Skip to main content
Erschienen in: Neuropsychology Review 4/2015

01.12.2015 | Review

The Subthalamic Nucleus, Limbic Function, and Impulse Control

verfasst von: P. Justin Rossi, Aysegul Gunduz, Michael S. Okun

Erschienen in: Neuropsychology Review | Ausgabe 4/2015

Einloggen, um Zugang zu erhalten

Abstract

It has been well documented that deep brain stimulation (DBS) of the subthalamic nucleus (STN) to address some of the disabling motor symptoms of Parkinson’s disease (PD) can evoke unintended effects, especially on non-motor behavior. This observation has catalyzed more than a decade of research concentrated on establishing trends and identifying potential mechanisms for these non-motor effects. While many issues remain unresolved, the collective result of many research studies and clinical observations has been a general recognition of the role of the STN in mediating limbic function. In particular, the STN has been implicated in impulse control and the related construct of valence processing. A better understanding of STN involvement in these phenomena could have important implications for treating impulse control disorders (ICDs). ICDs affect up to 40% of PD patients on dopamine agonist therapy and approximately 15% of PD patients overall. ICDs have been reported to be associated with STN DBS. In this paper we will focus on impulse control and review pre-clinical, clinical, behavioral, imaging, and electrophysiological studies pertaining to the limbic function of the STN.
Literatur
Zurück zum Zitat Accolla, E. A., Dukart, J., Helms, G., Weiskopf, N., Kherif, F., Lutti, A., et al. (2014). Brain tissue properties differentiate between motor and limbic basal ganglia circuits. Human Brain Mapping, 35, 5083–5092.PubMedCentralPubMedCrossRef Accolla, E. A., Dukart, J., Helms, G., Weiskopf, N., Kherif, F., Lutti, A., et al. (2014). Brain tissue properties differentiate between motor and limbic basal ganglia circuits. Human Brain Mapping, 35, 5083–5092.PubMedCentralPubMedCrossRef
Zurück zum Zitat Aleksandrova, L. R., Creed, M. C., Fletcher, P. J., Lobo, D. S. S., Hamani, C., & Nobrega, J. N. (2013). Deep brain stimulation of the subthalamic nucleus increases premature responding in a rat gambling task. Behavioural Brain Research, 245, 76–82.PubMedCrossRef Aleksandrova, L. R., Creed, M. C., Fletcher, P. J., Lobo, D. S. S., Hamani, C., & Nobrega, J. N. (2013). Deep brain stimulation of the subthalamic nucleus increases premature responding in a rat gambling task. Behavioural Brain Research, 245, 76–82.PubMedCrossRef
Zurück zum Zitat Alkemade, A., & Forstmann, B. U. (2014). Do we need to revise the tripartite subdivision hypothesis of the human subthalamic nucleus (STN)? NeuroImage, 95, 326–329.PubMedCrossRef Alkemade, A., & Forstmann, B. U. (2014). Do we need to revise the tripartite subdivision hypothesis of the human subthalamic nucleus (STN)? NeuroImage, 95, 326–329.PubMedCrossRef
Zurück zum Zitat Alkemade A., Schnitzler A., Forstmann B. U. (2015). Topographic organization of the human and non-human primate subthalamic nucleus. Brain Struct. Funct. Alkemade A., Schnitzler A., Forstmann B. U. (2015). Topographic organization of the human and non-human primate subthalamic nucleus. Brain Struct. Funct.
Zurück zum Zitat Ardouin, C., Voon, V., Worbe, Y., Abouazar, N., Czernecki, V., Hosseini, H., et al. (2006). Pathological gambling in Parkinson’s disease improves on chronic subthalamic nucleus stimulation. Movement Disorders, 21, 1941–1946.PubMedCrossRef Ardouin, C., Voon, V., Worbe, Y., Abouazar, N., Czernecki, V., Hosseini, H., et al. (2006). Pathological gambling in Parkinson’s disease improves on chronic subthalamic nucleus stimulation. Movement Disorders, 21, 1941–1946.PubMedCrossRef
Zurück zum Zitat Aron, A. R., Behrens, T. E., Smith, S., Frank, M. J., & Poldrack, R. A. (2007). Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27, 3743–3752.CrossRef Aron, A. R., Behrens, T. E., Smith, S., Frank, M. J., & Poldrack, R. A. (2007). Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27, 3743–3752.CrossRef
Zurück zum Zitat Balarajah, S., & Cavanna, A. E. (2013). The pathophysiology of impulse control disorders in Parkinson disease. Behavioural Neurology, 26, 237–244.PubMedCrossRef Balarajah, S., & Cavanna, A. E. (2013). The pathophysiology of impulse control disorders in Parkinson disease. Behavioural Neurology, 26, 237–244.PubMedCrossRef
Zurück zum Zitat Baláž, M., Bočková, M., Rektorová, I., & Rektor, I. (2011). Involvement of the subthalamic nucleus in cognitive functions -- a concept. Journal of Neurological Sciences, 310, 96–99.CrossRef Baláž, M., Bočková, M., Rektorová, I., & Rektor, I. (2011). Involvement of the subthalamic nucleus in cognitive functions -- a concept. Journal of Neurological Sciences, 310, 96–99.CrossRef
Zurück zum Zitat Ballanger, B., van Eimeren, T., Moro, E., Lozano, A. M., Hamani, C., Boulinguez, P., et al. (2009). Stimulation of the subthalamic nucleus and impulsivity: release your horses. Annals of Neurology, 66, 817–824.PubMedCentralPubMedCrossRef Ballanger, B., van Eimeren, T., Moro, E., Lozano, A. M., Hamani, C., Boulinguez, P., et al. (2009). Stimulation of the subthalamic nucleus and impulsivity: release your horses. Annals of Neurology, 66, 817–824.PubMedCentralPubMedCrossRef
Zurück zum Zitat Bari, A., & Robbins, T. W. (2013). Inhibition and impulsivity: behavioral and neural basis of response control. Progress in Neurobiology, 108, 44–79.PubMedCrossRef Bari, A., & Robbins, T. W. (2013). Inhibition and impulsivity: behavioral and neural basis of response control. Progress in Neurobiology, 108, 44–79.PubMedCrossRef
Zurück zum Zitat Baunez, C., Nieoullon, A., & Amalric, M. (1995). In a rat model of parkinsonism, lesions of the subthalamic nucleus reverse increases of reaction time but induce a dramatic premature responding deficit. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 15, 6531–6541. Baunez, C., Nieoullon, A., & Amalric, M. (1995). In a rat model of parkinsonism, lesions of the subthalamic nucleus reverse increases of reaction time but induce a dramatic premature responding deficit. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 15, 6531–6541.
Zurück zum Zitat Baunez, C., Amalric, M., & Robbins, T. W. (2002). Enhanced food-related motivation after bilateral lesions of the subthalamic nucleus. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 22, 562–568. Baunez, C., Amalric, M., & Robbins, T. W. (2002). Enhanced food-related motivation after bilateral lesions of the subthalamic nucleus. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 22, 562–568.
