Skip to main content
Erschienen in: Head and Neck Pathology 3/2021

05.02.2021 | Original Paper

The Role of Increased Connective Tissue Growth Factor in the Pathogenesis of Oral Submucous Fibrosis and its Malignant Transformation—An Immunohistochemical Study

verfasst von: Aakruti Mahendra Shah, Kejal Jain, Rajiv S. Desai, Shivani Bansal, Pankaj Shirsat, Pooja Prasad, Kshitija Bodhankar

Erschienen in: Head and Neck Pathology | Ausgabe 3/2021

Einloggen, um Zugang zu erhalten

Abstract

Connective tissue growth factor (CTGF), a matricellular protein of the CCN family of extracellular matrix-associated heparin-binding proteins, is highly expressed in various organ fibrosis and several malignant tumors. Although a few studies have been conducted using CTGF in oral submucous fibrosis (OSF) and oral squamous cell carcinoma, no study has demonstrated its relation with various stages of OSF and its malignant transformation. The present study investigated the possible role of CTGF in the pathogenesis of OSF and its malignant transformation by using immunohistochemistry. Ten formalin-fixed paraffin-embedded tissue blocks, each of Stage 1 OSF, Stage 2 OSF, Stage 3 OSF, Stage 4 OSF, well- differentiated squamous cell carcinoma (WDSCC) with OSF and WDSCC without OSF were stained for CTGF by immunohistochemistry. Ten cases of healthy buccal mucosa (NOM) were included as controls. The present study demonstrated a statistically significant expression of CTGF in the epithelium and connective tissue of OSF and WDSCC with and without OSF cases against its complete absence in NOM. We observed an upregulation of CTGF expression from NOM to various stages of OSF to WDSCC with or without OSF. A gradual upregulation of the CTGF expression in various stages of OSF to WDSCC (with and without OSF) against its complete absence in NOM suggests that CTGF plays an important role in the pathogenesis of OSF and its malignant transformation.
Literatur
1.
Zurück zum Zitat Ekanayaka RP, Tilakaratne WM. Oral submucous fibrosis: review on mechanisms of malignant transformation. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;122(2):192–9.PubMedCrossRef Ekanayaka RP, Tilakaratne WM. Oral submucous fibrosis: review on mechanisms of malignant transformation. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;122(2):192–9.PubMedCrossRef
2.
Zurück zum Zitat Tilakratne WM, Eknayaka RP, Warnakulasuriya S. Oral submucous fibrosis: a historical perspective and a review on etiology and pathogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;122(2):178–91.CrossRef Tilakratne WM, Eknayaka RP, Warnakulasuriya S. Oral submucous fibrosis: a historical perspective and a review on etiology and pathogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;122(2):178–91.CrossRef
3.
Zurück zum Zitat IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Betel-quid and areca-nut chewing and some areca-nut derived nitrosamines. IARC Monogr Eval Carcinog Risks Hum. 2004;85:1.PubMedCentral IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Betel-quid and areca-nut chewing and some areca-nut derived nitrosamines. IARC Monogr Eval Carcinog Risks Hum. 2004;85:1.PubMedCentral
4.
Zurück zum Zitat Khan I, Agarwal P, Thangjam GS, Radhesh R, Rao SG, Kondaiah P. Role of TGF beta and BMP 7 in the pathogenesis of oral submucous fibrosis. Growth Factors. 2011;29:119–27.PubMedCrossRef Khan I, Agarwal P, Thangjam GS, Radhesh R, Rao SG, Kondaiah P. Role of TGF beta and BMP 7 in the pathogenesis of oral submucous fibrosis. Growth Factors. 2011;29:119–27.PubMedCrossRef
5.
Zurück zum Zitat Haque MF, Harris M, Meghji S, Barrett AW. Immunolocalization of cytokines and growth factors in oral submucous fibrosis. Cytokine. 1998;10(9):713–9.PubMedCrossRef Haque MF, Harris M, Meghji S, Barrett AW. Immunolocalization of cytokines and growth factors in oral submucous fibrosis. Cytokine. 1998;10(9):713–9.PubMedCrossRef
6.
