Skip to main content
Erschienen in: Sports Medicine 3/2021

Open Access 21.01.2021 | Systematic Review

The Validity and Reliability of Commercially Available Resistance Training Monitoring Devices: A Systematic Review

verfasst von: Jonathon Weakley, Matthew Morrison, Amador García-Ramos, Rich Johnston, Lachlan James, Michael H. Cole

Erschienen in: Sports Medicine | Ausgabe 3/2021

Abstract

Background

Monitoring resistance training has a range of unique difficulties due to differences in physical characteristics and capacity between athletes, and the indoor environment in which it often occurs. Traditionally, methods such as volume load have been used, but these have inherent flaws. In recent times, numerous portable and affordable devices have been made available that purport to accurately and reliably measure kinetic and kinematic outputs, potentially offering practitioners a means of measuring resistance training loads with confidence. However, a thorough and systematic review of the literature describing the reliability and validity of these devices has yet to be undertaken, which may lead to uncertainty from practitioners on the utility of these devices.

Objective

A systematic review of studies that investigate the validity and/or reliability of commercially available devices that quantify kinetic and kinematic outputs during resistance training.

Methods

Following PRISMA guidelines, a systematic search of SPORTDiscus, Web of Science, and Medline was performed; studies included were (1) original research investigations; (2) full-text articles written in English; (3) published in a peer-reviewed academic journal; and (4) assessed the validity and/or reliability of commercially available portable devices that quantify resistance training exercises.

Results

A total of 129 studies were retrieved, of which 47 were duplicates. The titles and abstracts of 82 studies were screened and the full text of 40 manuscripts were assessed. A total of 31 studies met the inclusion criteria. Additional 13 studies, identified via reference list assessment, were included. Therefore, a total of 44 studies were included in this review.

Conclusion

Most of the studies within this review did not utilise a gold-standard criterion measure when assessing validity. This has likely led to under or overreporting of error for certain devices. Furthermore, studies that have quantified intra-device reliability have often failed to distinguish between technological and biological variability which has likely altered the true precision of each device. However, it appears linear transducers which have greater accuracy and reliability compared to other forms of device. Future research should endeavour to utilise gold-standard criterion measures across a broader range of exercises (including weightlifting movements) and relative loads.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s40279-020-01382-w) contains supplementary material, which is available to authorized users.
Key Points
For the accurate measurement of kinetic and kinematic outputs during resistance training, it is advised that linear transducers are utilised. These devices have demonstrated greater accuracy and reproducibility when compared to other technology.
It is strongly advised that future validity studies utilise gold-standard criterion measures across a range of relative intensities and exercises.
For the assessment of reliability, technological and biological error must be acknowledged and separated, so that the precision of each device during exercise can be accurately reported.

1 Introduction

Resistance training is commonly used to improve strength, power, and lean body mass [1, 2], and is a fundamental part of athlete physical preparation. Traditionally, methods such as the number of repetitions or overall volume load (i.e., the multiplication of external mass, the number of repetitions and sets) have been used to quantify training loads [35]. However, these methods have fundamental errors that can reduce their application. For example, if an athlete utilises maximal intent or a pacing strategy, internal fatigue and adaptive responses can vastly differ [6, 7]. Furthermore, differences in exercise prescription, athlete physical capacity, and range of motion mean simple volume load equations can be misleading. This can be observed when completing differing repetition and set structures (e.g., three sets of 10 repetitions vs. 10 sets of three repetitions with the same external load) or when stronger athletes are compared against weaker counterparts [3, 4]. To circumvent these issues and support the accurate quantification of resistance training loads, a range of tools that assess kinetic and kinematic outputs have been developed [811]. By monitoring kinetic and kinematic outputs, changes in fatigue and proximity to concentric muscle failure can be closely monitored [6, 12, 13]. Furthermore, these devices have been used for a number of training purposes ranging from the immediate feedback of velocity and power outputs [1417], to supporting full autoregulatory prescriptive methods [18, 19].
Linear position transducers (LPTs) and accelerometers are two commonly utilised tools that support the monitoring of training loads during resistance training [13, 20, 21]. While LPTs directly measure displacement and time, accelerometers are used to estimate kinetic and kinematic outputs by determining the time integral of the acceleration data. With respect to LPTs and accelerometers, there is an array of different brands, and these have been found to demonstrate varying levels of accuracy and reproducibility [9, 10]. It should be noted that LPTs should not be confused with linear velocity transducers (LVTs), which determine kinetic and kinematic outputs through the direct measurement of instantaneous velocity. Furthermore, in recent times, there have been a range of new devices that monitor resistance training outputs, with these being made possible through advancements in technology [22]. Examples of these include optic laser devices and the cameras within smartphones [22, 23]. While validity and reliability data have been published on these new devices, they have sparingly been compared to linear transducer (i.e., either LPTs or LVTs) and accelerometer data [24]. Furthermore, the literature has not been synthesised to inform practical use and help guide future research.
To support the accurate quantification of training loads, it is important that the technology used is both valid and reliable. This is particularly important for practitioners who utilise this information to make decisions regarding subsequent training sessions. The validity of an instrument often refers to its ability to measure what it is intended to measure with accuracy and precision [2527]. This is typically quantified by comparing the output of the respective instrument to a ‘gold-standard’ or criterion measure. An example of a gold-standard measure would be the use of 3D high-speed motion capture when assessing velocity. Typical measures of validity include systematic and random bias, coefficient of variation (CV), and standard error of the estimate (SEE) [1, 28, 29]. Due to many resistance training methods now applying velocity loss thresholds with an aim to help mitigate fatigue responses [30, 31], or making programming decisions based on the force–velocity–power characteristics of an exercise [32], it is essential that outputs being produced are accurate. Otherwise, this may lead athletes to complete inappropriate training volumes or select exercises which may induce undue fatigue or generate a sub-optimal training stimulus.
The reliability of an instrument denotes its ability to reproduce measures on separate occasions when it is known that the measure of interest should not fluctuate [33]. When assessing devices that measure kinetic and kinematic outputs, both ‘intra-device’ (i.e., comparing outputs from the same device) and ‘inter-device’ (i.e., comparing outputs from two devices of the same make during the same trial) reliability are important. Intra-device reliability is essential to consider when tracking and identifying ‘meaningful’ changes over a specified period [34]. However, when assessing the reliability of an instrument, it is important to separate biological (i.e., human) and technological variation [22]. This is particularly pertinent during resistance training, where fluctuations in strength and readiness to train can cause substantial alterations in velocity and power outputs despite the same relative load being used [31, 35]. Therefore, research assessing reliability of devices needs to account for, and preferably remove, biological variation to gain a true insight into a device’s reproducibility. Inter-device reliability is important to consider when several devices of the same brand are being used in practice (e.g., two devices are being used to monitor two separate barbells when multiple athletes are training) [36, 37]. To ensure a true representation of each athlete’s capacity, the reproducibility of each device needs to be considered. Typical measures of reliability include typical/standard error of measurement (TEM/SEM), CV, and intra-class correlations (ICC) [25, 36, 38].
While there is an abundance of research that assesses the kinetic and kinematic outputs of commercially available devices during resistance training [1, 39, 40], there has not been a review assessing the validity and reliability of these different forms of technology. Due to the growing use of this equipment during resistance training, it is appropriate that a systematic review is completed to guide practitioners and researchers. Therefore, the aim of this review is to establish the level of evidence for: (1) the validity of all commercially available portable resistance training devices that monitor force, velocity, and power outputs; and, (2) the intra-device and inter-device reliability of these devices.