Zurück zum Zitat Baunez, C., Dias, C., Cador, M., & Amalric, M. (2005). The subthalamic nucleus exerts opposite control on cocaine and ‘natural’ rewards. Nature Neuroscience, 8, 484–489.PubMed Baunez, C., Dias, C., Cador, M., & Amalric, M. (2005). The subthalamic nucleus exerts opposite control on cocaine and ‘natural’ rewards. Nature Neuroscience, 8, 484–489.PubMed
Zurück zum Zitat Baunez, C., Christakou, A., Chudasama, Y., Forni, C., & Robbins, T. W. (2007). Bilateral high-frequency stimulation of the subthalamic nucleus on attentional performance: transient deleterious effects and enhanced motivation in both intact and parkinsonian rats. European Journal of Neuroscience, 25, 1187–1194.PubMedCentralPubMedCrossRef Baunez, C., Christakou, A., Chudasama, Y., Forni, C., & Robbins, T. W. (2007). Bilateral high-frequency stimulation of the subthalamic nucleus on attentional performance: transient deleterious effects and enhanced motivation in both intact and parkinsonian rats. European Journal of Neuroscience, 25, 1187–1194.PubMedCentralPubMedCrossRef
Zurück zum Zitat Benedetti, F., Colloca, L., Lanotte, M., Bergamasco, B., Torre, E., & Lopiano, L. (2004). Autonomic and emotional responses to open and hidden stimulations of the human subthalamic region. Brain Research Bulletin, 63, 203–211.PubMedCrossRef Benedetti, F., Colloca, L., Lanotte, M., Bergamasco, B., Torre, E., & Lopiano, L. (2004). Autonomic and emotional responses to open and hidden stimulations of the human subthalamic region. Brain Research Bulletin, 63, 203–211.PubMedCrossRef
Zurück zum Zitat Bickel, S., Alvarez, L., Macias, R., Pavon, N., Leon, M., Fernandez, C., et al. (2010). Cognitive and neuropsychiatric effects of subthalamotomy for Parkinson’s disease. Parkinsonism & Related Disorders, 16, 535–539.CrossRef Bickel, S., Alvarez, L., Macias, R., Pavon, N., Leon, M., Fernandez, C., et al. (2010). Cognitive and neuropsychiatric effects of subthalamotomy for Parkinson’s disease. Parkinsonism & Related Disorders, 16, 535–539.CrossRef
Zurück zum Zitat Boller, J. K., Barbe, M. T., Pauls, K. A. M., Reck, C., Brand, M., Maier, F., et al. (2014). Decision-making under risk is improved by both dopaminergic medication and subthalamic stimulation in Parkinson’s disease. Experimental Neurology, 254, 70–77.PubMedCrossRef Boller, J. K., Barbe, M. T., Pauls, K. A. M., Reck, C., Brand, M., Maier, F., et al. (2014). Decision-making under risk is improved by both dopaminergic medication and subthalamic stimulation in Parkinson’s disease. Experimental Neurology, 254, 70–77.PubMedCrossRef
Zurück zum Zitat Borden, A., Wallon, D., Lefaucheur, R., Derrey, S., Fetter, D., Verin, M., et al. (2014). Does early verbal fluency decline after STN implantation predict long-term cognitive outcome after STN-DBS in Parkinson’s disease? Journal of Neurological Sciences, 346, 299–302.CrossRef Borden, A., Wallon, D., Lefaucheur, R., Derrey, S., Fetter, D., Verin, M., et al. (2014). Does early verbal fluency decline after STN implantation predict long-term cognitive outcome after STN-DBS in Parkinson’s disease? Journal of Neurological Sciences, 346, 299–302.CrossRef
Zurück zum Zitat Brandt, J., Rogerson, M., Al-Joudi, H., Reckess, G., Shpritz, B., Umeh, C. C., et al. (2015). Betting on DBS: Effects of subthalamic nucleus deep brain stimulation on risk taking and decision making in patients with Parkinson’s disease. Neuropsychology, 29, 622–631.PubMedCrossRef Brandt, J., Rogerson, M., Al-Joudi, H., Reckess, G., Shpritz, B., Umeh, C. C., et al. (2015). Betting on DBS: Effects of subthalamic nucleus deep brain stimulation on risk taking and decision making in patients with Parkinson’s disease. Neuropsychology, 29, 622–631.PubMedCrossRef
Zurück zum Zitat Brücke, C., Kupsch, A., Schneider, G.-H., Hariz, M. I., Nuttin, B., Kopp, U., et al. (2007). The subthalamic region is activated during valence-related emotional processing in patients with Parkinson’s disease. European Journal of Neuroscience, 26, 767–774.PubMedCrossRef Brücke, C., Kupsch, A., Schneider, G.-H., Hariz, M. I., Nuttin, B., Kopp, U., et al. (2007). The subthalamic region is activated during valence-related emotional processing in patients with Parkinson’s disease. European Journal of Neuroscience, 26, 767–774.PubMedCrossRef
Zurück zum Zitat Brunenberg, E. J. L., Moeskops, P., Backes, W. H., Pollo, C., Cammoun, L., Vilanova, A., et al. (2012). Structural and resting state functional connectivity of the subthalamic nucleus: identification of motor STN parts and the hyperdirect pathway. PloS One, 7, e39061.PubMedCentralPubMedCrossRef Brunenberg, E. J. L., Moeskops, P., Backes, W. H., Pollo, C., Cammoun, L., Vilanova, A., et al. (2012). Structural and resting state functional connectivity of the subthalamic nucleus: identification of motor STN parts and the hyperdirect pathway. PloS One, 7, e39061.PubMedCentralPubMedCrossRef
Zurück zum Zitat Buot, A., Welter, M.-L., Karachi, C., Pochon, J.-B., Bardinet, E., Yelnik, J., et al. (2013). Processing of emotional information in the human subthalamic nucleus. Journal of Neurology, Neurosurgery, and Psychiatry, 84, 1331–1338.PubMedCrossRef Buot, A., Welter, M.-L., Karachi, C., Pochon, J.-B., Bardinet, E., Yelnik, J., et al. (2013). Processing of emotional information in the human subthalamic nucleus. Journal of Neurology, Neurosurgery, and Psychiatry, 84, 1331–1338.PubMedCrossRef
Zurück zum Zitat Burbaud, P., Clair, A.-H., Langbour, N., Fernandez-Vidal, S., Goillandeau, M., Michelet, T., et al. (2013). Neuronal activity correlated with checking behaviour in the subthalamic nucleus of patients with obsessive-compulsive disorder. Brain: A Journal of Neurology, 136, 304–317.CrossRef Burbaud, P., Clair, A.-H., Langbour, N., Fernandez-Vidal, S., Goillandeau, M., Michelet, T., et al. (2013). Neuronal activity correlated with checking behaviour in the subthalamic nucleus of patients with obsessive-compulsive disorder. Brain: A Journal of Neurology, 136, 304–317.CrossRef
Zurück zum Zitat Burrows, A. M., Ravin, P. D., Novak, P., Peters, M. L. B., Dessureau, B., Swearer, J., et al. (2012). Limbic and motor function comparison of deep brain stimulation of the zona incerta and subthalamic nucleus. Neurosurgery, 70, 125–130.PubMedCrossRef Burrows, A. M., Ravin, P. D., Novak, P., Peters, M. L. B., Dessureau, B., Swearer, J., et al. (2012). Limbic and motor function comparison of deep brain stimulation of the zona incerta and subthalamic nucleus. Neurosurgery, 70, 125–130.PubMedCrossRef
Zurück zum Zitat Camacho-Abrego, I., Tellez-Merlo, G., Melo, A. I., Rodríguez-Moreno, A., Garcés, L., De La Cruz, F., et al. (2014). Rearrangement of the dendritic morphology of the neurons from prefrontal cortex and hippocampus after subthalamic lesion in Sprague–Dawley rats. Synapse (New York), 68, 114–126.CrossRef Camacho-Abrego, I., Tellez-Merlo, G., Melo, A. I., Rodríguez-Moreno, A., Garcés, L., De La Cruz, F., et al. (2014). Rearrangement of the dendritic morphology of the neurons from prefrontal cortex and hippocampus after subthalamic lesion in Sprague–Dawley rats. Synapse (New York), 68, 114–126.CrossRef
Zurück zum Zitat Cera, N., Bifolchetti, S., Martinotti, G., Gambi, F., Sepede, G., Onofrj, M., et al. (2014). Amantadine and cognitive flexibility: decision making in Parkinson’s patients with severe pathological gambling and other impulse control disorders. Neuropsychiatric Disease and Treatment, 10, 1093–1101.PubMedCentralPubMedCrossRef Cera, N., Bifolchetti, S., Martinotti, G., Gambi, F., Sepede, G., Onofrj, M., et al. (2014). Amantadine and cognitive flexibility: decision making in Parkinson’s patients with severe pathological gambling and other impulse control disorders. Neuropsychiatric Disease and Treatment, 10, 1093–1101.PubMedCentralPubMedCrossRef
Zurück zum Zitat Chowdhury, R., Guitart-Masip, M., Lambert, C., Dolan, R. J., & Düzel, E. (2013). Structural integrity of the substantia nigra and subthalamic nucleus predicts flexibility of instrumental learning in older-age individuals. Neurobiology of Aging, 34, 2261–2270.PubMedCentralPubMedCrossRef Chowdhury, R., Guitart-Masip, M., Lambert, C., Dolan, R. J., & Düzel, E. (2013). Structural integrity of the substantia nigra and subthalamic nucleus predicts flexibility of instrumental learning in older-age individuals. Neurobiology of Aging, 34, 2261–2270.PubMedCentralPubMedCrossRef