Zurück zum Zitat Illeperuma RP, Ryu MH, Kim KY, Tilakaratne WM, Kim J. Relationship of fibrosis and the expression of TGF-β1, MMP‐1, and TIMP‐1 with epithelial dysplasia in oral submucous fibrosis. Oral Med Pathol. 2010;15(1):21–8.CrossRef Illeperuma RP, Ryu MH, Kim KY, Tilakaratne WM, Kim J. Relationship of fibrosis and the expression of TGF-β1, MMP‐1, and TIMP‐1 with epithelial dysplasia in oral submucous fibrosis. Oral Med Pathol. 2010;15(1):21–8.CrossRef
7.
Zurück zum Zitat Khan I, Kumar N, Pant I, Narra S, Kondaiah P. Activation of TGF-β pathway by areca nut constituents: a possible cause of oral submucous fibrosis. PLoS ONE. 2012;7(12):e51806.PubMedPubMedCentralCrossRef Khan I, Kumar N, Pant I, Narra S, Kondaiah P. Activation of TGF-β pathway by areca nut constituents: a possible cause of oral submucous fibrosis. PLoS ONE. 2012;7(12):e51806.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Kale AD, Mane DR, Shukla D. Expression of transforming growth factor β and its correlation with lipodystrophy in oral submucous fibrosis: an immunohistochemical study. Med Oral Patol Oral Cir Bucal. 2013;18(1):e12-8.PubMedCrossRef Kale AD, Mane DR, Shukla D. Expression of transforming growth factor β and its correlation with lipodystrophy in oral submucous fibrosis: an immunohistochemical study. Med Oral Patol Oral Cir Bucal. 2013;18(1):e12-8.PubMedCrossRef
9.
Zurück zum Zitat Kamath VV, Satelur KP, Rajkumar K, Krishnamurthy S. Transforming growth factor beta 1 in oral submucous fibrosis: an immunohistochemical study-understanding the pathogenesis. J Dent Res Rev. 2014;1(2):75–80.CrossRef Kamath VV, Satelur KP, Rajkumar K, Krishnamurthy S. Transforming growth factor beta 1 in oral submucous fibrosis: an immunohistochemical study-understanding the pathogenesis. J Dent Res Rev. 2014;1(2):75–80.CrossRef
10.
Zurück zum Zitat Kumar V, Suma S, Kumar BV, Yanduri S, Shyamala K. Correlation between transforming growth factor-beta expression and mast cell count in different grades of oral submucous fibrosis. J Adv Clin Res Insights. 2016;3(4):123–8.CrossRef Kumar V, Suma S, Kumar BV, Yanduri S, Shyamala K. Correlation between transforming growth factor-beta expression and mast cell count in different grades of oral submucous fibrosis. J Adv Clin Res Insights. 2016;3(4):123–8.CrossRef
11.
Zurück zum Zitat Grotendorst GR. Connective tissue growth factor: a mediator of TGF- β action on fibroblasts. Cytokine Growth Factor Rev. 1997;8(3):171–9.PubMedCrossRef Grotendorst GR. Connective tissue growth factor: a mediator of TGF- β action on fibroblasts. Cytokine Growth Factor Rev. 1997;8(3):171–9.PubMedCrossRef
12.
Zurück zum Zitat Mori T, Kawara S, Shinozaki M, Hayashi N, Kakinuma T, Igarashi A, Takigawa M, Nakanishi T, Takehara K. Role and interaction of connective tissue growth factor with transforming growth factor-beta in persistent fibrosis: a mouse fibrosis model. J Cell Physiol. 1999;181(1):153–9.PubMedCrossRef Mori T, Kawara S, Shinozaki M, Hayashi N, Kakinuma T, Igarashi A, Takigawa M, Nakanishi T, Takehara K. Role and interaction of connective tissue growth factor with transforming growth factor-beta in persistent fibrosis: a mouse fibrosis model. J Cell Physiol. 1999;181(1):153–9.PubMedCrossRef
13.
Zurück zum Zitat Sharma M, Radhakrishnan R. CTGF is obligatory for TGF-β1 mediated fibrosis in OSMF. Oral Oncol. 2016;56:e10-1.PubMedCrossRef Sharma M, Radhakrishnan R. CTGF is obligatory for TGF-β1 mediated fibrosis in OSMF. Oral Oncol. 2016;56:e10-1.PubMedCrossRef
14.
Zurück zum Zitat Lau LF, Lam ST. The CCN family of angiogenic regulators: the integrin connection. Exp Cell Res. 1999;248(1):44–57.PubMedCrossRef Lau LF, Lam ST. The CCN family of angiogenic regulators: the integrin connection. Exp Cell Res. 1999;248(1):44–57.PubMedCrossRef
16.
17.