2 Methods

2.1 Search Strategy

Following PRISMA guidelines for systematic reviews [41], the academic databases SPORTDiscus, Web of Science, and Medline were systematically searched in August 2020 using titles, abstracts, keywords, and Boolean operators (AND/OR) to identify English-language peer-reviewed original research studies that investigated the validity and/or reliability of commercially available, portable devices that quantify kinetic and/or kinematic variables during resistance training. Studies were identified by searching abstracts, titles, and keywords for pre-determined terms relevant to the scope of this review (Table 1). All search results were extracted and imported into a reference manager (EndNote X9, Thomson Reuters, Philadelphia, PA, USA).
Table 1
Search terms and keywords utilised in each database search. Searches 1, 2 and 3 were combined using ‘AND’
Search 1
Search 2
Search 3
Search 4
“Linear position transducer” OR “Accelerometer” OR “High-speed camera” OR “Laser optics” OR “GymAware” OR “Push Band” OR “FLEX” OR “Tendo” OR “Beast sensor” OR “Trio-OptiTrack” OR “T-Force” OR “Chronojump” OR “Speed4Lift” OR “Velowin” OR “PowerLift” OR “WIMU” OR “iLOAD”
“Validity” OR “Reliability”
“Kinetic” OR “Kinematic” OR “Force” OR “Power” OR “Velocity”
“Strength training” OR “Resistance training” OR “Plyometrics”

2.2 Selection Criteria

All duplicate studies were removed, and the titles and abstracts of all remaining studies were scanned for relevance by two authors (JW and MM). Studies that were deemed beyond the scope of the review were removed. The full text of the remaining studies was then assessed for eligibility. To be eligible for inclusion, studies were required to be (1) original research investigations; (2) full-text articles written in English; (3) published in a peer-reviewed academic journal before the 3rd of August, 2020; and (4) concerned with the validity and/or reliability of commercially available, portable, resistance training devices that monitor force, velocity, and power outputs during resistance training (i.e., exercise that consisted of applying an external load to the participant). If it was deemed that a study did not meet the inclusion criteria, it was excluded from the analysis. Additionally, if the study concerned a device that was no longer commercially available, it was not included. The reference lists of all eligible studies were then manually searched for any studies that were not retrieved in the initial search. If any studies were identified through this manual search strategy, it was subjected to the same assessment as previously described. Where necessary, means and measures of dispersion were extracted from figures in the manuscripts using WebPlotDigitizer v4.0 [42].

