Skip to main content
Erschienen in: NeuroMolecular Medicine 4/2010

01.12.2010 | Review Paper

The Role of the Ceramide Acyl Chain Length in Neurodegeneration: Involvement of Ceramide Synthases

verfasst von: Oshrit Ben-David, Anthony H. Futerman

Erschienen in: NeuroMolecular Medicine | Ausgabe 4/2010

Einloggen, um Zugang zu erhalten

Abstract

Ceramide forms the backbone of all complex sphingolipids and has been the focus of considerable attention in the past few years due to the discovery that ceramide plays vital roles as an intracellular messenger. Ceramide, which consists of a sphingoid long chain base to which a fatty acid is N-acylated, is synthesized in mammals by a family of ceramide synthases (CerS), each of which uses a restricted subset of fatty acyl CoAs for N-acylation. Sphingolipids are found at high levels in nervous tissue, where they perform a variety of important functions in both the adult and the maturing brain. We now review what is known about the role of the acyl chain composition of ceramides and sphingolipids in normal brain development and in neurological diseases. Specifically, we attempt to integrate the information that is available about CerS expression and activity in the brain with the changes in the acyl chain composition of ceramide and complex sphingolipids in a number of neurodegenerative diseases and conditions, such as metachromatic leukodystrophy, neuronal ceroid lipofuscinoses, HIV infection, aging, Alzheimer’s disease, ischemia, and epilepsy. We conclude that understanding the direct relationship between the CerS proteins and neurological conditions will be of great importance for delineating the precise roles of sphingolipids in the brain and is likely to be the subject of intense research activity in the years ahead.
Literatur
Zurück zum Zitat Adibhatla, R. M., & Hatcher, J. F. (2008). Altered lipid metabolism in brain injury and disorders. SubCellular Biochemistry, 49, 241–268.CrossRefPubMed Adibhatla, R. M., & Hatcher, J. F. (2008). Altered lipid metabolism in brain injury and disorders. SubCellular Biochemistry, 49, 241–268.CrossRefPubMed
Zurück zum Zitat Arboleda, G., Morales, L. C., Benitez, B., & Arboleda, H. (2009). Regulation of ceramide-induced neuronal death: Cell metabolism meets neurodegeneration. Brain Research Reviews, 59, 333–346.CrossRefPubMed Arboleda, G., Morales, L. C., Benitez, B., & Arboleda, H. (2009). Regulation of ceramide-induced neuronal death: Cell metabolism meets neurodegeneration. Brain Research Reviews, 59, 333–346.CrossRefPubMed
Zurück zum Zitat Baran, Y., Salas, A., Senkal, C. E., Gunduz, U., Bielawski, J., Obeid, L. M., et al. (2007). Alterations of ceramide/sphingosine 1-phosphate rheostat involved in the regulation of resistance to imatinib-induced apoptosis in K562 human chronic myeloid leukemia cells. The Journal of Biological Chemistry, 282, 10922–10934.CrossRefPubMed Baran, Y., Salas, A., Senkal, C. E., Gunduz, U., Bielawski, J., Obeid, L. M., et al. (2007). Alterations of ceramide/sphingosine 1-phosphate rheostat involved in the regulation of resistance to imatinib-induced apoptosis in K562 human chronic myeloid leukemia cells. The Journal of Biological Chemistry, 282, 10922–10934.CrossRefPubMed
Zurück zum Zitat Baumann, N., & Pham-Dinh, D. (2001). Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiological Reviews, 81, 871–927.PubMed Baumann, N., & Pham-Dinh, D. (2001). Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiological Reviews, 81, 871–927.PubMed