Zurück zum Zitat Lee CH, Shah B, Moioli EK, Mao JJ. CTGF directs fibroblast differentiation from human mesenchymal stem/stromal cells and defines connective tissue healing in a rodent injury model. J Clin Invest. 2010;120(9):3340–9.PubMedPubMedCentralCrossRef Lee CH, Shah B, Moioli EK, Mao JJ. CTGF directs fibroblast differentiation from human mesenchymal stem/stromal cells and defines connective tissue healing in a rodent injury model. J Clin Invest. 2010;120(9):3340–9.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Leask A, Sa S, Holmes A, Shiwen X, Black CM, Abraham DJ. The control of ccn2 (ctgf) gene expression in normal and scleroderma fibroblasts. Mol Pathol. 2001;54(3):180–3.PubMedPubMedCentralCrossRef Leask A, Sa S, Holmes A, Shiwen X, Black CM, Abraham DJ. The control of ccn2 (ctgf) gene expression in normal and scleroderma fibroblasts. Mol Pathol. 2001;54(3):180–3.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Allen JT, Knight RA, Bloor CA, Spiteri MA. Enhanced insulin-like growth factor binding protein-related protein 2 (connective tissue growth factor) expression in patients with idiopathic pulmonary fibrosis and pulmonary sarcoidosis. Am J Respir Cell Mol Biol. 1999;21(6):693–700.PubMedCrossRef Allen JT, Knight RA, Bloor CA, Spiteri MA. Enhanced insulin-like growth factor binding protein-related protein 2 (connective tissue growth factor) expression in patients with idiopathic pulmonary fibrosis and pulmonary sarcoidosis. Am J Respir Cell Mol Biol. 1999;21(6):693–700.PubMedCrossRef
20.
Zurück zum Zitat Paradis V, Dargere D, Vidaud M, De Gouville AC, Huet S, Martinez V, Gauthier JM, Ba N, Sobesky R, Ratziu V, Bedossa P. Expression of connective tissue growth factor in experimental rat and human liver fibrosis. Hepatology. 1999;30(4):968–76.PubMedCrossRef Paradis V, Dargere D, Vidaud M, De Gouville AC, Huet S, Martinez V, Gauthier JM, Ba N, Sobesky R, Ratziu V, Bedossa P. Expression of connective tissue growth factor in experimental rat and human liver fibrosis. Hepatology. 1999;30(4):968–76.PubMedCrossRef
21.
Zurück zum Zitat Ito Y, Aten J, Bende RJ, Oemar BS, Rabelink TJ, Weening JJ, Goldschmeding R. Expression of connective tissue growth factor in human renal fibrosis. Kidney Int. 1998;53(4):853–61.PubMedCrossRef Ito Y, Aten J, Bende RJ, Oemar BS, Rabelink TJ, Weening JJ, Goldschmeding R. Expression of connective tissue growth factor in human renal fibrosis. Kidney Int. 1998;53(4):853–61.PubMedCrossRef
22.
Zurück zum Zitat Kantarci A, Black S, Xydas C, Murawel P, Uchida Y, Yucekal-Tuncer B, Atilla G, Emingil G, Uzel MI, Lee A, Firatli E, Sheff M, Hasturk H, Van Dyke TE, Trackman PC. Epithelial and connective tissue cell CTGF/CCN2 expression in gingival fibrosis. J Pathol. 2006;210(1):59–66.PubMedPubMedCentralCrossRef Kantarci A, Black S, Xydas C, Murawel P, Uchida Y, Yucekal-Tuncer B, Atilla G, Emingil G, Uzel MI, Lee A, Firatli E, Sheff M, Hasturk H, Van Dyke TE, Trackman PC. Epithelial and connective tissue cell CTGF/CCN2 expression in gingival fibrosis. J Pathol. 2006;210(1):59–66.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Deng YT, Chen HM, Cheng SJ, Chiang CP, Kuo MY. Arecoline-stimulated connective tissue growth factor production in human buccal mucosal fibroblasts: modulation by curcumin. Oral Oncol. 2009;45(9):e99−105.PubMedCrossRef Deng YT, Chen HM, Cheng SJ, Chiang CP, Kuo MY. Arecoline-stimulated connective tissue growth factor production in human buccal mucosal fibroblasts: modulation by curcumin. Oral Oncol. 2009;45(9):e99−105.PubMedCrossRef
24.
Zurück zum Zitat Chu CY, Chang CC, Prakash E, Kuo ML. Connective tissue growth factor (CTGF) and cancer progression. J Biomed Sci. 2008;15(6):675–85.PubMedCrossRef Chu CY, Chang CC, Prakash E, Kuo ML. Connective tissue growth factor (CTGF) and cancer progression. J Biomed Sci. 2008;15(6):675–85.PubMedCrossRef
25.
Zurück zum Zitat Moritani NH, Kubota S, Nishida T, Kawaki H, Kondo S, Sugahara T, Takigawa M. Suppressive effect of overexpressed connective tissue growth factor on tumor cell growth in a human oral squamous cell carcinoma-derived cell line. Cancer Lett. 2003;192(2):205–14.PubMedCrossRef Moritani NH, Kubota S, Nishida T, Kawaki H, Kondo S, Sugahara T, Takigawa M. Suppressive effect of overexpressed connective tissue growth factor on tumor cell growth in a human oral squamous cell carcinoma-derived cell line. Cancer Lett. 2003;192(2):205–14.PubMedCrossRef
26.