2.3 Assessment of Reporting Quality

The reporting quality of the research was assessed using a modified version of the Downs and Black checklist [43] (Table 2). This method is valid for assessing the methodological reporting quality of observational study designs and has previously been utilised by systematic reviews pertaining to sport science [44]. Not all of the assessment criteria were applicable to the studies used in this review; thus, only 9 of the 27 criteria were used. These questions can be found in Electronic Supplementary Material Table S1. Study reporting quality was scored on a scale from ‘0’ (unable to determine, or no) to ‘1’ (yes). In total, a score of ‘9’ was indicative of the highest reporting quality, with scores above 6 being considered ‘good’, scores of 4–6 considered ‘moderate’, and scores below 4 being considered ‘poor’ methodological reporting quality.
Table 2
Methodological reporting quality of eligible studies used in systematic review
Study
Items assessed using modified Downs and Black checklist
Reporting
Internal validity
1
2
3
6
7
10
16
18
20
Total
Abbott et al. [59]
1
1
1
1
1
1
1
0
1
8
Askow et al. [25]
1
1
1
0
1
1
1
0
1
7
Balsalobre-Fernandez et al. [62]
1
1
1
1
1
1
1
0
1
8
Balsalobre-Fernandez et al. [69]
1
1
1
1
1
1
1
0
1
8
Balsalobre-Fernandez et al. [70]
1
1
1
1
1
1
1
0
1
8
Banyard et al. [8]
1
1
1
1
1
0
1
1
1
8
Beckham et al. [28]
1
1
0
1
1
0
1
1
1
7
Boehringer and Whyte [77]
1
1
0
1
1
1
1
0
1
7
Chéry and Ruf [60]
0
1
0
1
1
1
1
0
1
6
Comstock et al. [49]
0
1
0
0
0
0
0
0
1
2
Courel-Ibanez et al. [36]
1
1
1
1
0
1
1
1
1
8
Crewther et al. [50]
1
1
1
1
1
1
1
1
1
9
de Sa et al. [80]
1
1
1
1
1
1
1
1
1
9
Dorrell et al. [26]
1
1
1
1
1
1
1
1
1
9
Drinkwater et al. [27]
1
1
1
1
1
1
1
1
1
9
Fernandes et al. [55]
1
1
1
1
1
1
1
1
1
9
García-Mateo [63]
1
1
1
1
1
1
1
0
0
7
García-Pinillos et al. [61]
1
1
1
1
1
1
1
1
1
9
García-Ramos et al. [71]
1
1
1
1
1
1
1
1
1
9
Garnacho-Castano et al. [56]
1
1
0
1
1
1
1
1
1
8
Goldsmith et al. [53]
1
1
0
1
1
1
1
1
1
8
Gonzalez et al. [57]
1
1
0
1
1
1
1
1
1
8
Hughes et al. [52]
1
1
0
1
1
1
1
0
1
7
Jennings et al. [79]
1
1
0
1
1
1
1
1
1
8
Lake et al. [29]
1
1
1
1
1
1
1
1
1
9
Laza-Cagigas et al. [68]
1
1
1
1
1
1
1
1
1
9
Lorenzetti et al. [54]
1
1
1
1
0
0
1
0
1
6
Martinez-Cava et al. [51]
1
1
1
1
1
1
1
0
1
9
McGrath et al. [58]
1
1
0
1
1
0
1
0
1
7
Mitter et al. [9]
1
1
0
1
1
1
1
1
1
8
Muyor et al. [38]
1
1
1
1
1
1
1
1
1
9
Orange et al. [48]
1
1
1
1
1
1
1
1
1
9
Orange et al. [47]
1
1
1
1
1
1
1
1
1
9
Pino-Ortega et al. [66]
1
1
1
1
1
1
1
1
1
9
Peña García-Orea et al. [82]
1
1
1
1
1
0
1
0
1
9
Peña García-Orea et al. [72]
1
1
1
1
1
0
1
0
1
9
Perez-Castilla et al. [10]
1
1
1
1
1
1
1
1
1
9
Sanchez-Pay et al. [23]
1
1
1
1
1
1
1
1
1
9
Sanudo et al. [81]
1
1
1
1
1
1
1
1
1
9
Sato et al. [37]
1
1
0
1
1
1
1
0
1
7
Stock et al. [78]
1
1
0
1
0
1
1
1
1
7
Thompson et al. [24]
1
1
1
1
1
1
1
1
1
9
van den Tillaar and Ball [11]
1
1
1
1
1
1
1
0
1
8
Weakley et al. [22]
1
1
1
1
1
1
1
1
1
9

2.4 Criteria for ‘Acceptable’ Validity and Reliability

Devices were deemed to have demonstrated ‘acceptable’ validity if the literature reported a very high correlation (> 0.70), moderate CV (< 10%), and a trivial or small ES (< 0.60) based on a modified effect size scale [45]. This is consistent with previous resistance training literature which has assessed the validity of resistance training devices [8, 22, 46]. Devices were said to demonstrate acceptable reliability if a device had an intra-class correlation coefficient ≥ 0.90, CV < 10%, and a standardised mean bias < 0.60. This is consistent with previous resistance training literature which has assessed the reliability of resistance training devices [22, 47, 48].

3 Results

3.1 Identification of Studies

The systematic search retrieved a total of 129 studies, with 47 of these being removed as duplicates. The titles and abstracts of the remaining 82 studies were screened, with 38 being deemed to be outside the scope of the review and a further 4 being excluded as they were not written in English. The full-text manuscripts of the remaining 40 studies were reviewed, resulting in the identification of 31 studies that met the inclusion criteria. The references lists of these 31 manuscripts were subsequently assessed, which led to an additional 13 studies being identified and a total of 44 studies included in this review. The identification process is outlined in Fig. 1.

3.2 Research Reporting Quality

The methodological reporting quality of the research investigating the validity and/or reliability was relatively high [mean ± standard deviation 8.0 ± 1.3; median (interquartile range) 8 (1.25)] when appraised using the modified Downs and Black checklist [43] (Table 2). Items that were consistently not achieved included question 3 (full device details reported, n = 26 studies), 10 (actual statistics reported, n = 32 studies), and 18 (appropriate statistical analysis, n = 26 studies). To improve the quality of future research, authors should ensure that all statistics are reported and that the model and specifications of the device being used are included within the manuscript. Additionally, pooling of repeated measures must be accounted for with an appropriate statistical approach, while future research should seek to delineate the influence of technological variation from biological variation on reliability measures.