Zurück zum Zitat Becker, I., Wang-Eckhardt, L., Yaghootfam, A., Gieselmann, V., & Eckhardt, M. (2008). Differential expression of (dihydro)ceramide synthases in mouse brain: Oligodendrocyte-specific expression of CerS2/Lass2. Histochemistry and Cell Biology, 129, 233–241.CrossRefPubMed Becker, I., Wang-Eckhardt, L., Yaghootfam, A., Gieselmann, V., & Eckhardt, M. (2008). Differential expression of (dihydro)ceramide synthases in mouse brain: Oligodendrocyte-specific expression of CerS2/Lass2. Histochemistry and Cell Biology, 129, 233–241.CrossRefPubMed
Zurück zum Zitat Bengtsson, H., Epifantseva, I., Abrink, M., Kylberg, A., Kullander, K., Ebendal, T., et al. (2008). Generation and characterization of a Gdf1 conditional null allele. Genesis, 46, 368–372.CrossRefPubMed Bengtsson, H., Epifantseva, I., Abrink, M., Kylberg, A., Kullander, K., Ebendal, T., et al. (2008). Generation and characterization of a Gdf1 conditional null allele. Genesis, 46, 368–372.CrossRefPubMed
Zurück zum Zitat Boldin, S., & Futerman, A. H. (1997). Glucosylceramide synthesis is required for basic fibroblast growth factor and laminin to stimulate axonal growth. Journal of Neurochemistry, 68, 882–885.CrossRefPubMed Boldin, S., & Futerman, A. H. (1997). Glucosylceramide synthesis is required for basic fibroblast growth factor and laminin to stimulate axonal growth. Journal of Neurochemistry, 68, 882–885.CrossRefPubMed
Zurück zum Zitat Boldin, S. A., & Futerman, A. H. (2000). Up-regulation of glucosylceramide synthesis upon stimulation of axonal growth by basic fibroblast growth factor. Evidence for post- translational modification of glucosylceramide synthase. The Journal of Biological Chemistry, 275, 9905–9909.CrossRefPubMed Boldin, S. A., & Futerman, A. H. (2000). Up-regulation of glucosylceramide synthesis upon stimulation of axonal growth by basic fibroblast growth factor. Evidence for post- translational modification of glucosylceramide synthase. The Journal of Biological Chemistry, 275, 9905–9909.CrossRefPubMed
Zurück zum Zitat Brann, A., Scott, R., Neuberger, Y., Abulafia, D., Boldin, S., Fainzilber, M., et al. (1999). Ceramide signaling downstream of the p75 neurotrophin receptor mediates the effects of nerve growth factor on outgrowth of cultured hippocampal neurons. Journal of Neuroscience, 19, 8199–8206.PubMed Brann, A., Scott, R., Neuberger, Y., Abulafia, D., Boldin, S., Fainzilber, M., et al. (1999). Ceramide signaling downstream of the p75 neurotrophin receptor mediates the effects of nerve growth factor on outgrowth of cultured hippocampal neurons. Journal of Neuroscience, 19, 8199–8206.PubMed
Zurück zum Zitat Brann, A. B., Tcherpakov, M., Williams, I. M., Futerman, A. H., & Fainzilber, M. (2002). NGF-induced p75-mediated death of cultured hippocampal neurons is age-dependent and transduced through ceramide generated by neutral sphingomyelinase. The Journal of Biological Chemistry, 277, 9812–9818.CrossRefPubMed Brann, A. B., Tcherpakov, M., Williams, I. M., Futerman, A. H., & Fainzilber, M. (2002). NGF-induced p75-mediated death of cultured hippocampal neurons is age-dependent and transduced through ceramide generated by neutral sphingomyelinase. The Journal of Biological Chemistry, 277, 9812–9818.CrossRefPubMed
Zurück zum Zitat Buccoliero, R., & Futerman, A. H. (2003). The roles of ceramide and complex sphingolipids in neuronal cell function. Pharmacological Research, 47, 409–419.CrossRefPubMed Buccoliero, R., & Futerman, A. H. (2003). The roles of ceramide and complex sphingolipids in neuronal cell function. Pharmacological Research, 47, 409–419.CrossRefPubMed