Zurück zum Zitat Yang MH, Lin BR, Chang CH, Chen ST, Lin SK, Kuo MY, Jeng YM, Kuo ML, Chang CC. Connective tissue growth factor modulates oral squamous cell carcinoma invasion by activating a miR-504/FOXP1 signalling. Oncogene. 2012;31(19):2401–11.PubMedCrossRef Yang MH, Lin BR, Chang CH, Chen ST, Lin SK, Kuo MY, Jeng YM, Kuo ML, Chang CC. Connective tissue growth factor modulates oral squamous cell carcinoma invasion by activating a miR-504/FOXP1 signalling. Oncogene. 2012;31(19):2401–11.PubMedCrossRef
27.
Zurück zum Zitat Lai WT, Li YJ, Wu SB, Yang CN, Wu TS, Wei YH, Deng YT. Connective tissue growth factor decreases mitochondrial metabolism through ubiquitin-mediated degradation of mitochondrial transcription factor A in oral squamous cell carcinoma. J Formos Med Assoc. 2018;117(3):212–9.PubMedCrossRef Lai WT, Li YJ, Wu SB, Yang CN, Wu TS, Wei YH, Deng YT. Connective tissue growth factor decreases mitochondrial metabolism through ubiquitin-mediated degradation of mitochondrial transcription factor A in oral squamous cell carcinoma. J Formos Med Assoc. 2018;117(3):212–9.PubMedCrossRef
28.
Zurück zum Zitat Otte A, Maier-Lenz H, Dierckx RA. Good clinical practice: historical background and key aspects. Nucl Med Commun. 2005;26(7):563–74.PubMedCrossRef Otte A, Maier-Lenz H, Dierckx RA. Good clinical practice: historical background and key aspects. Nucl Med Commun. 2005;26(7):563–74.PubMedCrossRef
29.
Zurück zum Zitat Lai DR, Chen HR, Lin LM, Huang YL, Tsai CC, Lai DR. Clinical evaluation of different treatment methods for oral submucous fibrosis: a 10-year experience with 150 cases. J Oral Pathol Med. 1995;24(9):402–6.PubMedCrossRef Lai DR, Chen HR, Lin LM, Huang YL, Tsai CC, Lai DR. Clinical evaluation of different treatment methods for oral submucous fibrosis: a 10-year experience with 150 cases. J Oral Pathol Med. 1995;24(9):402–6.PubMedCrossRef
30.
Zurück zum Zitat Anneroth G, Batsakis J, Luna M. Review of the literature and a recommended system of malignancy grading in oral squamous cell carcinomas. Scand J Dent Res. 1987;95(3):229–49.PubMed Anneroth G, Batsakis J, Luna M. Review of the literature and a recommended system of malignancy grading in oral squamous cell carcinomas. Scand J Dent Res. 1987;95(3):229–49.PubMed
31.
Zurück zum Zitat Reiner A, Neumeister B, Spona J, Reiner G, Schemper M, Jakesz R. Immunocytochemical localization of estrogen and progesterone receptor and prognosis in human primary breast cancer. Cancer Res. 1990;50(21):7057–61.PubMed Reiner A, Neumeister B, Spona J, Reiner G, Schemper M, Jakesz R. Immunocytochemical localization of estrogen and progesterone receptor and prognosis in human primary breast cancer. Cancer Res. 1990;50(21):7057–61.PubMed
32.
Zurück zum Zitat Yanjia H, Xinchun J. The role of epithelial–mesenchymal transition in oral squamous cell carcinoma and oral submucous fibrosis. Clin Chim Acta. 2007;383(1–2):51–6.PubMedCrossRef Yanjia H, Xinchun J. The role of epithelial–mesenchymal transition in oral squamous cell carcinoma and oral submucous fibrosis. Clin Chim Acta. 2007;383(1–2):51–6.PubMedCrossRef
33.
Zurück zum Zitat Ekanayaka RP, Tilakaratne WM. Oral submucous fibrosis: review on mechanisms of pathogenesis and malignant transformation. J Carcinog Mutagen. 2013;S5:002. Ekanayaka RP, Tilakaratne WM. Oral submucous fibrosis: review on mechanisms of pathogenesis and malignant transformation. J Carcinog Mutagen. 2013;S5:002.
34.
Zurück zum Zitat Mullis TC, Tang X, Chong KT. Expression of connective tissue growth factor (CTGF/CCN2) in head and neck squamous cell carcinoma. J Clin Pathol. 2008;61(5):606–10.PubMedCrossRef Mullis TC, Tang X, Chong KT. Expression of connective tissue growth factor (CTGF/CCN2) in head and neck squamous cell carcinoma. J Clin Pathol. 2008;61(5):606–10.PubMedCrossRef
35.
Zurück zum Zitat Kikuchi R, Kikuchi Y, Tsuda H, Maekawa H, Kozaki K, Imoto I, Tamai S, Shiotani A, Iwaya K, Sakamoto M, Sekiya T, Matsubara O. Expression and clinical significance of connective tissue growth factor in advanced head and neck squamous cell cancer. Hum Cell. 2014;27(3):121–8.PubMedCrossRef Kikuchi R, Kikuchi Y, Tsuda H, Maekawa H, Kozaki K, Imoto I, Tamai S, Shiotani A, Iwaya K, Sakamoto M, Sekiya T, Matsubara O. Expression and clinical significance of connective tissue growth factor in advanced head and neck squamous cell cancer. Hum Cell. 2014;27(3):121–8.PubMedCrossRef