3.3 Study Characteristics

All devices that were included within this review can be found within Table 3. Seven accelerometers (Push Band, Push Band 2.0, Beast Sensor, Bar Sensei, MyoTest, and Wimu System, RehaGait), 10 linear transducers [GymAware, SmartCoach, 1080Q, T-Force, Chronojump, Tendo, Speed4Lift, FitroDyne (Fitronic), Open Barbell System, and Musclelab (Ergotest)], three mobile applications (PowerLift/MyLift, iLoad, and Kinovea), and two optic devices (Velowin and Flex) were included. 36 studies assessed the validity (Tables 4, 5, 6, 7), while 28 studies investigated reliability (Tables 8, 9, 10, 11). The most common exercises assessed were the squat and bench press, either within the Smith machine or with free-weights, while velocity outputs were the most commonly assessed kinetic or kinematic variable.
Table 3
Summary of reliability and validity studies reported by device
Category
Device
Validity
Reliability
Accelerometer
PUSH Band
Balsalobre-Fernández et al. [62], Chery and Ruf [60], Courel-Ibanez et al. [36], McGrath et al. [58], Mitter et al. [9], Orange et al. [47], Perez-Castilla et al. [10], van den Tillar et al. [11], Sato et al. [37], Banyard et al. [8], Thompson et al. [24]
Balsalobre-Fernández et al. [52], Courel-Ibanez et al. [36], Orange et al. [47], Perez-Castilla et al. [10], van den Tillar et al. [11], Thompson et al. [24]
 
PUSH Band 2.0
Hughes et al. [52], Lake et al. [29]
Hughes et al. [52], Lake et al. [29]
 
Beast Sensor
Balsalobre-Fernández et al. [69], Mitter et al. [9], Perez-Castilla et al. [10], Thompson et al. [24]
Balsalobre-Fernández et al. [69], Perez-Castilla et al. [10], Thompson et al. [24]
 
Bar Sensei
Beckham et al. [14], Thompson et al. [24], Abbott et al. [59]
Beckham et al. [14], Thompson et al. [24], Abbott et al. [59]
 
MyoTest
Comstock et al. [49], Lorenzetti et al. [54], Crewther et al. [50]
Lorenzetti et al. [54]
 
WIMU System
Garcia-Pinillos et al. [61], Muyor et al. [38], Pino-Ortega et al. [66]
Garcia-Pinillos et al. [61], Muyor et al. [38]
 
RehaGait
García-Mateo [63]
García-Mateo [63]
Linear transducer
GymAware
Askow [25], Dorrell [26], Lorenzetti [54], Mitter [9], Crewther [50], Fernandes [55], Banyard [8], Drinkwater [27], Thompson et al. [24]
Askow et al. [25], Beckham et al. [28], Dorrell et al. [26], Hughes et al. [52], Lorenzetti et al. [54], Orange et al. [48], Thompson et al. [24]
 
SmartCoach
 
Balsalobre-Fernández et al. [69]
 
1080Q
Boehringer [77]
Boehringer et al. [77]
 
T-Force
Lorenzetti [54], Perez-Castilla [10]
Courel-Ibanez et al. [3], Peña Garcia-Orea [72], Garcia-Pinillos et al. [61], Garcia-Ramos et al. [71], Lorenzetti et al. [54], Perez-Castilla et al. [10], Martinez-Cava et al. [51]
 
Chronojump
Courel-Ibanez [36], Perez-Castilla [10]
Courel-Ibanez et al. [36], Perez-Castilla et al. [10]
 
Tendo
Chery and Ruf [60], Garnacho-Castano et al. [56], Goldsmith et al. [53], Lorenzetti et al. [54], Gonzalez et al. [57], McGrath et al. [58]
Garnacho-Castano et al. [56], Lorenzetti et al. [54], Stock et al. [78]
 
Speed4Lifts
Perez-Castilla et al. [10], Martinez-Cava et al. [51]
Perez-Castilla et al. [10], Martinez-Cava et al. [51]
 
FitroDyne (fitronic)
Mitter [9], Fernandes [55]
Jennings et al. [79]
 
Open Barbell System
Goldsmith [53], Gonzalez [57]
 
 
Musclelab (Ergotest)
 
van den Tillar et al. [11]
Mobile phone devices/applications
PowerLift
Courel-Ibanez [36], Balsalobre-Fernández [69], Balsalobre-Fernández [70], Perez-Castilla [7], Thompson et al. [24], Martinez-Cava et al. [51]
Balsalobre-Fernández et al. [69], Balsalobre-Fernández et al. [70], Courel-Ibanez et al. [36], Perez-Castilla et al. [10], Thompson et al. [24], Martinez-Cava et al. [51]
 
iLoad v1.0
de Sa et al. [80]
 
 
Kinovea via Samsung S6
Sanchez-Pay et al. [23]
 
 
Kinovea via Xiaomi A1
Sanchez-Pay et al. [23]
 
 
Kinovea via iPhone X
Sanchez-Pay et al. [23]
 
 
Kinovea via Casio FH20
Sanchez-Pay et al. [23]
 
 
Kinovea via Digital Camera
Sanudo et al. [81]
 