Zurück zum Zitat Cutler, R. G., Haughey, N. J., Tammara, A., McArthur, J. C., Nath, A., Reid, R., et al. (2004a). Dysregulation of sphingolipid and sterol metabolism by ApoE4 in HIV dementia. Neurology, 63, 626–630.PubMed Cutler, R. G., Haughey, N. J., Tammara, A., McArthur, J. C., Nath, A., Reid, R., et al. (2004a). Dysregulation of sphingolipid and sterol metabolism by ApoE4 in HIV dementia. Neurology, 63, 626–630.PubMed
Zurück zum Zitat Cutler, R. G., Kelly, J., Storie, K., Pedersen, W. A., Tammara, A., Hatanpaa, K., et al. (2004b). Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 101, 2070–2075.CrossRefPubMed Cutler, R. G., Kelly, J., Storie, K., Pedersen, W. A., Tammara, A., Hatanpaa, K., et al. (2004b). Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 101, 2070–2075.CrossRefPubMed
Zurück zum Zitat Eckhardt, M., Hedayati, K. K., Pitsch, J., Lullmann-Rauch, R., Beck, H., Fewou, S. N., et al. (2007). Sulfatide storage in neurons causes hyperexcitability and axonal degeneration in a mouse model of metachromatic leukodystrophy. Journal of Neuroscience, 27, 9009–9021.CrossRefPubMed Eckhardt, M., Hedayati, K. K., Pitsch, J., Lullmann-Rauch, R., Beck, H., Fewou, S. N., et al. (2007). Sulfatide storage in neurons causes hyperexcitability and axonal degeneration in a mouse model of metachromatic leukodystrophy. Journal of Neuroscience, 27, 9009–9021.CrossRefPubMed
Zurück zum Zitat Erez-Roman, R., Pienik, R., & Futerman, A. H. (2010). Increased ceramide synthase 2 and 6 mRNA levels in breast cancer tissues and correlation with sphingosine kinase expression. Biochemical and Biophysical Research Communications, 391, 219–223.CrossRefPubMed Erez-Roman, R., Pienik, R., & Futerman, A. H. (2010). Increased ceramide synthase 2 and 6 mRNA levels in breast cancer tissues and correlation with sphingosine kinase expression. Biochemical and Biophysical Research Communications, 391, 219–223.CrossRefPubMed
Zurück zum Zitat Futerman, A. H., & Hannun, Y. A. (2004). The complex life of simple sphingolipids. EMBO Reports, 5, 777–782.CrossRefPubMed Futerman, A. H., & Hannun, Y. A. (2004). The complex life of simple sphingolipids. EMBO Reports, 5, 777–782.CrossRefPubMed
Zurück zum Zitat Gautheron, V., Auffret, A., Mattson, M. P., Mariani, J., & Vernet-der Garabedian, B. (2009). A new and simple approach for genotyping Alzheimer’s disease presenilin-1 mutant knock-in mice. Journal of Neuroscience Methods, 181, 235–240.CrossRefPubMed Gautheron, V., Auffret, A., Mattson, M. P., Mariani, J., & Vernet-der Garabedian, B. (2009). A new and simple approach for genotyping Alzheimer’s disease presenilin-1 mutant knock-in mice. Journal of Neuroscience Methods, 181, 235–240.CrossRefPubMed
Zurück zum Zitat Gehring, W. J., Affolter, M., & Burglin, T. (1994). Homeodomain proteins. Annual Review of Biochemistry, 63, 487–526.CrossRefPubMed Gehring, W. J., Affolter, M., & Burglin, T. (1994). Homeodomain proteins. Annual Review of Biochemistry, 63, 487–526.CrossRefPubMed
Zurück zum Zitat Guan, X. L., He, X., Ong, W. Y., Yeo, W. K., Shui, G., & Wenk, M. R. (2006). Non-targeted profiling of lipids during kainate-induced neuronal injury. The FASEB Journal, 20, 1152–1161.CrossRefPubMed Guan, X. L., He, X., Ong, W. Y., Yeo, W. K., Shui, G., & Wenk, M. R. (2006). Non-targeted profiling of lipids during kainate-induced neuronal injury. The FASEB Journal, 20, 1152–1161.CrossRefPubMed
Zurück zum Zitat Haughey, N. J., Cutler, R. G., Tamara, A., McArthur, J. C., Vargas, D. L., Pardo, C. A., et al. (2004). Perturbation of sphingolipid metabolism and ceramide production in HIV-dementia. Annals of Neurology, 55, 257–267.CrossRefPubMed Haughey, N. J., Cutler, R. G., Tamara, A., McArthur, J. C., Vargas, D. L., Pardo, C. A., et al. (2004). Perturbation of sphingolipid metabolism and ceramide production in HIV-dementia. Annals of Neurology, 55, 257–267.CrossRefPubMed