Zurück zum Zitat Coenen, V. A., Honey, C. R., Hurwitz, T., Rahman, A. A., McMaster, J., Bürgel, U., et al. (2009). Medial forebrain bundle stimulation as a pathophysiological mechanism for hypomania in subthalamic nucleus deep brain stimulation for Parkinson’s disease. Neurosurgery, 64, 1106–1114.PubMedCrossRef Coenen, V. A., Honey, C. R., Hurwitz, T., Rahman, A. A., McMaster, J., Bürgel, U., et al. (2009). Medial forebrain bundle stimulation as a pathophysiological mechanism for hypomania in subthalamic nucleus deep brain stimulation for Parkinson’s disease. Neurosurgery, 64, 1106–1114.PubMedCrossRef
Zurück zum Zitat Cools, R., Altamirano, L., & D’Esposito, M. (2006). Reversal learning in Parkinson’s disease depends on medication status and outcome valence. Neuropsychologia, 44, 1663–1673.PubMedCrossRef Cools, R., Altamirano, L., & D’Esposito, M. (2006). Reversal learning in Parkinson’s disease depends on medication status and outcome valence. Neuropsychologia, 44, 1663–1673.PubMedCrossRef
Zurück zum Zitat Couto, M. I., Monteiro, A., Oliveira, A., Lunet, N., & Massano, J. (2014). Depression and anxiety following deep brain stimulation in Parkinson’s disease: systematic review and meta-analysis. Acta Médica Portuguesa, 27, 372–382.PubMed Couto, M. I., Monteiro, A., Oliveira, A., Lunet, N., & Massano, J. (2014). Depression and anxiety following deep brain stimulation in Parkinson’s disease: systematic review and meta-analysis. Acta Médica Portuguesa, 27, 372–382.PubMed
Zurück zum Zitat Coxon, J. P., Impe, A. V., Wenderoth, N., & Swinnen, S. P. (2012). Aging and inhibitory control of action: cortico-subthalamic connection strength predicts stopping performance. Journal of Neuroscience, 32, 8401–8412.PubMedCrossRef Coxon, J. P., Impe, A. V., Wenderoth, N., & Swinnen, S. P. (2012). Aging and inhibitory control of action: cortico-subthalamic connection strength predicts stopping performance. Journal of Neuroscience, 32, 8401–8412.PubMedCrossRef
Zurück zum Zitat Darbaky, Y., Baunez, C., Arecchi, P., Legallet, E., & Apicella, P. (2005). Reward-related neuronal activity in the subthalamic nucleus of the monkey. Neuroreport, 16, 1241–1244.PubMedCrossRef Darbaky, Y., Baunez, C., Arecchi, P., Legallet, E., & Apicella, P. (2005). Reward-related neuronal activity in the subthalamic nucleus of the monkey. Neuroreport, 16, 1241–1244.PubMedCrossRef
Zurück zum Zitat Desbonnet, L., Temel, Y., Visser-Vandewalle, V., Blokland, A., Hornikx, V., & Steinbusch, H. W. M. (2004). Premature responding following bilateral stimulation of the rat subthalamic nucleus is amplitude and frequency dependent. Brain Research, 1008, 198–204.PubMedCrossRef Desbonnet, L., Temel, Y., Visser-Vandewalle, V., Blokland, A., Hornikx, V., & Steinbusch, H. W. M. (2004). Premature responding following bilateral stimulation of the rat subthalamic nucleus is amplitude and frequency dependent. Brain Research, 1008, 198–204.PubMedCrossRef
Zurück zum Zitat Dick, D. M., Smith, G., Olausson, P., Mitchell, S. H., Leeman, R. F., O’Malley, S. S., et al. (2010). Understanding the construct of impulsivity and its relationship to alcohol use disorders. Addiction Biology, 15, 217–226.PubMedCentralPubMedCrossRef Dick, D. M., Smith, G., Olausson, P., Mitchell, S. H., Leeman, R. F., O’Malley, S. S., et al. (2010). Understanding the construct of impulsivity and its relationship to alcohol use disorders. Addiction Biology, 15, 217–226.PubMedCentralPubMedCrossRef
Zurück zum Zitat Diergaarde, L., Pattij, T., Nawijn, L., Schoffelmeer, A. N. M., & De Vries, T. J. (2009). Trait impulsivity predicts escalation of sucrose seeking and hypersensitivity to sucrose-associated stimuli. Behavioral Neuroscience, 123, 794–803.PubMedCrossRef Diergaarde, L., Pattij, T., Nawijn, L., Schoffelmeer, A. N. M., & De Vries, T. J. (2009). Trait impulsivity predicts escalation of sucrose seeking and hypersensitivity to sucrose-associated stimuli. Behavioral Neuroscience, 123, 794–803.PubMedCrossRef
Zurück zum Zitat Drapier, D., Drapier, S., Sauleau, P., Haegelen, C., Raoul, S., Biseul, I., et al. (2006). Does subthalamic nucleus stimulation induce apathy in Parkinson’s disease? Journal of Neurology, 253, 1083–1091.PubMedCrossRef Drapier, D., Drapier, S., Sauleau, P., Haegelen, C., Raoul, S., Biseul, I., et al. (2006). Does subthalamic nucleus stimulation induce apathy in Parkinson’s disease? Journal of Neurology, 253, 1083–1091.PubMedCrossRef
Zurück zum Zitat Eisenstein, S. A., Koller, J. M., Black, K. D., Campbell, M. C., Lugar, H. M., Ushe, M., et al. (2014). Functional anatomy of subthalamic nucleus stimulation in Parkinson disease. Annals of Neurology, 76, 279–295.PubMedCentralPubMedCrossRef Eisenstein, S. A., Koller, J. M., Black, K. D., Campbell, M. C., Lugar, H. M., Ushe, M., et al. (2014). Functional anatomy of subthalamic nucleus stimulation in Parkinson disease. Annals of Neurology, 76, 279–295.PubMedCentralPubMedCrossRef
Zurück zum Zitat Eitan, R., Shamir, R. R., Linetsky, E., Rosenbluh, O., Moshel, S., Ben-Hur, T., et al. (2013). Asymmetric right/left encoding of emotions in the human subthalamic nucleus. Frontiers in Systems Neuroscience, 7, 69.PubMedCentralPubMedCrossRef Eitan, R., Shamir, R. R., Linetsky, E., Rosenbluh, O., Moshel, S., Ben-Hur, T., et al. (2013). Asymmetric right/left encoding of emotions in the human subthalamic nucleus. Frontiers in Systems Neuroscience, 7, 69.PubMedCentralPubMedCrossRef
Zurück zum Zitat Espinosa-Parrilla, J.-F., Baunez, C., & Apicella, P. (2013). Linking reward processing to behavioral output: motor and motivational integration in the primate subthalamic nucleus. Frontiers in Computational Neuroscience, 7, 175.PubMedCentralPubMedCrossRef Espinosa-Parrilla, J.-F., Baunez, C., & Apicella, P. (2013). Linking reward processing to behavioral output: motor and motivational integration in the primate subthalamic nucleus. Frontiers in Computational Neuroscience, 7, 175.PubMedCentralPubMedCrossRef
Zurück zum Zitat Espinosa-Parrilla, J. F., Baunez, C., & Apicella, P. (2015). Modulation of neuronal activity by reward identity in the monkey subthalamic nucleus. European Journal of Neuroscience, 42, 1705–1717.PubMedCrossRef Espinosa-Parrilla, J. F., Baunez, C., & Apicella, P. (2015). Modulation of neuronal activity by reward identity in the monkey subthalamic nucleus. European Journal of Neuroscience, 42, 1705–1717.PubMedCrossRef
Zurück zum Zitat Evens, R., Stankevich, Y., Dshemuchadse, M., Storch, A., Wolz, M., Reichmann, H., et al. (2015). The impact of Parkinson’s disease and subthalamic deep brain stimulation on reward processing. Neuropsychologia, 75, 11–19.PubMedCrossRef Evens, R., Stankevich, Y., Dshemuchadse, M., Storch, A., Wolz, M., Reichmann, H., et al. (2015). The impact of Parkinson’s disease and subthalamic deep brain stimulation on reward processing. Neuropsychologia, 75, 11–19.PubMedCrossRef
Zurück zum Zitat Forstmann, B. U., Keuken, M. C., Jahfari, S., Bazin, P.-L., Neumann, J., Schäfer, A., et al. (2012). Cortico-subthalamic white matter tract strength predicts interindividual efficacy in stopping a motor response. NeuroImage, 60, 370–375.PubMedCrossRef Forstmann, B. U., Keuken, M. C., Jahfari, S., Bazin, P.-L., Neumann, J., Schäfer, A., et al. (2012). Cortico-subthalamic white matter tract strength predicts interindividual efficacy in stopping a motor response. NeuroImage, 60, 370–375.PubMedCrossRef
Zurück zum Zitat Frank, M. J. (2005). Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. Journal Cognitive Neuroscience, 17, 51–72.CrossRef Frank, M. J. (2005). Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. Journal Cognitive Neuroscience, 17, 51–72.CrossRef
Zurück zum Zitat Frank, M. J. (2006). Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural Network Official Journal International Neural Networks Society, 19, 1120–1136.CrossRef Frank, M. J. (2006). Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural Network Official Journal International Neural Networks Society, 19, 1120–1136.CrossRef