36.
Zurück zum Zitat Wu YL, Li HY, Zhao XP, Jiao JY, Tang DX, Yan LJ, Wan Q, Pan CB. Mesenchymal stem cell derived CCN2 promotes the proliferation, migration and invasion of human tongue squamous cell carcinoma cells. Cancer Sci. 2017;108(5):897–909.PubMedPubMedCentralCrossRef Wu YL, Li HY, Zhao XP, Jiao JY, Tang DX, Yan LJ, Wan Q, Pan CB. Mesenchymal stem cell derived CCN2 promotes the proliferation, migration and invasion of human tongue squamous cell carcinoma cells. Cancer Sci. 2017;108(5):897–909.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Chang JZ, Yang WH, Deng YT, Chen HM, Kuo MY. Thrombin stimulated connective tissue growth factor (CTGF/CCN2) production in human buccal mucosal fibroblasts: inhibition by epigallocatechin-3-gallate. Head Neck. 2012;34(8):1089–94.PubMedCrossRef Chang JZ, Yang WH, Deng YT, Chen HM, Kuo MY. Thrombin stimulated connective tissue growth factor (CTGF/CCN2) production in human buccal mucosal fibroblasts: inhibition by epigallocatechin-3-gallate. Head Neck. 2012;34(8):1089–94.PubMedCrossRef
38.
Zurück zum Zitat Patil AA, Bhavthankar JD, Barpande SR, Mandale MS. Estimation of serum connective tissue growth factor in oral submucous fibrosis patients and its clinico-pathologic correlation. J Int Oral Health. 2015;7(11):84–90. Patil AA, Bhavthankar JD, Barpande SR, Mandale MS. Estimation of serum connective tissue growth factor in oral submucous fibrosis patients and its clinico-pathologic correlation. J Int Oral Health. 2015;7(11):84–90.
39.
Zurück zum Zitat Gottipamula S, Sundarrajan S, Moorthy A, Padmanabhan S, Sridhar N. Buccal mucosal epithelial cells downregulate CTGF expression in buccal submucosal fibrosis fibroblasts. J Maxillofac Oral Surg. 2018;17(2):254–9.PubMedCrossRef Gottipamula S, Sundarrajan S, Moorthy A, Padmanabhan S, Sridhar N. Buccal mucosal epithelial cells downregulate CTGF expression in buccal submucosal fibrosis fibroblasts. J Maxillofac Oral Surg. 2018;17(2):254–9.PubMedCrossRef
41.
Zurück zum Zitat Derrick T, Luthert PJ, Jama H, Hu VH, Massae P, Essex D, Holland MJ, Burton MJ. Increased epithelial expression of CTGF and S100A7 with elevated subepithelial expression of IL-1β in trachomatous trichiasis. PLoS Negl Trop Dis. 2016;10(6):e0004752.PubMedPubMedCentralCrossRef Derrick T, Luthert PJ, Jama H, Hu VH, Massae P, Essex D, Holland MJ, Burton MJ. Increased epithelial expression of CTGF and S100A7 with elevated subepithelial expression of IL-1β in trachomatous trichiasis. PLoS Negl Trop Dis. 2016;10(6):e0004752.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Kondaiah P, Pant I, Khan I. Molecular pathways regulated by areca nut in the etiopathogenesis of oral submucous fibrosis. Periodontol 2000. 2019;80(1):213–24.PubMedCrossRef Kondaiah P, Pant I, Khan I. Molecular pathways regulated by areca nut in the etiopathogenesis of oral submucous fibrosis. Periodontol 2000. 2019;80(1):213–24.PubMedCrossRef
43.
Zurück zum Zitat Sonnylal S, Xu S, Jones H, Tam A, Sreeram VR, Ponticos M, Norman J, Agarwal P, Abraham D, deCrombrugghe B. Connective tissue growth factor causes EMT-like cell fate changes in vivo and in vitro. J Cell Sci. 2013;126(Pt 10):2164–75.PubMedPubMedCentral Sonnylal S, Xu S, Jones H, Tam A, Sreeram VR, Ponticos M, Norman J, Agarwal P, Abraham D, deCrombrugghe B. Connective tissue growth factor causes EMT-like cell fate changes in vivo and in vitro. J Cell Sci. 2013;126(Pt 10):2164–75.PubMedPubMedCentral
44.
Zurück zum Zitat Tsai CC, Ma RH, Shieh TY. Deficiency in collagen and fibronectin phagocytosis by human buccal mucosa fibroblasts in vitro as a possible mechanism for oral submucous fibrosis. J Oral Pathol Med. 1999;28(2):59–63.PubMedCrossRef Tsai CC, Ma RH, Shieh TY. Deficiency in collagen and fibronectin phagocytosis by human buccal mucosa fibroblasts in vitro as a possible mechanism for oral submucous fibrosis. J Oral Pathol Med. 1999;28(2):59–63.PubMedCrossRef