Zurück zum Zitat Haughey, N. J., Steiner, J., Nath, A., McArthur, J. C., Sacktor, N., Pardo, C., et al. (2008). Converging roles for sphingolipids and cell stress in the progression of neuro-AIDS. Frontiers in Bioscience, 13, 5120–5130.CrossRefPubMed Haughey, N. J., Steiner, J., Nath, A., McArthur, J. C., Sacktor, N., Pardo, C., et al. (2008). Converging roles for sphingolipids and cell stress in the progression of neuro-AIDS. Frontiers in Bioscience, 13, 5120–5130.CrossRefPubMed
Zurück zum Zitat Imgrund, S., Hartmann, D., Farwanah, H., Eckhardt, M., Sandhoff, R., Degen, J., et al. (2009). Adult ceramide synthase 2 (CERS2)-deficient mice exhibit myelin sheath defects, cerebellar degeneration, and hepatocarcinomas. The Journal of Biological Chemistry, 284, 33549–33560.CrossRefPubMed Imgrund, S., Hartmann, D., Farwanah, H., Eckhardt, M., Sandhoff, R., Degen, J., et al. (2009). Adult ceramide synthase 2 (CERS2)-deficient mice exhibit myelin sheath defects, cerebellar degeneration, and hepatocarcinomas. The Journal of Biological Chemistry, 284, 33549–33560.CrossRefPubMed
Zurück zum Zitat Jana, A., Hogan, E. L., & Pahan, K. (2009). Ceramide and neurodegeneration: susceptibility of neurons and oligodendrocytes to cell damage and death. Journal of the Neurological Sciences, 278, 5–15.CrossRefPubMed Jana, A., Hogan, E. L., & Pahan, K. (2009). Ceramide and neurodegeneration: susceptibility of neurons and oligodendrocytes to cell damage and death. Journal of the Neurological Sciences, 278, 5–15.CrossRefPubMed
Zurück zum Zitat Kroesen, B. J., Jacobs, S., Pettus, B. J., Sietsma, H., Kok, J. W., Hannun, Y. A., et al. (2003). BcR-induced apoptosis involves differential regulation of C16 and C24-ceramide formation and sphingolipid-dependent activation of the proteasome. The Journal of Biological Chemistry, 278, 14723–14731.CrossRefPubMed Kroesen, B. J., Jacobs, S., Pettus, B. J., Sietsma, H., Kok, J. W., Hannun, Y. A., et al. (2003). BcR-induced apoptosis involves differential regulation of C16 and C24-ceramide formation and sphingolipid-dependent activation of the proteasome. The Journal of Biological Chemistry, 278, 14723–14731.CrossRefPubMed
Zurück zum Zitat Lahiri, S., & Futerman, A. H. (2007). The metabolism and function of sphingolipids and glycosphingolipids. Cellular and Molecular Life Sciences, 64, 2270–2284.CrossRefPubMed Lahiri, S., & Futerman, A. H. (2007). The metabolism and function of sphingolipids and glycosphingolipids. Cellular and Molecular Life Sciences, 64, 2270–2284.CrossRefPubMed
Zurück zum Zitat Laviad, E. L., Albee, L., Pankova-Kholmyansky, I., Epstein, S., Park, H., Merrill, A. H., Jr, et al. (2008). Characterization of ceramide synthase 2: Tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate. The Journal of Biological Chemistry, 283, 5677–5684.CrossRefPubMed Laviad, E. L., Albee, L., Pankova-Kholmyansky, I., Epstein, S., Park, H., Merrill, A. H., Jr, et al. (2008). Characterization of ceramide synthase 2: Tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate. The Journal of Biological Chemistry, 283, 5677–5684.CrossRefPubMed
Zurück zum Zitat Lee, S. J. (1991). Expression of growth/differentiation factor 1 in the nervous system: conservation of a bicistronic structure. Proceedings of the National Academy of Sciences of the United States of America, 88, 4250–4254.CrossRefPubMed Lee, S. J. (1991). Expression of growth/differentiation factor 1 in the nervous system: conservation of a bicistronic structure. Proceedings of the National Academy of Sciences of the United States of America, 88, 4250–4254.CrossRefPubMed