Zurück zum Zitat Frank, M. J., & O’Reilly, R. C. (2006). A mechanistic account of striatal dopamine function in human cognition: psychopharmacological studies with cabergoline and haloperidol. Behavioral Neuroscience, 120, 497–517.PubMedCrossRef Frank, M. J., & O’Reilly, R. C. (2006). A mechanistic account of striatal dopamine function in human cognition: psychopharmacological studies with cabergoline and haloperidol. Behavioral Neuroscience, 120, 497–517.PubMedCrossRef
Zurück zum Zitat Fukaya, C., & Yamamoto, T. (2015). Deep brain stimulation for Parkinson’s disease: recent trends and future direction. Neurologia Medico-Chirurgica (Tokyo), 55, 422–431.CrossRef Fukaya, C., & Yamamoto, T. (2015). Deep brain stimulation for Parkinson’s disease: recent trends and future direction. Neurologia Medico-Chirurgica (Tokyo), 55, 422–431.CrossRef
Zurück zum Zitat Funkiewiez, A., Ardouin, C., Caputo, E., Krack, P., Fraix, V., Klinger, H., et al. (2004). Long term effects of bilateral subthalamic nucleus stimulation on cognitive function, mood, and behaviour in Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 75, 834–839.PubMedCentralPubMedCrossRef Funkiewiez, A., Ardouin, C., Caputo, E., Krack, P., Fraix, V., Klinger, H., et al. (2004). Long term effects of bilateral subthalamic nucleus stimulation on cognitive function, mood, and behaviour in Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 75, 834–839.PubMedCentralPubMedCrossRef
Zurück zum Zitat Garcia-Ruiz, P. J., Martinez Castrillo, J. C., Alonso-Canovas, A., Herranz Barcenas, A., Vela, L., Sanchez Alonso, P., et al. (2014). Impulse control disorder in patients with Parkinson’s disease under dopamine agonist therapy: a multicentre study. Journal of Neurology, Neurosurgery, and Psychiatry, 85, 840–844.PubMedCrossRef Garcia-Ruiz, P. J., Martinez Castrillo, J. C., Alonso-Canovas, A., Herranz Barcenas, A., Vela, L., Sanchez Alonso, P., et al. (2014). Impulse control disorder in patients with Parkinson’s disease under dopamine agonist therapy: a multicentre study. Journal of Neurology, Neurosurgery, and Psychiatry, 85, 840–844.PubMedCrossRef
Zurück zum Zitat Gee, L., Smith, H., De La Cruz, P., Campbell, J., Fama, C., Haller, J., et al. (2015). The influence of bilateral subthalamic nucleus deep brain stimulation on impulsivity and prepulse inhibition in Parkinson’s disease patients. Stereotactic and Functional Neurosurgery, 93, 265–270.PubMedCrossRef Gee, L., Smith, H., De La Cruz, P., Campbell, J., Fama, C., Haller, J., et al. (2015). The influence of bilateral subthalamic nucleus deep brain stimulation on impulsivity and prepulse inhibition in Parkinson’s disease patients. Stereotactic and Functional Neurosurgery, 93, 265–270.PubMedCrossRef
Zurück zum Zitat Guitart-Masip, M., Duzel, E., Dolan, R., & Dayan, P. (2014). Action versus valence in decision making. Trends in Cognitive Sciences, 18, 194–202.PubMedCentralPubMedCrossRef Guitart-Masip, M., Duzel, E., Dolan, R., & Dayan, P. (2014). Action versus valence in decision making. Trends in Cognitive Sciences, 18, 194–202.PubMedCentralPubMedCrossRef
Zurück zum Zitat Gunduz, A., Morita, H., Rossi, P. J., Allen, W. L., Alterman, R. L., Bronte-Stewart, H., et al. Proceedings of the Second Annual Deep Brain Stimulation Think Tank: What’s in the Pipeline. Int. J. Neurosci. 2015: 1–11. Gunduz, A., Morita, H., Rossi, P. J., Allen, W. L., Alterman, R. L., Bronte-Stewart, H., et al. Proceedings of the Second Annual Deep Brain Stimulation Think Tank: What’s in the Pipeline. Int. J. Neurosci. 2015: 1–11.
Zurück zum Zitat Hachem-Delaunay, S., Fournier, M.-L., Cohen, C., Bonneau, N., Cador, M., Baunez, C., et al. (2015). Subthalamic nucleus high-frequency stimulation modulates neuronal reactivity to cocaine within the reward circuit. Neurobiology of Disease, 80, 54–62.PubMedCrossRef Hachem-Delaunay, S., Fournier, M.-L., Cohen, C., Bonneau, N., Cador, M., Baunez, C., et al. (2015). Subthalamic nucleus high-frequency stimulation modulates neuronal reactivity to cocaine within the reward circuit. Neurobiology of Disease, 80, 54–62.PubMedCrossRef
Zurück zum Zitat Haegelen, C., Verin, M., Broche, B. A., Prigent, F., Jannin, P., Gibaud, B., et al. (2005). Does subthalamic nucleus stimulation affect the frontal limbic areas? a single-photon emission computed tomography study using a manual anatomical segmentation method. Surgical and Radiologic Anatomy, 27, 389–394.PubMedCrossRef Haegelen, C., Verin, M., Broche, B. A., Prigent, F., Jannin, P., Gibaud, B., et al. (2005). Does subthalamic nucleus stimulation affect the frontal limbic areas? a single-photon emission computed tomography study using a manual anatomical segmentation method. Surgical and Radiologic Anatomy, 27, 389–394.PubMedCrossRef
Zurück zum Zitat Haegelen, C., Rouaud, T., Darnault, P., & Morandi, X. (2009). The subthalamic nucleus is a key-structure of limbic basal ganglia functions. Medical Hypotheses, 72, 421–426.PubMedCrossRef Haegelen, C., Rouaud, T., Darnault, P., & Morandi, X. (2009). The subthalamic nucleus is a key-structure of limbic basal ganglia functions. Medical Hypotheses, 72, 421–426.PubMedCrossRef
Zurück zum Zitat Haynes, W. I. A., & Haber, S. N. (2013). The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for basal ganglia models and deep brain stimulation. Journal of Neuroscience, 33, 4804–4814.PubMedCentralPubMedCrossRef Haynes, W. I. A., & Haber, S. N. (2013). The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for basal ganglia models and deep brain stimulation. Journal of Neuroscience, 33, 4804–4814.PubMedCentralPubMedCrossRef
Zurück zum Zitat Hewig, J., Kretschmer, N., Trippe, R. H., Hecht, H., Coles, M. G. H., Holroyd, C. B., et al. (2010). Hypersensitivity to reward in problem gamblers. Biological Psychiatry, 67, 781–783.PubMedCrossRef Hewig, J., Kretschmer, N., Trippe, R. H., Hecht, H., Coles, M. G. H., Holroyd, C. B., et al. (2010). Hypersensitivity to reward in problem gamblers. Biological Psychiatry, 67, 781–783.PubMedCrossRef
Zurück zum Zitat Hilker, R., Voges, J., Weisenbach, S., Kalbe, E., Burghaus, L., Ghaemi, M., et al. (2004). Subthalamic nucleus stimulation restores glucose metabolism in associative and limbic cortices and in cerebellum: evidence from a FDG-PET study in advanced Parkinson’s disease. Journal of Cerebral Blood Flow and Metabolism Official journal of the International Society for Cerebral Blood Flow and Metabolism, 24, 7–16.CrossRef Hilker, R., Voges, J., Weisenbach, S., Kalbe, E., Burghaus, L., Ghaemi, M., et al. (2004). Subthalamic nucleus stimulation restores glucose metabolism in associative and limbic cortices and in cerebellum: evidence from a FDG-PET study in advanced Parkinson’s disease. Journal of Cerebral Blood Flow and Metabolism Official journal of the International Society for Cerebral Blood Flow and Metabolism, 24, 7–16.CrossRef
Zurück zum Zitat Jahanshahi, M. (2013). Effects of deep brain stimulation of the subthalamic nucleus on inhibitory and executive control over prepotent responses in Parkinson’s disease. Frontiers in Systems Neuroscience, 7, 118.PubMedCentralPubMedCrossRef Jahanshahi, M. (2013). Effects of deep brain stimulation of the subthalamic nucleus on inhibitory and executive control over prepotent responses in Parkinson’s disease. Frontiers in Systems Neuroscience, 7, 118.PubMedCentralPubMedCrossRef
Zurück zum Zitat Joel, D., & Weiner, I. (1997). The connections of the primate subthalamic nucleus: indirect pathways and the open-interconnected scheme of basal ganglia-thalamocortical circuitry. Brain Research. Brain Research Reviews, 23, 62–78.PubMedCrossRef Joel, D., & Weiner, I. (1997). The connections of the primate subthalamic nucleus: indirect pathways and the open-interconnected scheme of basal ganglia-thalamocortical circuitry. Brain Research. Brain Research Reviews, 23, 62–78.PubMedCrossRef
Zurück zum Zitat Kantak, K. M., Yager, L. M., & Brisotti, M. F. (2013). Impact of medial orbital cortex and medial subthalamic nucleus inactivation, individually and together, on the maintenance of cocaine self-administration behavior in rats. Behavioural Brain Research, 238, 1–9.PubMedCentralPubMedCrossRef Kantak, K. M., Yager, L. M., & Brisotti, M. F. (2013). Impact of medial orbital cortex and medial subthalamic nucleus inactivation, individually and together, on the maintenance of cocaine self-administration behavior in rats. Behavioural Brain Research, 238, 1–9.PubMedCentralPubMedCrossRef