47.
49.
Zurück zum Zitat Van der Veer WM, Niessen FB, Ferreira JA, Zwiers PJ, de Jong EH, Middelkoop E, Molema G. Time course of the angiogenic response during normotrophic and hypertrophic scar formation in humans. Wound Repair Regen. 2011;19(3):292–301.PubMedCrossRef Van der Veer WM, Niessen FB, Ferreira JA, Zwiers PJ, de Jong EH, Middelkoop E, Molema G. Time course of the angiogenic response during normotrophic and hypertrophic scar formation in humans. Wound Repair Regen. 2011;19(3):292–301.PubMedCrossRef
50.
Zurück zum Zitat Bradham DM, Igarshi A, Potter RL, Grotendorst GR. Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol. 1991;114(6):1285–94.PubMedCrossRef Bradham DM, Igarshi A, Potter RL, Grotendorst GR. Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol. 1991;114(6):1285–94.PubMedCrossRef
51.
Zurück zum Zitat Babic AM, Chen CC, Lau LF. Fisp12/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin alphavbeta3, promotes endothelial cell survival, and induces angiogenesis in vivo. Mol Cell Biol. 1999;19(4):2958–66.PubMedCrossRef Babic AM, Chen CC, Lau LF. Fisp12/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin alphavbeta3, promotes endothelial cell survival, and induces angiogenesis in vivo. Mol Cell Biol. 1999;19(4):2958–66.PubMedCrossRef
52.
Zurück zum Zitat Kubota S, Takigawa M. CCN family proteins and angiogenesis: from embryo to adulthood. Angiogenesis. 2007;10(1):1–11.PubMedCrossRef Kubota S, Takigawa M. CCN family proteins and angiogenesis: from embryo to adulthood. Angiogenesis. 2007;10(1):1–11.PubMedCrossRef
53.
Zurück zum Zitat Desai RS, Mamatha GS, Khatri MJ, Shetty SJ. Immunohistochemical expression of CD34 for characterization and quantification of mucosal vasculature and its probable role in malignant transformation of atrophic epithelium in oral submucous fibrosis. Oral Oncol. 2010;46(7):553–8.PubMedCrossRef Desai RS, Mamatha GS, Khatri MJ, Shetty SJ. Immunohistochemical expression of CD34 for characterization and quantification of mucosal vasculature and its probable role in malignant transformation of atrophic epithelium in oral submucous fibrosis. Oral Oncol. 2010;46(7):553–8.PubMedCrossRef
54.
Zurück zum Zitat Sharada P, Swaminathan U, Nagamalini BR, Kumar KV, Ashwini BK, Lavanya VL. Coalition of E-cadherin and vascular endothelial growth factor expression in predicting malignant transformation in common oral potentially malignant disorders. J Oral Maxillofac Pathol. 2018;22(1):40.PubMedPubMedCentral Sharada P, Swaminathan U, Nagamalini BR, Kumar KV, Ashwini BK, Lavanya VL. Coalition of E-cadherin and vascular endothelial growth factor expression in predicting malignant transformation in common oral potentially malignant disorders. J Oral Maxillofac Pathol. 2018;22(1):40.PubMedPubMedCentral
55.
Zurück zum Zitat Sharma E, Tyagi N, Gupta V, Narwal A, Vij H, Lakhnotra D. Role of angiogenesis in oral submucous fibrosis using vascular endothelial growth factor and CD34: an immunohistochemical study. Indian J Dent Res. 2019;30(5):755–62.PubMedCrossRef Sharma E, Tyagi N, Gupta V, Narwal A, Vij H, Lakhnotra D. Role of angiogenesis in oral submucous fibrosis using vascular endothelial growth factor and CD34: an immunohistochemical study. Indian J Dent Res. 2019;30(5):755–62.PubMedCrossRef
56.
Zurück zum Zitat Binnie WH, Cawson RA. A new ultrastructural finding in oral submucous fibrosis. Br J Dermatol. 1972;86(3):286–90.PubMedCrossRef Binnie WH, Cawson RA. A new ultrastructural finding in oral submucous fibrosis. Br J Dermatol. 1972;86(3):286–90.PubMedCrossRef
57.
Zurück zum Zitat El-Labban NG, Canniff JP. Ultrastructural findings of muscle degeneration in oral submucous fibrosis. J Oral Pathol Med. 1985;14(9):709–17.CrossRef El-Labban NG, Canniff JP. Ultrastructural findings of muscle degeneration in oral submucous fibrosis. J Oral Pathol Med. 1985;14(9):709–17.CrossRef
58.