Zurück zum Zitat Luberto, C., Kraveka, J. M., & Hannun, Y. A. (2002). Ceramide regulation of apoptosis versus differentiation: A walk on a fine line. Lessons from neurobiology. Neurochemical Research, 27, 609–617.CrossRefPubMed Luberto, C., Kraveka, J. M., & Hannun, Y. A. (2002). Ceramide regulation of apoptosis versus differentiation: A walk on a fine line. Lessons from neurobiology. Neurochemical Research, 27, 609–617.CrossRefPubMed
Zurück zum Zitat Mesika, A., Ben-Dor, S., Laviad, E. L., & Futerman, A. H. (2007). A new functional motif in Hox domain-containing ceramide synthases: Identification of a novel region flanking the Hox and TLC domains essential for activity. The Journal of Biological Chemistry, 282, 27366–27373.CrossRefPubMed Mesika, A., Ben-Dor, S., Laviad, E. L., & Futerman, A. H. (2007). A new functional motif in Hox domain-containing ceramide synthases: Identification of a novel region flanking the Hox and TLC domains essential for activity. The Journal of Biological Chemistry, 282, 27366–27373.CrossRefPubMed
Zurück zum Zitat Min, J., Mesika, A., Sivaguru, M., Van Veldhoven, P. P., Alexander, H., Futerman, A. H., et al. (2007). (Dihydro)ceramide synthase 1 regulated sensitivity to cisplatin is associated with the activation of p38 mitogen-activated protein kinase and is abrogated by sphingosine kinase 1. Molecular Cancer Research, 5, 801–812.CrossRefPubMed Min, J., Mesika, A., Sivaguru, M., Van Veldhoven, P. P., Alexander, H., Futerman, A. H., et al. (2007). (Dihydro)ceramide synthase 1 regulated sensitivity to cisplatin is associated with the activation of p38 mitogen-activated protein kinase and is abrogated by sphingosine kinase 1. Molecular Cancer Research, 5, 801–812.CrossRefPubMed
Zurück zum Zitat Mitoma, J., Ito, M., Furuya, S., & Hirabayashi, Y. (1998). Bipotential roles of ceramide in the growth of hippocampal neurons: Promotion of cell survival and dendritic outgrowth in dose- and developmental stage-dependent manners. Journal of Neuroscience Research, 51, 712–722.CrossRefPubMed Mitoma, J., Ito, M., Furuya, S., & Hirabayashi, Y. (1998). Bipotential roles of ceramide in the growth of hippocampal neurons: Promotion of cell survival and dendritic outgrowth in dose- and developmental stage-dependent manners. Journal of Neuroscience Research, 51, 712–722.CrossRefPubMed
Zurück zum Zitat Mizutani, Y., Mitsutake, S., Tsuji, K., Kihara, A., & Igarashi, Y. (2009). Ceramide biosynthesis in keratinocyte and its role in skin function. Biochimie, 91, 784–790.CrossRefPubMed Mizutani, Y., Mitsutake, S., Tsuji, K., Kihara, A., & Igarashi, Y. (2009). Ceramide biosynthesis in keratinocyte and its role in skin function. Biochimie, 91, 784–790.CrossRefPubMed
Zurück zum Zitat Morales, A., Lee, H., Goni, F. M., Kolesnick, R., & Fernandez-Checa, J. C. (2007). Sphingolipids and cell death. Apoptosis, 12, 923–939.CrossRefPubMed Morales, A., Lee, H., Goni, F. M., Kolesnick, R., & Fernandez-Checa, J. C. (2007). Sphingolipids and cell death. Apoptosis, 12, 923–939.CrossRefPubMed
Zurück zum Zitat O’Brien, J. S., & Sampson, E. L. (1965). Fatty acid and fatty aldehyde composition of the major brain lipids in normal human gray matter, white matter, and myelin. Journal of Lipid Research, 6, 545–551.PubMed O’Brien, J. S., & Sampson, E. L. (1965). Fatty acid and fatty aldehyde composition of the major brain lipids in normal human gray matter, white matter, and myelin. Journal of Lipid Research, 6, 545–551.PubMed