Optic devices
Velowin
Courel-Ibanez et al. [36], Peña Garcia-Orea et al. [82], Peña Garcia-Orea et al. [72], Garcia-Ramos et al. [71], Laza-Cagigas et al. [68], Perez-Castilla et al. [10]
Courel-Ibanez et al. [36], Peña Garcia-Orea et al. [82], Peña Garcia-Orea et al. [72], Garcia-Ramos et al. [71], Perez-Castilla et al. [10]
 
Flex
Weakley et al. [22]
Weakley et al. [22]
Table 4
Summary of studies that investigated the validity of linear transducer devices used to measure kinetic and kinematic variables during resistance training
Study
Device
Criterion
Exercise
Intensity/load
Variable measured
Findings
Askow et al. [25]
GymAware
Qualysis Motion Capture System & AMTI Force Plate
F/W Back Squat
75–90%1RM
Mean velocity
ICC: 0.966; ES: 0.28
Peak velocity
ICC: 0.982; ES: − 0.57
Mean force
ICC: 0.992; ES: 0.11
Peak force
ICC: 0.979; ES: − 0.03
Mean power
ICC: 0.972; ES: 0.31
Peak power
ICC: 0.993; ES: − 0.13
Banyard et al. [8]
GymAware
4 x Celesco PT5A-250 LPT & 1 x AMTI BP6001200 Force Plate
F/W Back Squat
20%1RM
Mean velocity
r: 0.96; CV: 3.6%; ES: 0.17; SEE: 0.04 m·s−1
 
Peak velocity
r: 0.94; CV: 4.1%; ES: − 0.03; SEE: 0.08 m·s−1
 
Mean force
r: 0.99; CV: 2.2%; ES: 0.57; SEE: 22.57N
 
Peak force
r: 0.96; CV: 5.5%; ES: 0.61; SEE: 114.2N
 
Mean power
r: 0.98; CV: 4%; ES: 0.72; SEE: 49.7W
 
Peak power
r: 0.98; CV: 4.9%; ES: 0.81; SEE: 114.6W
40%1RM
Mean velocity
r: 0.97; CV: 3.2%; ES: 0.19; SEE: 0.03 m·s−1
 
Peak velocity
r: 0.97; CV: 2.9%; ES: 0.02; SEE: 0.05 m·s−1
 
Mean force
r: 0.99; CV: 1.8%; ES: 0.37; SEE: 25.75N
 
Peak force
r: 0.99; CV: 3.4%; ES: 0.38; SEE: 65.1N
 
Mean power
r: 0.97; CV: 4.3%; ES: 0.6; SEE: 55.39W
 
Peak power
r: 0.97; CV: 5.7%; ES: 0.67; SEE: 143.87W
60%1RM
Mean velocity
r: 0.95; CV: 3.1%; ES: 0.11; SEE: 0.03 m·s−1
 
Peak velocity
r: 0.96; CV: 3.7%; ES: − 0.02; SEE: 0.05 m·s−1
 
Mean force
r: 0.99; CV: 1.7%; ES: 0.29; SEE: 29.33N
 
Peak force
r: 0.99; CV: 3.3%; ES: 0.29; SEE: 74.63N
 
Mean power
r: 0.97; CV: 4.7%; ES: 0.34; SEE: 66.02W
 
Peak power
r: 0.97; CV: 5.7%; ES: 0.53; SEE: 152.84W
80%1RM
Mean velocity
r: 0.96; CV: 3%; ES: 0.14; SEE: 0.02 m·s−1
 
Peak velocity
r: 0.97; CV: 5.4%; ES: 0.07; SEE: 0.06 m·s−1
 
Mean force
r: 0.99; CV: 1.6%; ES: 0.16; SEE: 34.88N
 
Peak force
r: 0.99; CV: 3.5%; ES: 0.29; SEE: 79.78N
 
Mean power
r: 0.99; CV: 3.5%; ES: 0.27; SEE: 37.79W
 
Peak power
r: 0.98; CV: 6%; ES: 0.36; SEE: 145.79W
90%1RM
Mean velocity
r: 0.96; CV: 2.8%; ES: 0.06; SEE: 0.02 m·s−1
 
Peak velocity
r: 0.95; CV: 5.8%; ES: 0.12; SEE: 0.06 m·s−1
 
Mean force
r: 1.00; CV: 1.1%; ES: 0.1; SEE: 23.83N
 
Peak force
r: 0.99; CV: 3.2%; ES: 0.29; SEE: 85.27N
 
Mean power
r: 0.99; CV: 4.7%; ES: 0.13; SEE: 44.9W
 
Peak power
r: 0.96; CV: 7.7%; ES: 0.33; SEE: 166.75W
100%1RM
Mean velocity
r: 0.99; CV: 2.5%; ES: 0.39; SEE: 0.01 m·s−1
 
Peak velocity
r: 0.96; CV: 5.4%; ES: 0.04; SEE: 0.04 m·s−1
 
Mean force
r: 1.00; CV: 0.7%; ES: 0.06; SEE: 16.9N
 
Peak force
r: 0.96; CV: 5.5%; ES: 0.13; SEE: 140.28N
 
Mean power
r: 0.99; CV: 5.3%; ES: 0.26; SEE: 23.89W
 
Peak power
r: 0.95; CV: 7.3%; ES: 0.19; SEE: 126.8W
Boehringer and White [77]
1080Q
GymAware
S/M Bench Press
40–80%1RM
Mean velocity
MD: 0.018 ± 0.024 m·s−1; r:1.00
Mean force
MD: − 116.3 ± 20.5N; r:0.99
Mean power
MD: − 93.8 ± 35.3W; r:0.97
Peak velocity
MD: 0.033 ± 0.026 m·s−1; r:1.00
Peak force
MD: 193.0 ± 126.2N; r:0.91
Peak power
MD: − 59.2 ± 35.9W; r:0.98
Chery & Ruf [60]
Tendo
GymAware
F/W Deadlift
20%1RM
Mean velocity
CV: 1.72%; MD: 0.03 m·s−1
 
