schuller S, Sfeir G, Steib JP. Cervical osteoblastoma resection and posterior fusion. Eur Spine J. 2014;23(3):711–2.CrossRef Charles YP, Schuller S, Sfeir G, Steib JP. Cervical osteoblastoma resection and posterior fusion. Eur Spine J. 2014;23(3):711–2.CrossRef
Metadaten
Titel
The one-in-all diagnostic value of 99mTc-MDP bone scan combining with single-photon emission tomography (SPECT)/CT imaging in spinal osteoblastoma
verfasst von
Wenhui Ma
Zhiyong Quan
Jing Wang
Xiangdong Li
Guoquan Li
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Journal of Orthopaedic Surgery and Research / Ausgabe 1/2020
Elektronische ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-020-01653-2

Weitere Artikel der Ausgabe 1/2020

Journal of Orthopaedic Surgery and Research 1/2020 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Knie-TEP: Kein Vorteil durch antibiotikahaltigen Knochenzement

29.05.2024 Periprothetische Infektionen Nachrichten

Zur Zementierung einer Knie-TEP wird in Deutschland zu über 98% Knochenzement verwendet, der mit einem Antibiotikum beladen ist. Ob er wirklich besser ist als Zement ohne Antibiotikum, kann laut Registerdaten bezweifelt werden.

Häusliche Gewalt in der orthopädischen Notaufnahme oft nicht erkannt

28.05.2024 Häusliche Gewalt Nachrichten

In der Notaufnahme wird die Chance, Opfer von häuslicher Gewalt zu identifizieren, von Orthopäden und Orthopädinnen offenbar zu wenig genutzt. Darauf deuten die Ergebnisse einer Fragebogenstudie an der Sahlgrenska-Universität in Schweden hin.

Fehlerkultur in der Medizin – Offenheit zählt!

28.05.2024 Fehlerkultur Podcast

Darüber reden und aus Fehlern lernen, sollte das Motto in der Medizin lauten. Und zwar nicht nur im Sinne der Patientensicherheit. Eine negative Fehlerkultur kann auch die Behandelnden ernsthaft krank machen, warnt Prof. Dr. Reinhard Strametz. Ein Plädoyer und ein Leitfaden für den offenen Umgang mit kritischen Ereignissen in Medizin und Pflege.

Mehr Frauen im OP – weniger postoperative Komplikationen

21.05.2024 Allgemeine Chirurgie Nachrichten

Ein Frauenanteil von mindestens einem Drittel im ärztlichen Op.-Team war in einer großen retrospektiven Studie aus Kanada mit einer signifikanten Reduktion der postoperativen Morbidität assoziiert.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.