Zurück zum Zitat Pewzner-Jung, Y., Ben-Dor, S., & Futerman, A. H. (2006). When do Lasses (longevity assurance genes) become CerS (ceramide synthases)?: Insights into the regulation of ceramide synthesis. The Journal of Biological Chemistry, 281, 25001–25005.CrossRefPubMed Pewzner-Jung, Y., Ben-Dor, S., & Futerman, A. H. (2006). When do Lasses (longevity assurance genes) become CerS (ceramide synthases)?: Insights into the regulation of ceramide synthesis. The Journal of Biological Chemistry, 281, 25001–25005.CrossRefPubMed
Zurück zum Zitat Pinto, S. N., Silva, L. C., de Almeida, R. F., & Prieto, M. (2008). Membrane domain formation, interdigitation, and morphological alterations induced by the very long chain asymmetric C24:1 ceramide. Biophysical Journal, 95, 2867–2879.CrossRefPubMed Pinto, S. N., Silva, L. C., de Almeida, R. F., & Prieto, M. (2008). Membrane domain formation, interdigitation, and morphological alterations induced by the very long chain asymmetric C24:1 ceramide. Biophysical Journal, 95, 2867–2879.CrossRefPubMed
Zurück zum Zitat Rankin, C. T., Bunton, T., Lawler, A. M., & Lee, S. J. (2000). Regulation of left-right patterning in mice by growth/differentiation factor-1. Nature Genetics, 24, 262–265.CrossRefPubMed Rankin, C. T., Bunton, T., Lawler, A. M., & Lee, S. J. (2000). Regulation of left-right patterning in mice by growth/differentiation factor-1. Nature Genetics, 24, 262–265.CrossRefPubMed
Zurück zum Zitat Riebeling, C., Allegood, J. C., Wang, E., Merrill, A. H., Jr, & Futerman, A. H. (2003). Two mammalian longevity assurance gene (LAG1) family members, trh1 and trh4, regulate dihydroceramide synthesis using different fatty acyl-CoA donors. The Journal of Biological Chemistry, 278, 43452–43459.CrossRefPubMed Riebeling, C., Allegood, J. C., Wang, E., Merrill, A. H., Jr, & Futerman, A. H. (2003). Two mammalian longevity assurance gene (LAG1) family members, trh1 and trh4, regulate dihydroceramide synthesis using different fatty acyl-CoA donors. The Journal of Biological Chemistry, 278, 43452–43459.CrossRefPubMed
Zurück zum Zitat Sastry, P. S. (1985). Lipids of nervous tissue: Composition and metabolism. Progress in Lipid Research, 24, 69–176.CrossRefPubMed Sastry, P. S. (1985). Lipids of nervous tissue: Composition and metabolism. Progress in Lipid Research, 24, 69–176.CrossRefPubMed
Zurück zum Zitat Schulz, A., Mousallem, T., Venkataramani, M., Persaud-Sawin, D. A., Zucker, A., Luberto, C., et al. (2006). The CLN9 protein, a regulator of dihydroceramide synthase. The Journal of Biological Chemistry, 281, 2784–2794.CrossRefPubMed Schulz, A., Mousallem, T., Venkataramani, M., Persaud-Sawin, D. A., Zucker, A., Luberto, C., et al. (2006). The CLN9 protein, a regulator of dihydroceramide synthase. The Journal of Biological Chemistry, 281, 2784–2794.CrossRefPubMed
Zurück zum Zitat Schwarz, A., & Futerman, A. H. (1996). The localization of gangliosides in neurons of the central nervous system: The use of anti-ganglioside antibodies. Biochimica et Biophysica Acta, 1286, 247–267.PubMed Schwarz, A., & Futerman, A. H. (1996). The localization of gangliosides in neurons of the central nervous system: The use of anti-ganglioside antibodies. Biochimica et Biophysica Acta, 1286, 247–267.PubMed
Zurück zum Zitat Schwarz, A., & Futerman, A. H. (1997). Distinct roles for ceramide and glucosylceramide at different stages of neuronal growth. Journal of Neuroscience, 17, 2929–2938.PubMed Schwarz, A., & Futerman, A. H. (1997). Distinct roles for ceramide and glucosylceramide at different stages of neuronal growth. Journal of Neuroscience, 17, 2929–2938.PubMed