Peak velocity
CV: 1.03%; MD: − 0.16 m·s−1
40%1RM
Mean velocity
CV: 2.17%; MD: 0.01 m·s−1
 
Peak velocity
CV: 1.47%; MD: − 0.11 m·s−1
60%1RM
Mean velocity
CV: 2.65%; MD: 0.01 m·s−1
 
Peak velocity
CV: 1.08%; MD: − 0.09 m·s−1
80%1RM
Mean velocity
CV: 2.99%; MD: 0.06 m·s−1
 
Peak velocity
CV: 1.37%; MD: − 0.06 m·s−1
90%1RM
Mean velocity
CV: 3.50%; MD: 0.04 m·s−1
 
Peak velocity
CV: 1.36%; MD: − 0.04 m·s−1
100%1RM
Mean velocity
CV: 4.07%; MD: 0.03 m·s−1
 
Peak velocity
CV: 3.76%; MD: − 0.03 m·s−1
All Loads
Mean velocity
CV: 4.08%; MD: 0.03 m·s−1
 
Peak velocity
CV: 1.56%; MD: − 0.08 m·s−1
Courel-Ibanez et al. [36]
Chronojump
T-Force
S/M Bench Press
20–80 kg
Mean velocity
SEM: 0.05 m·s−1; CV: 6.1%; ICC: 0.992
  
Mean propulsive velocity
SEM: 0.06 m·s−1; CV: 6.8%; ICC: 0.997
  
PEAK velocity
SEM: 0.04 m·s−1; CV: 2.8%; ICC: 0.998
S/M Back Squat
20–80 kg
Mean velocity
SEM: 0.04 m·s−1; CV: 10.6%; ICC: 0.984
  
Mean propulsive velocity
SEM: 0.04 m·s−1; CV: 4.7%; ICC: 0.986
  
Peak velocity
SEM: 0.05 m·s−1; CV: 2.9%; ICC: 0.989
S/M Prone Bench Pull
20–80 kg
Mean velocity
SEM: 0.04 m·s−1; CV: 3.9%; ICC: 0.993
  
Mean propulsive velocity
SEM: 0.03 m·s−1; CV: 3.2%; ICC: 0.994
  
Peak velocity
SEM: 0.05 m·s−1; CV: 2.8%; ICC: 0.997
Crewther et al. 2011 [50]
GymAware
Force plate
F/W Loaded Squat Jump
20 kg
Peak force
r: 0.59; bias: 202 ± 579N
 
Peak power
r: 0.67; bias: 401 ± 879W
40 kg
Peak force
r: 0.83; bias: 108 ± 255N
 
Peak power
r: 0.82; bias: 178 ± 611W
60 kg
Peak force
r: 0.87; bias: 39 ± 255N
 
Peak power
r: 0.74; bias: 45 ± 748W
80 kg
Peak force
r: 0.87; bias: 57 ± 414N
 
Peak power
r: 0.62; bias: 198 ± 762W
Dorrell et al. [26]
GymAware
Rapture-E 3D cameras and
F/W Back Squat
80%1RM
Bar displacement
MD: − 0.009 ± 0.005m
force plate
  
Peak velocity
MD: 0.005 ± 0.007 m·s−1
   
Mean velocity
MD: 0.029 ± 0.010 m·s−1
 
F/W Bench Press
80%1RM
Bar displacement
MD: − 0.009 ± 0.009m
   
Peak velocity
MD: 0.002 ± 0.007 m·s−1
   
Mean velocity
MD: 0.017 ± 0.016 m·s−1
 
F/W Deadlift
80%1RM
Bar displacement
MD: − 0.016 ± 0.009m
   
Peak velocity
MD: 0.004 ± 0.004 m·s−1
   
Mean velocity
MD: 0.100 ± 0.037 m·s−1
Drinkwater et al. [27]
GymAware
Sony Digital Video Recorder DRC-TRV900E (High speed camera)
S/M Back Squat
1 rep @ 3RM
Mean power (ecc)
SEE: 3.6W; CV: 1.16%; r: 1.00
  
Mean power (con)
SEE: 4.1W; CV: 1.08%; r: 1.00
  
Peak power (ecc)
SEE: 11.2W; CV: 1.43%; r: 1.00
  
Peak power (con)
SEE: 14.4W; CV: 2.16%; r: 1.00
S/M Bench Throw
40 kg
Mean power (con)
SEE: 10.8W; CV: 2.78%; r: 0.97
  
Max power (con)
SEE: 14.0W; CV: 1.85%; r: 0.99
F/W Bench Press
1 rep @ 3RM
Mean power (ecc)
SEE: 7.1W; CV: 2.27%; r: 0.99
  