Zurück zum Zitat Rooban T, Saraswathi TR, Al Zainab FH, Devi U, Eligabeth J, Ranganathan K. A light microscopic study of fibrosis involving muscle in oral submucous fibrosis. Indian J Dent Res. 2005;16(4):131–4.PubMedCrossRef Rooban T, Saraswathi TR, Al Zainab FH, Devi U, Eligabeth J, Ranganathan K. A light microscopic study of fibrosis involving muscle in oral submucous fibrosis. Indian J Dent Res. 2005;16(4):131–4.PubMedCrossRef
59.
Zurück zum Zitat Sumathi MK, Balaji N, Malathi N. A prospective transmission electron microscopic study of muscle status in oral submucous fibrosis along with retrospective analysis of 80 cases of oral submucous fibrosis. J Oral Maxillofac Pathol. 2012;16(3):318–24.PubMedPubMedCentralCrossRef Sumathi MK, Balaji N, Malathi N. A prospective transmission electron microscopic study of muscle status in oral submucous fibrosis along with retrospective analysis of 80 cases of oral submucous fibrosis. J Oral Maxillofac Pathol. 2012;16(3):318–24.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Chawla H, Urs AB, Augustine J, Kumar P. Characterization of muscle alteration in oral submucous fibrosis-seeking new evidence. Med Oral Patol Oral Cir Bucal. 2015;20(6):e670-7.PubMedPubMedCentralCrossRef Chawla H, Urs AB, Augustine J, Kumar P. Characterization of muscle alteration in oral submucous fibrosis-seeking new evidence. Med Oral Patol Oral Cir Bucal. 2015;20(6):e670-7.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Liu F, Tang W, Chen D, Li M, Gao Y, Zheng H, Chen S. Expression of TGF-β1 and CTGF is associated with fibrosis of denervated sternocleidomastoid muscles in mice. Tohoku J Exp Med. 2016;238(1):49–56.PubMedCrossRef Liu F, Tang W, Chen D, Li M, Gao Y, Zheng H, Chen S. Expression of TGF-β1 and CTGF is associated with fibrosis of denervated sternocleidomastoid muscles in mice. Tohoku J Exp Med. 2016;238(1):49–56.PubMedCrossRef
62.
Zurück zum Zitat Rebolledo DL, González D, Faundez-Contreras J, Contreras O, Vio CP, Murphy-Ullrich JE, Lipson KE, Brandan E. Denervation-induced skeletal muscle fibrosis is mediated by CTGF/CCN2 independently of TGF-β. Matrix Biol. 2019;82:20–37.PubMedCrossRef Rebolledo DL, González D, Faundez-Contreras J, Contreras O, Vio CP, Murphy-Ullrich JE, Lipson KE, Brandan E. Denervation-induced skeletal muscle fibrosis is mediated by CTGF/CCN2 independently of TGF-β. Matrix Biol. 2019;82:20–37.PubMedCrossRef
63.
Zurück zum Zitat Shimo T, Nakanishi T, Nishida T, Asano M, Sasaki A, Kanyama M, Kuboki T, Matsumura T, Takigawa M. Involvement of CTGF, a hypertrophic chondrocyte-specific gene product, in tumor angiogenesis. Oncol. 2001;61(4):315–22.CrossRef Shimo T, Nakanishi T, Nishida T, Asano M, Sasaki A, Kanyama M, Kuboki T, Matsumura T, Takigawa M. Involvement of CTGF, a hypertrophic chondrocyte-specific gene product, in tumor angiogenesis. Oncol. 2001;61(4):315–22.CrossRef
64.
Zurück zum Zitat Yang F, Tuxhorn JA, Ressler SJ, McAlhany SJ, Dang TD, Rowley DR. Stromal expression of connective tissue growth factor promotes angiogenesis and prostate cancer tumorigenesis. Cancer Res. 2005;65(19):8887–95.PubMedCrossRef Yang F, Tuxhorn JA, Ressler SJ, McAlhany SJ, Dang TD, Rowley DR. Stromal expression of connective tissue growth factor promotes angiogenesis and prostate cancer tumorigenesis. Cancer Res. 2005;65(19):8887–95.PubMedCrossRef
65.
Zurück zum Zitat Prime SS, Pring M, Davies M, Paterson IC. TGF-beta signal transduction in oro-facial health and non-malignant disease (part I). Crit Rev Oral Biol Med. 2004;15(6):324–36.PubMedCrossRef Prime SS, Pring M, Davies M, Paterson IC. TGF-beta signal transduction in oro-facial health and non-malignant disease (part I). Crit Rev Oral Biol Med. 2004;15(6):324–36.PubMedCrossRef
Metadaten
Titel
The Role of Increased Connective Tissue Growth Factor in the Pathogenesis of Oral Submucous Fibrosis and its Malignant Transformation—An Immunohistochemical Study
verfasst von
Aakruti Mahendra Shah
Kejal Jain
Rajiv S. Desai
Shivani Bansal
Pankaj Shirsat
Pooja Prasad
Kshitija Bodhankar
Publikationsdatum
05.02.2021
Verlag
Springer US
Erschienen in
Head and Neck Pathology / Ausgabe 3/2021
Elektronische ISSN: 1936-0568
DOI
https://doi.org/10.1007/s12105-020-01270-9