Zurück zum Zitat Senkal, C. E., Ponnusamy, S., Bielawski, J., Hannun, Y. A., & Ogretmen, B. (2009). Antiapoptotic roles of ceramide-synthase-6-generated C16-ceramide via selective regulation of the ATF6/CHOP arm of ER-stress-response pathways. The FASEB Journal, 24, 296–308.CrossRefPubMed Senkal, C. E., Ponnusamy, S., Bielawski, J., Hannun, Y. A., & Ogretmen, B. (2009). Antiapoptotic roles of ceramide-synthase-6-generated C16-ceramide via selective regulation of the ATF6/CHOP arm of ER-stress-response pathways. The FASEB Journal, 24, 296–308.CrossRefPubMed
Zurück zum Zitat Senkal, C. E., Ponnusamy, S., Rossi, M. J., Bialewski, J., Sinha, D., Jiang, J. C., et al. (2007). Role of human longevity assurance gene 1 and C18-ceramide in chemotherapy-induced cell death in human head and neck squamous cell carcinomas. Molecular Cancer Therapeutics, 6, 712–722.CrossRefPubMed Senkal, C. E., Ponnusamy, S., Rossi, M. J., Bialewski, J., Sinha, D., Jiang, J. C., et al. (2007). Role of human longevity assurance gene 1 and C18-ceramide in chemotherapy-induced cell death in human head and neck squamous cell carcinomas. Molecular Cancer Therapeutics, 6, 712–722.CrossRefPubMed
Zurück zum Zitat Sot, J., Aranda, F. J., Collado, M. I., Goni, F. M., & Alonso, A. (2005). Different effects of long- and short-chain ceramides on the gel-fluid and lamellar-hexagonal transitions of phospholipids: A calorimetric, NMR, and X-ray diffraction study. Biophysical Journal, 88, 3368–3380.CrossRefPubMed Sot, J., Aranda, F. J., Collado, M. I., Goni, F. M., & Alonso, A. (2005). Different effects of long- and short-chain ceramides on the gel-fluid and lamellar-hexagonal transitions of phospholipids: A calorimetric, NMR, and X-ray diffraction study. Biophysical Journal, 88, 3368–3380.CrossRefPubMed
Zurück zum Zitat Spassieva, S. D., Mullen, T. D., Townsend, D. M., & Obeid, L. M. (2009). Disruption of ceramide synthesis by CerS2 down-regulation leads to autophagy and the unfolded protein response. Biochemical Journal, 424, 273–283.CrossRefPubMed Spassieva, S. D., Mullen, T. D., Townsend, D. M., & Obeid, L. M. (2009). Disruption of ceramide synthesis by CerS2 down-regulation leads to autophagy and the unfolded protein response. Biochemical Journal, 424, 273–283.CrossRefPubMed
Zurück zum Zitat Sridevi, P., Alexander, H., Laviad, E. L., Min, J., Mesika, A., Hannink, M., et al. (2010). Stress-induced ER to Golgi translocation of ceramide synthase 1 is dependent on proteasomal processing. Experimental Cell Research, 316, 78–91.CrossRefPubMed Sridevi, P., Alexander, H., Laviad, E. L., Min, J., Mesika, A., Hannink, M., et al. (2010). Stress-induced ER to Golgi translocation of ceramide synthase 1 is dependent on proteasomal processing. Experimental Cell Research, 316, 78–91.CrossRefPubMed
Zurück zum Zitat Sridevi, P., Alexander, H., Laviad, E. L., Pewzner-Jung, Y., Hannink, M., Futerman, A. H., et al. (2009). Ceramide synthase 1 is regulated by proteasomal mediated turnover. Biochimica et Biophysica Acta, 1793, 1218–1227.PubMed Sridevi, P., Alexander, H., Laviad, E. L., Pewzner-Jung, Y., Hannink, M., Futerman, A. H., et al. (2009). Ceramide synthase 1 is regulated by proteasomal mediated turnover. Biochimica et Biophysica Acta, 1793, 1218–1227.PubMed
Zurück zum Zitat van Ham, T. J., Thijssen, K. L., Breitling, R., Hofstra, R. M., Plasterk, R. H., & Nollen, E. A. (2008). C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS Genetics, 4, e1000027.CrossRefPubMed van Ham, T. J., Thijssen, K. L., Breitling, R., Hofstra, R. M., Plasterk, R. H., & Nollen, E. A. (2008). C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS Genetics, 4, e1000027.CrossRefPubMed