Mean power (con)
SEE: 3.7W; CV: 1.50%; r: 1.00
  
Peak power (ecc)
SEE: 7.8W; CV: 1.33%; r: 1.00
  
Peak power (con)
SEE: 13.2W; CV: 3.02%; r: 0.99
Fernandes et al. [55]
FitroDyne (fitronic)
GymAware
S/M Bench Press
20%1RM
Peak velocity
LoA: 11.2 + 25.9 cm·s−1; r: 0.86
  
Mean velocity
LoA: − 4.8 + 13.6 cm·s−1; r: 0.92
 
30%1RM
Peak velocity
LoA: 10.7 + 22.9 cm·s−1; r: 0.79
  
Mean velocity
LoA: − 2.0 + 13.1 cm·s−1; r: 0.88
 
40%1RM
Peak velocity
LoA: 10.7 + 12.1 cm·s−1; r: 0.92
  
Mean velocity
LoA: − 0.9 + 9.3 cm·s−1; r: 0.89
 
50%1RM
Peak velocity
LoA: 10.1 + 4.5 cm·s−1; r: 0.98
  
Mean velocity
LoA: 0.1 + 9.5 cm·s−1 ; r: 0.86
 
60%1RM
Peak velocity
LoA: 7.7 + 3.8 cm·s−1; r: 0.99
  
Mean velocity
LoA: 0.0 + 11.6 cm·s−1; r: 0.86
 
70%1RM
Peak velocity
LoA: 7.5 + 9.6 cm·s−1; r: 0.95
  
Mean velocity
LoA: 0.2 + 7.4 cm·s−1; r: 0.93
 
80%1RM
Peak velocity
LoA: 5.5 + 10.1 cm·s−1; r: 0.96
  
Mean velocity
LoA: 1.0 + 6.8 cm·s−1; r: 0.94
S/M Back Squat
20%1RM
Peak velocity
LoA: 12.0 + 8.8 cm·s−1; r: 1.00
  
Mean velocity
LoA: 2.0 + 6.3 cm·s−1; r: 0.98
 
30%1RM
Peak velocity
LoA: 10.6 + 9.3 cm·s−1; r: 0.99
  
Mean velocity
LoA: 0.6 + 7.5 cm·s−1; r: 0.97
 
40%1RM
Peak velocity
LoA: 10.4 + 9.1 cm·s−1; r: 0.99
  
Mean velocity
LoA: 1.2 + 5.4 cm·s−1; r: 0.98
 
50%1RM
Peak velocity
LoA: 9.2 + 7.4 cm·s−1 m·s−1; r: 0.99
  
Mean velocity
LoA: 2.3 + 3.3 cm·s−1; r: 0.99
 
60%1RM
Peak velocity
LoA: 8.5 + 5.8 cm·s−1; r: 1.00
  
Mean velocity
LoA: 2.0 + 3.0 cm·s−1; r: 0.99
 
70%1RM
Peak velocity
LoA: 8.3 + 5.4 cm·s−1; r: 1.00
  
Mean velocity
LoA: 2.2 + 2.1 cm·s−1; r: 1.00
 
80%1RM
Peak velocity
LoA: 8.0 + 6.5 cm·s−1; r: 1.00
  
Mean velocity
LoA: 1.1 + 6.0 cm·s−1; r: 0.94
S/M Bent Over Row
20%1RM
Peak velocity
LoA: 14.6 + 25.0 cm·s−1; r: 0.94
  
Mean velocity
LoA: − 0.1 + 12.0 cm·s−1; r: 0.96
 
30%1RM
Peak velocity
LoA: 14.6 + 18.9 cm·s−1; r: 0.93
  
Mean velocity
LoA: − 0.8 + 7.3 cm·s−1; r: 0.97
 
40%1RM
Peak velocity
LoA: 13.6 + 12.0 cm·s−1; r: 0.97
  
Mean velocity
LoA: 0.4 + 11.6 cm·s−1; r: 0.91
 
50%1RM
Peak velocity
LoA: 10.6 + 6.8 cm·s−1; r: 0.98
  
Mean velocity
LoA: 0.6 + 4.9 cm·s−1; r: 0.98
 
60%1RM
Peak velocity
LoA: 7.3 + 18.2 cm·s−1; r: 0.92
  
Mean velocity
LoA: − 0.3 + 6.0 cm·s−1; r: 0.97
 
70%1RM
Peak velocity
LoA: 7.7 + 15.3 cm·s−1; r: 0.91
  
Mean velocity
LoA: − 0.2 + 4.2 cm·s−1; r: 0.98
 
80%1RM
Peak velocity
LoA: 7.3 + 14.9 cm·s−1; r: 0.92
  
Mean velocity
LoA: − 0.2 + 3.9 cm·s−1; r: 0.98
Garnacho-Castano et al. [56]
Tendo
T-Force
S/M Back Squat
40–60 kg, 85%1RM
Mean velocity
Bias: 0.02 ± 0.07 m·s−1; ICC: 0.985
    
Peak velocity
Bias: − 0.08 ± 0.13 m·s−1; ICC: 0.963
    
Mean power
Bias: 0.8 ± 44.31W; ICC: 0.966
   
40–60 kg, 85%1RM
Peak power
Bias: − 209.99 ± 153.92W; ICC: 0.853
Tendo
T-Force
S/M Bench Press
 
Mean velocity
Bias: 0.01 ± 0.06 m·s−1; ICC: 0.989
    
Peak velocity
Bias: -0.06 ± 0.10 m·s−1; ICC: 0.963
    
Mean power
Bias: 5.29 ± 38.48W; ICC: 0.968
    
Peak power
Bias: − 105.13 ± 109.76W; ICC: 0.905
Goldsmith et al. [53]
Tendo
OptoTrak
F/W Back Squat
70%1RM
Mean velocity
LoA (95% CI): − 0.006357 (− 0.06042 to 0.04771) m·s−1; ICC: 0.9364
    