Zurück zum Zitat Karachi, C., Yelnik, J., Tandé, D., Tremblay, L., Hirsch, E. C., & François, C. (2005). The pallidosubthalamic projection: an anatomical substrate for nonmotor functions of the subthalamic nucleus in primates. Movement Disorders Official Journal Movement Disorder Society, 20, 172–180.CrossRef Karachi, C., Yelnik, J., Tandé, D., Tremblay, L., Hirsch, E. C., & François, C. (2005). The pallidosubthalamic projection: an anatomical substrate for nonmotor functions of the subthalamic nucleus in primates. Movement Disorders Official Journal Movement Disorder Society, 20, 172–180.CrossRef
Zurück zum Zitat Karachi, C., Grabli, D., Baup, N., Mounayar, S., Tandé, D., François, C., et al. (2009). Dysfunction of the subthalamic nucleus induces behavioral and movement disorders in monkeys. Movement Disorders Official Journal Movement Disorder Society, 24, 1183–1192.CrossRef Karachi, C., Grabli, D., Baup, N., Mounayar, S., Tandé, D., François, C., et al. (2009). Dysfunction of the subthalamic nucleus induces behavioral and movement disorders in monkeys. Movement Disorders Official Journal Movement Disorder Society, 24, 1183–1192.CrossRef
Zurück zum Zitat Keuken, M. C., Bazin, P.-L., Schäfer, A., Neumann, J., Turner, R., & Forstmann, B. U. (2013). Ultra-high 7T MRI of structural age-related changes of the subthalamic nucleus. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33, 4896–4900.CrossRef Keuken, M. C., Bazin, P.-L., Schäfer, A., Neumann, J., Turner, R., & Forstmann, B. U. (2013). Ultra-high 7T MRI of structural age-related changes of the subthalamic nucleus. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33, 4896–4900.CrossRef
Zurück zum Zitat Kim, H.-J., Jeon, B. S., & Paek, S. H. (2015). Nonmotor symptoms and subthalamic deep brain stimulation in Parkinson’s disease. Journal Movement Disorders, 8, 83–91.CrossRef Kim, H.-J., Jeon, B. S., & Paek, S. H. (2015). Nonmotor symptoms and subthalamic deep brain stimulation in Parkinson’s disease. Journal Movement Disorders, 8, 83–91.CrossRef
Zurück zum Zitat Klein, J., Winter, C., Coquery, N., Heinz, A., Morgenstern, R., Kupsch, A., et al. (2010). Lesion of the medial prefrontal cortex and the subthalamic nucleus selectively affect depression-like behavior in rats. Behavioural Brain Research, 213, 73–81.PubMedCrossRef Klein, J., Winter, C., Coquery, N., Heinz, A., Morgenstern, R., Kupsch, A., et al. (2010). Lesion of the medial prefrontal cortex and the subthalamic nucleus selectively affect depression-like behavior in rats. Behavioural Brain Research, 213, 73–81.PubMedCrossRef
Zurück zum Zitat Knight, E. J., Testini, P., Min, H.-K., Gibson, W. S., Gorny, K. R., Favazza, C. P., et al. (2015). Motor and nonmotor circuitry activation induced by subthalamic nucleus deep brain stimulation in patients with Parkinson disease: intraoperative functional magnetic resonance imaging for deep brain stimulation. Mayo Clinic Proceedings, 90, 773–785.PubMedCrossRef Knight, E. J., Testini, P., Min, H.-K., Gibson, W. S., Gorny, K. R., Favazza, C. P., et al. (2015). Motor and nonmotor circuitry activation induced by subthalamic nucleus deep brain stimulation in patients with Parkinson disease: intraoperative functional magnetic resonance imaging for deep brain stimulation. Mayo Clinic Proceedings, 90, 773–785.PubMedCrossRef
Zurück zum Zitat Kocka, A., & Gagnon, J. (2014). Definition of impulsivity and related terms following traumatic brain injury: a review of the different concepts and measures used to assess impulsivity, disinhibition and other related concepts. Behavioral Sciences (Basel Switzerland), 4, 352–370. Kocka, A., & Gagnon, J. (2014). Definition of impulsivity and related terms following traumatic brain injury: a review of the different concepts and measures used to assess impulsivity, disinhibition and other related concepts. Behavioral Sciences (Basel Switzerland), 4, 352–370.
Zurück zum Zitat Krack, P., Kumar, R., Ardouin, C., Dowsey, P. L., McVicker, J. M., Benabid, A. L., et al. (2001). Mirthful laughter induced by subthalamic nucleus stimulation. Movement Disorders Official Journal Movement Disorder Society, 16, 867–875.CrossRef Krack, P., Kumar, R., Ardouin, C., Dowsey, P. L., McVicker, J. M., Benabid, A. L., et al. (2001). Mirthful laughter induced by subthalamic nucleus stimulation. Movement Disorders Official Journal Movement Disorder Society, 16, 867–875.CrossRef
Zurück zum Zitat Krack, P., Hariz, M. I., Baunez, C., Guridi, J., & Obeso, J. A. (2010). Deep brain stimulation: from neurology to psychiatry? Trends in Neurosciences, 33, 474–484.PubMedCrossRef Krack, P., Hariz, M. I., Baunez, C., Guridi, J., & Obeso, J. A. (2010). Deep brain stimulation: from neurology to psychiatry? Trends in Neurosciences, 33, 474–484.PubMedCrossRef
Zurück zum Zitat Kühn, A. A., Hariz, M. I., Silberstein, P., Tisch, S., Kupsch, A., Schneider, G.-H., et al. (2005). Activation of the subthalamic region during emotional processing in Parkinson disease. Neurology, 65, 707–713.PubMedCrossRef Kühn, A. A., Hariz, M. I., Silberstein, P., Tisch, S., Kupsch, A., Schneider, G.-H., et al. (2005). Activation of the subthalamic region during emotional processing in Parkinson disease. Neurology, 65, 707–713.PubMedCrossRef
Zurück zum Zitat Lambert, C., Zrinzo, L., Nagy, Z., Lutti, A., Hariz, M., Foltynie, T., et al. (2012). Confirmation of functional zones within the human subthalamic nucleus: patterns of connectivity and sub-parcellation using diffusion weighted imaging. NeuroImage, 60, 83–94.PubMedCentralPubMedCrossRef Lambert, C., Zrinzo, L., Nagy, Z., Lutti, A., Hariz, M., Foltynie, T., et al. (2012). Confirmation of functional zones within the human subthalamic nucleus: patterns of connectivity and sub-parcellation using diffusion weighted imaging. NeuroImage, 60, 83–94.PubMedCentralPubMedCrossRef
Zurück zum Zitat Lanotte, M., Lopiano, L., Torre, E., Bergamasco, B., Colloca, L., & Benedetti, F. (2005). Expectation enhances autonomic responses to stimulation of the human subthalamic limbic region. Brain, Behavior, and Immunity, 19, 500–509.PubMedCrossRef Lanotte, M., Lopiano, L., Torre, E., Bergamasco, B., Colloca, L., & Benedetti, F. (2005). Expectation enhances autonomic responses to stimulation of the human subthalamic limbic region. Brain, Behavior, and Immunity, 19, 500–509.PubMedCrossRef
Zurück zum Zitat Lardeux, S., & Baunez, C. (2007). Alcohol preference influences the subthalamic nucleus control on motivation for alcohol in rats. Neuropsychopharmacology, 33, 634–642.PubMedCrossRef Lardeux, S., & Baunez, C. (2007). Alcohol preference influences the subthalamic nucleus control on motivation for alcohol in rats. Neuropsychopharmacology, 33, 634–642.PubMedCrossRef
Zurück zum Zitat Lardeux, S., Pernaud, R., Paleressompoulle, D., & Baunez, C. (2009). Beyond the reward pathway: coding reward magnitude and error in the rat subthalamic nucleus. Journal of Neurophysiology, 102, 2526–2537.PubMedCrossRef Lardeux, S., Pernaud, R., Paleressompoulle, D., & Baunez, C. (2009). Beyond the reward pathway: coding reward magnitude and error in the rat subthalamic nucleus. Journal of Neurophysiology, 102, 2526–2537.PubMedCrossRef
Zurück zum Zitat Lardeux, S., Paleressompoulle, D., Pernaud, R., Cador, M., & Baunez, C. (2013). Different populations of subthalamic neurons encode cocaine vs. sucrose reward and predict future error. Journal of Neurophysiology, 110, 1497–1510.PubMedCrossRef Lardeux, S., Paleressompoulle, D., Pernaud, R., Cador, M., & Baunez, C. (2013). Different populations of subthalamic neurons encode cocaine vs. sucrose reward and predict future error. Journal of Neurophysiology, 110, 1497–1510.PubMedCrossRef
Zurück zum Zitat Le Jeune, F., Péron, J., Biseul, I., Fournier, S., Sauleau, P., Drapier, S., et al. (2008). Subthalamic nucleus stimulation affects orbitofrontal cortex in facial emotion recognition: a PET study. Brain: A Journal of Neurology, 131, 1599–1608.CrossRef Le Jeune, F., Péron, J., Biseul, I., Fournier, S., Sauleau, P., Drapier, S., et al. (2008). Subthalamic nucleus stimulation affects orbitofrontal cortex in facial emotion recognition: a PET study. Brain: A Journal of Neurology, 131, 1599–1608.CrossRef