Zurück zum Zitat van Zyl, R., Gieselmann, V., & Exckhardt, M. (2010). Elevated sulfatide levels in neurons cause lethal audiogenic seizures in mice. Journal of Neurochemistry, 112, 282–295.CrossRefPubMed van Zyl, R., Gieselmann, V., & Exckhardt, M. (2010). Elevated sulfatide levels in neurons cause lethal audiogenic seizures in mice. Journal of Neurochemistry, 112, 282–295.CrossRefPubMed
Zurück zum Zitat Vantaggiato, C., Redaelli, F., Falcone, S., Perrotta, C., Tonelli, A., Bondioni, S., et al. (2009). A novel CLN8 mutation in late-infantile-onset neuronal ceroid lipofuscinosis (LINCL) reveals aspects of CLN8 neurobiological function. Human Mutation, 30, 1104–1116.CrossRefPubMed Vantaggiato, C., Redaelli, F., Falcone, S., Perrotta, C., Tonelli, A., Bondioni, S., et al. (2009). A novel CLN8 mutation in late-infantile-onset neuronal ceroid lipofuscinosis (LINCL) reveals aspects of CLN8 neurobiological function. Human Mutation, 30, 1104–1116.CrossRefPubMed
Zurück zum Zitat Venkataraman, K., Riebeling, C., Bodennec, J., Riezman, H., Allegood, J. C., Sullards, M. C., et al. (2002). Upstream of growth and differentiation factor 1 (uog1), a mammalian homolog of the yeast longevity assurance gene 1 (LAG1), regulates N-stearoyl-sphinganine (C18-(dihydro)ceramide) synthesis in a fumonisin B1-independent manner in mammalian cells. The Journal of Biological Chemistry, 277, 35642–35649.CrossRefPubMed Venkataraman, K., Riebeling, C., Bodennec, J., Riezman, H., Allegood, J. C., Sullards, M. C., et al. (2002). Upstream of growth and differentiation factor 1 (uog1), a mammalian homolog of the yeast longevity assurance gene 1 (LAG1), regulates N-stearoyl-sphinganine (C18-(dihydro)ceramide) synthesis in a fumonisin B1-independent manner in mammalian cells. The Journal of Biological Chemistry, 277, 35642–35649.CrossRefPubMed
Zurück zum Zitat Wang, G., Silva, J., Dasgupta, S., & Bieberich, E. (2008). Long-chain ceramide is elevated in presenilin 1 (PS1M146 V) mouse brain and induces apoptosis in PS1 astrocytes. Glia, 56, 449–456.CrossRefPubMed Wang, G., Silva, J., Dasgupta, S., & Bieberich, E. (2008). Long-chain ceramide is elevated in presenilin 1 (PS1M146 V) mouse brain and induces apoptosis in PS1 astrocytes. Glia, 56, 449–456.CrossRefPubMed
Zurück zum Zitat Yu, R. K., & Saito, M. (1989). Structure and localization of gangliosides. In R. U. Margolis & R. K. Margolis (Eds.), Neurobiology of glycoconjugates (pp. 1–42). Plenum Press. Yu, R. K., & Saito, M. (1989). Structure and localization of gangliosides. In R. U. Margolis & R. K. Margolis (Eds.), Neurobiology of glycoconjugates (pp. 1–42). Plenum Press.
Metadaten
Titel
The Role of the Ceramide Acyl Chain Length in Neurodegeneration: Involvement of Ceramide Synthases
verfasst von
Oshrit Ben-David
Anthony H. Futerman
Publikationsdatum
01.12.2010
Verlag
Humana Press Inc
Erschienen in
NeuroMolecular Medicine / Ausgabe 4/2010
Print ISSN: 1535-1084
Elektronische ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-010-8114-x

Weitere Artikel der Ausgabe 4/2010

NeuroMolecular Medicine 4/2010 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.

Schützt Olivenöl vor dem Tod durch Demenz?

10.05.2024 Morbus Alzheimer Nachrichten

Konsumieren Menschen täglich 7 Gramm Olivenöl, ist ihr Risiko, an einer Demenz zu sterben, um mehr als ein Viertel reduziert – und dies weitgehend unabhängig von ihrer sonstigen Ernährung. Dafür sprechen Auswertungen zweier großer US-Studien.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.