Weitere Artikel der Ausgabe 3/2021

Head and Neck Pathology 3/2021 Zur Ausgabe

Neu im Fachgebiet Pathologie

Molekularpathologische Untersuchungen im Wandel der Zeit

Open Access Biomarker Leitthema

Um auch an kleinen Gewebeproben zuverlässige und reproduzierbare Ergebnisse zu gewährleisten ist eine strenge Qualitätskontrolle in jedem Schritt des Arbeitsablaufs erforderlich. Eine nicht ordnungsgemäße Prüfung oder Behandlung des …

Vergleichende Pathologie in der onkologischen Forschung

Pathologie Leitthema

Die vergleichende experimentelle Pathologie („comparative experimental pathology“) ist ein Fachbereich an der Schnittstelle von Human- und Veterinärmedizin. Sie widmet sich der vergleichenden Erforschung von Gemeinsamkeiten und Unterschieden von …

Gastrointestinale Stromatumoren

Open Access GIST CME-Artikel

Gastrointestinale Stromatumoren (GIST) stellen seit über 20 Jahren ein Paradigma für die zielgerichtete Therapie mit Tyrosinkinaseinhibitoren dar. Eine elementare Voraussetzung für eine mögliche neoadjuvante oder adjuvante Behandlung bei …

Personalisierte Medizin in der Onkologie

Aufgrund des erheblichen technologischen Fortschritts in der molekularen und genetischen Diagnostik sowie zunehmender Erkenntnisse über die molekulare Pathogenese von Krankheiten hat in den letzten zwei Jahrzehnten ein grundlegender …