Zurück zum Zitat Le Jeune, F., Péron, J., Grandjean, D., Drapier, S., Haegelen, C., Garin, E., et al. (2010). Subthalamic nucleus stimulation affects limbic and associative circuits: a PET study. European Journal of Nuclear Medicine and Molecular Imaging, 37, 1512–1520.PubMedCrossRef Le Jeune, F., Péron, J., Grandjean, D., Drapier, S., Haegelen, C., Garin, E., et al. (2010). Subthalamic nucleus stimulation affects limbic and associative circuits: a PET study. European Journal of Nuclear Medicine and Molecular Imaging, 37, 1512–1520.PubMedCrossRef
Zurück zum Zitat Leicht, G., Troschütz, S., Andreou, C., Karamatskos, E., Ertl, M., Naber, D., et al. (2013). Relationship between oscillatory neuronal activity during reward processing and trait impulsivity and sensation seeking. PloS One, 8, e83414.PubMedCentralPubMedCrossRef Leicht, G., Troschütz, S., Andreou, C., Karamatskos, E., Ertl, M., Naber, D., et al. (2013). Relationship between oscillatory neuronal activity during reward processing and trait impulsivity and sensation seeking. PloS One, 8, e83414.PubMedCentralPubMedCrossRef
Zurück zum Zitat Lévesque, J.-C., & Parent, A. (2005). GABAergic interneurons in human subthalamic nucleus. Movement Disorders Official Journal Movement Disorder Society, 20, 574–584.CrossRef Lévesque, J.-C., & Parent, A. (2005). GABAergic interneurons in human subthalamic nucleus. Movement Disorders Official Journal Movement Disorder Society, 20, 574–584.CrossRef
Zurück zum Zitat Mallet, L., Mesnage, V., Houeto, J.-L., Pelissolo, A., Yelnik, J., Behar, C., et al. (2002). Compulsions, Parkinson’s disease, and stimulation. Lancet (London, England), 360, 1302–1304.CrossRef Mallet, L., Mesnage, V., Houeto, J.-L., Pelissolo, A., Yelnik, J., Behar, C., et al. (2002). Compulsions, Parkinson’s disease, and stimulation. Lancet (London, England), 360, 1302–1304.CrossRef
Zurück zum Zitat Mallet, L., Schüpbach, M., N’Diaye, K., Remy, P., Bardinet, E., Czernecki, V., et al. (2007). Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior. Proceedings of the National Academy of Sciences of the United States of America, 104, 10661–10666.PubMedCentralPubMedCrossRef Mallet, L., Schüpbach, M., N’Diaye, K., Remy, P., Bardinet, E., Czernecki, V., et al. (2007). Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior. Proceedings of the National Academy of Sciences of the United States of America, 104, 10661–10666.PubMedCentralPubMedCrossRef
Zurück zum Zitat Marceglia, S., Fumagalli, M., & Priori, A. (2011). What neurophysiological recordings tell us about cognitive and behavioral functions of the human subthalamic nucleus. Expert Review of Neurotherapeutics, 11, 139–149.PubMedCrossRef Marceglia, S., Fumagalli, M., & Priori, A. (2011). What neurophysiological recordings tell us about cognitive and behavioral functions of the human subthalamic nucleus. Expert Review of Neurotherapeutics, 11, 139–149.PubMedCrossRef
Zurück zum Zitat Morris, L. S., Kundu, P., Baek, K., Irvine, M. A., Mechelmans, D. J., Wood, J., et al. (2015) Jumping the Gun: Mapping Neural Correlates of Waiting Impulsivity and Relevance Across Alcohol Misuse. Biol. Psychiatry. Morris, L. S., Kundu, P., Baek, K., Irvine, M. A., Mechelmans, D. J., Wood, J., et al. (2015) Jumping the Gun: Mapping Neural Correlates of Waiting Impulsivity and Relevance Across Alcohol Misuse. Biol. Psychiatry.
Zurück zum Zitat Mosley, P. E., & Marsh, R. (2015). The psychiatric and neuropsychiatric symptoms after subthalamic stimulation for Parkinson’s disease. Journal of Neuropsychiatry and Clinical Neurosciences, 27, 19–26.PubMedCrossRef Mosley, P. E., & Marsh, R. (2015). The psychiatric and neuropsychiatric symptoms after subthalamic stimulation for Parkinson’s disease. Journal of Neuropsychiatry and Clinical Neurosciences, 27, 19–26.PubMedCrossRef
Zurück zum Zitat Moum, S. J., Price, C. C., Limotai, N., Oyama, G., Ward, H., Jacobson, C., et al. (2012). Effects of STN and GPi deep brain stimulation on impulse control disorders and dopamine dysregulation syndrome. PloS One, 7, e29768.PubMedCentralPubMedCrossRef Moum, S. J., Price, C. C., Limotai, N., Oyama, G., Ward, H., Jacobson, C., et al. (2012). Effects of STN and GPi deep brain stimulation on impulse control disorders and dopamine dysregulation syndrome. PloS One, 7, e29768.PubMedCentralPubMedCrossRef
Zurück zum Zitat Mulder, M. J., Boekel, W., Ratcliff, R., & Forstmann, B. U. (2014). Cortico-subthalamic connection predicts individual differences in value-driven choice bias. Brain Structure and Function, 219, 1239–1249.PubMedCentralPubMedCrossRef Mulder, M. J., Boekel, W., Ratcliff, R., & Forstmann, B. U. (2014). Cortico-subthalamic connection predicts individual differences in value-driven choice bias. Brain Structure and Function, 219, 1239–1249.PubMedCentralPubMedCrossRef
Zurück zum Zitat Oberg, S. A. K., Christie, G. J., & Tata, M. S. (2011). Problem gamblers exhibit reward hypersensitivity in medial frontal cortex during gambling. Neuropsychologia, 49, 3768–3775.PubMedCrossRef Oberg, S. A. K., Christie, G. J., & Tata, M. S. (2011). Problem gamblers exhibit reward hypersensitivity in medial frontal cortex during gambling. Neuropsychologia, 49, 3768–3775.PubMedCrossRef
Zurück zum Zitat Okai, D., Samuel, M., Askey-Jones, S., David, A. S., & Brown, R. G. (2011). Impulse control disorders and dopamine dysregulation in Parkinson’s disease: a broader conceptual framework. European Journal of Neurology Official Journal European Federation Neurology Society, 18, 1379–1383. Okai, D., Samuel, M., Askey-Jones, S., David, A. S., & Brown, R. G. (2011). Impulse control disorders and dopamine dysregulation in Parkinson’s disease: a broader conceptual framework. European Journal of Neurology Official Journal European Federation Neurology Society, 18, 1379–1383.
Zurück zum Zitat Park, H. K., Kim, H.-J., Kim, S. J., Kim, J. S., Shin, H.-W., & Kim, J. S. (2011). From Jekyll to Hyde after limbic subthalamic nucleus infarction. Neurology, 77, 82–84.PubMedCrossRef Park, H. K., Kim, H.-J., Kim, S. J., Kim, J. S., Shin, H.-W., & Kim, J. S. (2011). From Jekyll to Hyde after limbic subthalamic nucleus infarction. Neurology, 77, 82–84.PubMedCrossRef
Zurück zum Zitat Péron, J., Grandjean, D., Le Jeune, F., Sauleau, P., Haegelen, C., Drapier, D., et al. (2010). Recognition of emotional prosody is altered after subthalamic nucleus deep brain stimulation in Parkinson’s disease. Neuropsychologia, 48, 1053–1062.PubMedCrossRef Péron, J., Grandjean, D., Le Jeune, F., Sauleau, P., Haegelen, C., Drapier, D., et al. (2010). Recognition of emotional prosody is altered after subthalamic nucleus deep brain stimulation in Parkinson’s disease. Neuropsychologia, 48, 1053–1062.PubMedCrossRef
Zurück zum Zitat Piray, P., Zeighami, Y., Bahrami, F., Eissa, A. M., Hewedi, D. H., & Moustafa, A. A. (2014). Impulse control disorders in Parkinson’s disease are associated with dysfunction in stimulus valuation but not action valuation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 34, 7814–7824.CrossRef Piray, P., Zeighami, Y., Bahrami, F., Eissa, A. M., Hewedi, D. H., & Moustafa, A. A. (2014). Impulse control disorders in Parkinson’s disease are associated with dysfunction in stimulus valuation but not action valuation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 34, 7814–7824.CrossRef
Zurück zum Zitat Plessow, F., Fischer, R., Volkmann, J., & Schubert, T. (2014). Subthalamic deep brain stimulation restores automatic response activation and increases susceptibility to impulsive behavior in patients with Parkinson’s disease. Brain and Cognition, 87, 16–21.PubMedCrossRef Plessow, F., Fischer, R., Volkmann, J., & Schubert, T. (2014). Subthalamic deep brain stimulation restores automatic response activation and increases susceptibility to impulsive behavior in patients with Parkinson’s disease. Brain and Cognition, 87, 16–21.PubMedCrossRef
Zurück zum Zitat Rektor, I., Bočková, M., Chrastina, J., Rektorová, I., Baláž, M. (2014). The modulatory role of subthalamic nucleus in cognitive functions - A viewpoint. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. Rektor, I., Bočková, M., Chrastina, J., Rektorová, I., Baláž, M. (2014). The modulatory role of subthalamic nucleus in cognitive functions - A viewpoint. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol.
Zurück zum Zitat Rodriguez-Oroz, M. C., López-Azcárate, J., Garcia-Garcia, D., Alegre, M., Toledo, J., Valencia, M., et al. (2011). Involvement of the subthalamic nucleus in impulse control disorders associated with Parkinson’s disease. Brain: A Journal of Neurology, 134, 36–49.CrossRef Rodriguez-Oroz, M. C., López-Azcárate, J., Garcia-Garcia, D., Alegre, M., Toledo, J., Valencia, M., et al. (2011). Involvement of the subthalamic nucleus in impulse control disorders associated with Parkinson’s disease. Brain: A Journal of Neurology, 134, 36–49.CrossRef
Zurück zum Zitat Rodriguez-Oroz, M. C., Moro, E., & Krack, P. (2012). Long-term outcomes of surgical therapies for Parkinson’s disease. Movement Disorders, 27, 1718–1728.PubMedCrossRef Rodriguez-Oroz, M. C., Moro, E., & Krack, P. (2012). Long-term outcomes of surgical therapies for Parkinson’s disease. Movement Disorders, 27, 1718–1728.PubMedCrossRef
Zurück zum Zitat Rouaud, T., Lardeux, S., Panayotis, N., Paleressompoulle, D., Cador, M., & Baunez, C. (2010). Reducing the desire for cocaine with subthalamic nucleus deep brain stimulation. Proceedings of the National Academy of Sciences of the United States of America, 107, 1196–1200.PubMedCentralPubMedCrossRef Rouaud, T., Lardeux, S., Panayotis, N., Paleressompoulle, D., Cador, M., & Baunez, C. (2010). Reducing the desire for cocaine with subthalamic nucleus deep brain stimulation. Proceedings of the National Academy of Sciences of the United States of America, 107, 1196–1200.PubMedCentralPubMedCrossRef
Zurück zum Zitat Santangelo, G., Barone, P., Trojano, L., & Vitale, C. (2013). Pathological gambling in Parkinson’s disease. A comprehensive review. Parkinsonism & Related Disorders, 19, 645–653.CrossRef Santangelo, G., Barone, P., Trojano, L., & Vitale, C. (2013). Pathological gambling in Parkinson’s disease. A comprehensive review. Parkinsonism & Related Disorders, 19, 645–653.CrossRef
Zurück zum Zitat Sauleau, P., Raoul, S., Lallement, F., Rivier, I., Drapier, S., Lajat, Y., et al. (2005). Motor and non motor effects during intraoperative subthalamic stimulation for Parkinson’s disease. Journal of Neurology, 252, 457–464.PubMedCrossRef Sauleau, P., Raoul, S., Lallement, F., Rivier, I., Drapier, S., Lajat, Y., et al. (2005). Motor and non motor effects during intraoperative subthalamic stimulation for Parkinson’s disease. Journal of Neurology, 252, 457–464.PubMedCrossRef
Zurück zum Zitat Sensi, M., Eleopra, R., Cavallo, M. A., Sette, E., Milani, P., Quatrale, R., et al. (2004). Explosive-aggressive behavior related to bilateral subthalamic stimulation. Parkinsonism & Related Disorders, 10, 247–251.CrossRef Sensi, M., Eleopra, R., Cavallo, M. A., Sette, E., Milani, P., Quatrale, R., et al. (2004). Explosive-aggressive behavior related to bilateral subthalamic stimulation. Parkinsonism & Related Disorders, 10, 247–251.CrossRef
Zurück zum Zitat Sestini, S., di Scotto Luzio, A., Ammannati, F., De Cristofaro, M. T. R., Passeri, A., Martini, S., et al. (2002). Changes in regional cerebral blood flow caused by deep-brain stimulation of the subthalamic nucleus in Parkinson’s disease. Journal of Nuclear Medicine Official Publisher Society of Nuclear Medicine, 43, 725–732. Sestini, S., di Scotto Luzio, A., Ammannati, F., De Cristofaro, M. T. R., Passeri, A., Martini, S., et al. (2002). Changes in regional cerebral blood flow caused by deep-brain stimulation of the subthalamic nucleus in Parkinson’s disease. Journal of Nuclear Medicine Official Publisher Society of Nuclear Medicine, 43, 725–732.
Zurück zum Zitat Shapiro, M. B., Vaillancourt, D. E., Sturman, M. M., Metman, L. V., Bakay, R. A. E., & Corcos, D. M. (2007). Effects of STN DBS on rigidity in Parkinson’s disease. IEEE Transactions on Neural Systems and Rehabilitation Engineering Publisher: IEEE Engineering in Medicine and Biology Society, 15, 173–181.CrossRef Shapiro, M. B., Vaillancourt, D. E., Sturman, M. M., Metman, L. V., Bakay, R. A. E., & Corcos, D. M. (2007). Effects of STN DBS on rigidity in Parkinson’s disease. IEEE Transactions on Neural Systems and Rehabilitation Engineering Publisher: IEEE Engineering in Medicine and Biology Society, 15, 173–181.CrossRef
Zurück zum Zitat Tan, S. K. H., Temel, Y., Blokland, A., Steinbusch, H. W. M., & Visser-Vandewalle, V. (2006). The subthalamic nucleus: from response selection to execution. Journal of Chemical Neuroanatomy, 31, 155–161.PubMedCrossRef Tan, S. K. H., Temel, Y., Blokland, A., Steinbusch, H. W. M., & Visser-Vandewalle, V. (2006). The subthalamic nucleus: from response selection to execution. Journal of Chemical Neuroanatomy, 31, 155–161.PubMedCrossRef
Zurück zum Zitat Tandé, D., Féger, J., Hirsch, E. C., & François, C. (2006). Parafascicular nucleus projection to the extrastriatal basal ganglia in monkeys. Neuroreport, 17, 277–280.PubMedCrossRef Tandé, D., Féger, J., Hirsch, E. C., & François, C. (2006). Parafascicular nucleus projection to the extrastriatal basal ganglia in monkeys. Neuroreport, 17, 277–280.PubMedCrossRef
Zurück zum Zitat Teagarden, M. A., & Rebec, G. V. (2007). Subthalamic and striatal neurons concurrently process motor, limbic, and associative information in rats performing an operant task. Journal of Neurophysiology, 97, 2042–2058.PubMedCrossRef Teagarden, M. A., & Rebec, G. V. (2007). Subthalamic and striatal neurons concurrently process motor, limbic, and associative information in rats performing an operant task. Journal of Neurophysiology, 97, 2042–2058.PubMedCrossRef
Zurück zum Zitat Temel, Y., Blokland, A., Steinbusch, H. W. M., & Visser-Vandewalle, V. (2005). The functional role of the subthalamic nucleus in cognitive and limbic circuits. Progress in Neurobiology, 76, 393–413.PubMedCrossRef Temel, Y., Blokland, A., Steinbusch, H. W. M., & Visser-Vandewalle, V. (2005). The functional role of the subthalamic nucleus in cognitive and limbic circuits. Progress in Neurobiology, 76, 393–413.PubMedCrossRef
Zurück zum Zitat Temel, Y., Kessels, A., Tan, S., Topdag, A., Boon, P., & Visser-Vandewalle, V. (2006). Behavioural changes after bilateral subthalamic stimulation in advanced Parkinson disease: a systematic review. Parkinsonism & Related Disorders, 12, 265–272.CrossRef Temel, Y., Kessels, A., Tan, S., Topdag, A., Boon, P., & Visser-Vandewalle, V. (2006). Behavioural changes after bilateral subthalamic stimulation in advanced Parkinson disease: a systematic review. Parkinsonism & Related Disorders, 12, 265–272.CrossRef
Zurück zum Zitat Trottenberg, T., Kupsch, A., Schneider, G.-H., Brown, P., & Kühn, A. A. (2007). Frequency-dependent distribution of local field potential activity within the subthalamic nucleus in Parkinson’s disease. Experimental Neurology, 205, 287–291.PubMedCrossRef Trottenberg, T., Kupsch, A., Schneider, G.-H., Brown, P., & Kühn, A. A. (2007). Frequency-dependent distribution of local field potential activity within the subthalamic nucleus in Parkinson’s disease. Experimental Neurology, 205, 287–291.PubMedCrossRef
Zurück zum Zitat Tsai, S. T., Lin, S. H., Lin. S. Z., Chen, J. Y., Lee, C. W., Chen. S. Y. (2007) Neuropsychological effects after chronic subthalamic stimulation and the topography of the nucleus in Parkinson’s disease. Neurosurgery 61, E1024–1029; discussion E1029–1030. Tsai, S. T., Lin, S. H., Lin. S. Z., Chen, J. Y., Lee, C. W., Chen. S. Y. (2007) Neuropsychological effects after chronic subthalamic stimulation and the topography of the nucleus in Parkinson’s disease. Neurosurgery 61, E1024–1029; discussion E1029–1030.
Zurück zum Zitat Turner, M. S., Lavin, A., Grace, A. A., & Napier, T. C. (2001). Regulation of limbic information outflow by the subthalamic nucleus: excitatory amino acid projections to the ventral pallidum. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 21, 2820–2832. Turner, M. S., Lavin, A., Grace, A. A., & Napier, T. C. (2001). Regulation of limbic information outflow by the subthalamic nucleus: excitatory amino acid projections to the ventral pallidum. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 21, 2820–2832.
Zurück zum Zitat Vesper, J., Klostermann, F., Stockhammer, F., Funk, T., & Brock, M. (2002). Results of chronic subthalamic nucleus stimulation for Parkinson’s disease: a 1-year follow-up study. Surgical Neurology, 57, 306–311. discussion 311–313.PubMedCrossRef Vesper, J., Klostermann, F., Stockhammer, F., Funk, T., & Brock, M. (2002). Results of chronic subthalamic nucleus stimulation for Parkinson’s disease: a 1-year follow-up study. Surgical Neurology, 57, 306–311. discussion 311–313.PubMedCrossRef
Zurück zum Zitat Volkmann, J., Daniels, C., & Witt, K. (2010). Neuropsychiatric effects of subthalamic neurostimulation in Parkinson disease. Nature Reviews Neurology, 6, 487–498.PubMed Volkmann, J., Daniels, C., & Witt, K. (2010). Neuropsychiatric effects of subthalamic neurostimulation in Parkinson disease. Nature Reviews Neurology, 6, 487–498.PubMed
Zurück zum Zitat Wagenbreth, C., Zaehle, T., Galazky, I., Voges, J., Guitart-Masip, M., Heinze, H.-J., et al. (2015). Deep brain stimulation of the subthalamic nucleus modulates reward processing and action selection in Parkinson patients. Journal of Neurology, 262, 1541–1547.PubMedCrossRef Wagenbreth, C., Zaehle, T., Galazky, I., Voges, J., Guitart-Masip, M., Heinze, H.-J., et al. (2015). Deep brain stimulation of the subthalamic nucleus modulates reward processing and action selection in Parkinson patients. Journal of Neurology, 262, 1541–1547.PubMedCrossRef
Zurück zum Zitat Welter, M.-L., Burbaud, P., Fernandez-Vidal, S., Bardinet, E., Coste, J., Piallat, B., et al. (2011). Basal ganglia dysfunction in OCD: subthalamic neuronal activity correlates with symptoms severity and predicts high-frequency stimulation efficacy. Transcultural Psychiatry, 1, e5.CrossRef Welter, M.-L., Burbaud, P., Fernandez-Vidal, S., Bardinet, E., Coste, J., Piallat, B., et al. (2011). Basal ganglia dysfunction in OCD: subthalamic neuronal activity correlates with symptoms severity and predicts high-frequency stimulation efficacy. Transcultural Psychiatry, 1, e5.CrossRef
Zurück zum Zitat Williams, N. R., Foote, K. D., & Okun, M. S. (2014). STN vs. GPi deep brain stimulation: translating the rematch into clinical practice. Movement Disorders-Clinical Practice, 1, 24–35.PubMedCentralPubMedCrossRef Williams, N. R., Foote, K. D., & Okun, M. S. (2014). STN vs. GPi deep brain stimulation: translating the rematch into clinical practice. Movement Disorders-Clinical Practice, 1, 24–35.PubMedCentralPubMedCrossRef
Zurück zum Zitat Winstanley, C. A., Baunez, C., Theobald, D. E. H., & Robbins, T. W. (2005). Lesions to the subthalamic nucleus decrease impulsive choice but impair autoshaping in rats: the importance of the basal ganglia in Pavlovian conditioning and impulse control. European Journal of Neuroscience, 21, 3107–3116.PubMedCrossRef Winstanley, C. A., Baunez, C., Theobald, D. E. H., & Robbins, T. W. (2005). Lesions to the subthalamic nucleus decrease impulsive choice but impair autoshaping in rats: the importance of the basal ganglia in Pavlovian conditioning and impulse control. European Journal of Neuroscience, 21, 3107–3116.PubMedCrossRef
Zurück zum Zitat Winter, C., Lemke, C., Sohr, R., Meissner, W., Harnack, D., Juckel, G., et al. (2008). High frequency stimulation of the subthalamic nucleus modulates neurotransmission in limbic brain regions of the rat. Experimental Brain Research, 185, 497–507.PubMedCrossRef Winter, C., Lemke, C., Sohr, R., Meissner, W., Harnack, D., Juckel, G., et al. (2008). High frequency stimulation of the subthalamic nucleus modulates neurotransmission in limbic brain regions of the rat. Experimental Brain Research, 185, 497–507.PubMedCrossRef
Zurück zum Zitat Wylie, S. A., Ridderinkhof, K. R., Elias, W. J., Frysinger, R. C., Bashore, T. R., Downs, K. E., et al. (2010). Subthalamic nucleus stimulation influences expression and suppression of impulsive behaviour in Parkinson’s disease. Brain, 133, 3611–3624.PubMedCentralPubMedCrossRef Wylie, S. A., Ridderinkhof, K. R., Elias, W. J., Frysinger, R. C., Bashore, T. R., Downs, K. E., et al. (2010). Subthalamic nucleus stimulation influences expression and suppression of impulsive behaviour in Parkinson’s disease. Brain, 133, 3611–3624.PubMedCentralPubMedCrossRef
Zurück zum Zitat York, M. K., Wilde, E. A., Simpson, R., & Jankovic, J. (2009). Relationship between neuropsychological outcome and DBS surgical trajectory and electrode location. Journal of Neurological Sciences, 287, 159–171.CrossRef York, M. K., Wilde, E. A., Simpson, R., & Jankovic, J. (2009). Relationship between neuropsychological outcome and DBS surgical trajectory and electrode location. Journal of Neurological Sciences, 287, 159–171.CrossRef
Zurück zum Zitat Zavala, B., Zaghloul, K., & Brown, P. (2015). The subthalamic nucleus, oscillations, and conflict. Movement Disorders-Clinical Practice, 30, 328–338.CrossRef Zavala, B., Zaghloul, K., & Brown, P. (2015). The subthalamic nucleus, oscillations, and conflict. Movement Disorders-Clinical Practice, 30, 328–338.CrossRef
Zurück zum Zitat Zhang, G., Zhang, Z., Liu, L., Yang, J., Huang, J., Xiong, N., et al. (2014). Impulsive and compulsive behaviors in Parkinson’s disease. Frontiers in Aging Neuroscience, 6, 318.PubMedCentralPubMed Zhang, G., Zhang, Z., Liu, L., Yang, J., Huang, J., Xiong, N., et al. (2014). Impulsive and compulsive behaviors in Parkinson’s disease. Frontiers in Aging Neuroscience, 6, 318.PubMedCentralPubMed
Zurück zum Zitat Zijlstra, F., Veltman, D. J., Booij, J., van den Brink, W., & Franken, I. H. A. (2009). Neurobiological substrates of cue-elicited craving and anhedonia in recently abstinent opioid-dependent males. Drug and Alcohol Dependence, 99, 183–192.PubMedCrossRef Zijlstra, F., Veltman, D. J., Booij, J., van den Brink, W., & Franken, I. H. A. (2009). Neurobiological substrates of cue-elicited craving and anhedonia in recently abstinent opioid-dependent males. Drug and Alcohol Dependence, 99, 183–192.PubMedCrossRef
Metadaten
Titel
The Subthalamic Nucleus, Limbic Function, and Impulse Control
verfasst von
P. Justin Rossi
Aysegul Gunduz
Michael S. Okun
Publikationsdatum
01.12.2015
Verlag
Springer US
Erschienen in
Neuropsychology Review / Ausgabe 4/2015
Print ISSN: 1040-7308
Elektronische ISSN: 1573-6660
DOI
https://doi.org/10.1007/s11065-015-9306-9

Weitere Artikel der Ausgabe 4/2015

Neuropsychology Review 4/2015 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.

Schützt Olivenöl vor dem Tod durch Demenz?

10.05.2024 Morbus Alzheimer Nachrichten

Konsumieren Menschen täglich 7 Gramm Olivenöl, ist ihr Risiko, an einer Demenz zu sterben, um mehr als ein Viertel reduziert – und dies weitgehend unabhängig von ihrer sonstigen Ernährung. Dafür sprechen Auswertungen zweier großer US-Studien.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.