Peak concentric velocity
LoA (95% CI): 0.07569 (− 0.05406 to 0.2054) m·s−1; ICC: 0.9362
Open Barbell System
OptoTrak
F/W Back Squat
70%1RM
Mean velocity
LoA (95% CI): − 0.01163 (− 0.06855 to 0.04528) m·s−1; ICC: 0.8696
    
Peak concentric velocity
LoA (95% CI): 0.03986 (− 0.1016 to 0.1813) m·s−1; ICC: 0.8351
Gonzalez et al. [57]
Open Barbell System
Tendo
F/W Back Squat
Overall
Peak velocity
MD: 0.11 + 0.01 m·s−1
  
Mean velocity
MD: 0.01 + 0.01 m·s−1
 
30%1RM
Peak velocity
r: 0.95; Bias: 0.163 m·s−1
  
Mean velocity
r: 0.27; Bias: 0.012 m·s−1
 
50%1RM
Peak velocity
r: 0.73; Bias: 0.125 m·s−1
  
Mean velocity
r: 0.35; Bias: 0.007 m·s−1
 
70%1RM
Peak velocity
r: 0.87; Bias: 0.086 m·s−1
  
Mean velocity
r: 0.03; Bias: 0.008 m·s−1
 
90%1RM
Peak velocity
r: 0.58; Bias: 0.053 m·s−1
  
Mean velocity
r: 0.25; Bias: 0.009 m·s−1
F/W Front Squat
Overall
Peak velocity
MD: 0.11 + 0.01 m·s−1
  
Mean velocity
MD: 0.01 + 0.01 m·s−1
 
30%1RM
Peak velocity
r: 0.86; Bias: 0.158 m·s−1
  
Mean velocity
r: 0.44; Bias: 0.010 m·s−1
 
50%1RM
Peak velocity
r: 0.76; Bias: 0.119 m·s−1
  
Mean velocity
r: − 0.27; Bias: 0.012 m·s−1
 
70%1RM
Peak velocity
r: 0.84; Bias: 0.091 m·s−1
  
Mean velocity
r: 0.29; Bias: 0.013 m·s−1
 
90%1RM
Peak velocity
r: 0.49; Bias: 0.055 m·s−1
  
Mean velocity
r: 0.60; Bias: 0.007 m·s−1
Lorenzetti et al. [54]
T-Force
Vicon
F/W Back Squat
70%1RM
Mean velocity
RMSE: 0.070 m·s−1; MD: 0.062 m·s−1
  
Maximum velocity
RMSE: 0.151 m·s−1; MD: 0.199 m·s−1
  
Time to maximum velocity
RMSE: 0.026s; MD: 0.010s
F/W Ballistic Squat
25 kg
Mean velocity
RMSE: 0.167 m·s−1; MD: 0.102 m·s−1
  
Maximum velocity
RMSE: 0.263 m·s−1; MD: 0.150 m·s−1
  
Time to maximum velocity
RMSE: 0.045s; MD: − 0.007s
 
Tendo
Vicon
F/W Back Squat
70%1RM
Mean velocity
RMSE: 0.046 m·s−1; MD: 0.020 m·s−1
  
Maximum velocity
RMSE: 0.194 m·s−1; MD: 0.159 m·s−1
  
Time to maximum velocity
RMSE: 0.041s; MD: 0.031s
F/W Ballistic Squat
25 kg
Mean velocity
RMSE: 0.157 m·s−1; MD: − 0.083 m·s−1
  
Maximum velocity
RMSE: 0.315 m·s−1; MD: 0.217 m·s−1
  
Time to maximum velocity
RMSE: 0.064s; MD: 0.046s
 
GymAware
Vicon
F/W Back Squat
70%1RM
Mean velocity
RMSE: 0.064 m·s−1; MD: 0.046 m·s−1
  
Maximum velocity
RMSE: 0.163 m·s−1; MD: 0.128 m·s−1
  
Time to maximum velocity
RMSE: 0.042s; MD: 0.037s
F/W Ballistic Squat
25 kg
Mean velocity
RMSE: 0.160 m·s−1; MD: − 0.091 m·s−1
  
Maximum velocity
RMSE: 0.304 m·s−1; MD: 0.187 m·s−1
  
Time to maximum velocity
RMSE: 0.046s; MD: 0.024s
Martinez-Cava et al. [51]
Speed4Lifts
T-Force
S/M Back Squat
25–95 kg
Peak velocity
SEM: 0.02 m·s−1; CV: 1.60%; ICC: 0.997
  
Mean propulsive velocity
SEM: 0.03 m·s−1; CV: 3.09%; ICC: 0.995 r: 0.9936; SEE: 0.032 m·s−1
S/M Bench Press
25–95 kg
Peak velocity
SEM: 0.06 m·s−1; CV: 4.94%; ICC: 0.995
  
Mean propulsive velocity
SEM: 0.02 m·s−1; CV: 2.72%; ICC: 0.999 r: 0.9985; SEE: 0.024 m·s−1
McGrath et al. [58]
Tendo Fitrodyne
3D Motion Camera Eagle Motion Camera
F/W Bench Press
40%1RM
Mean velocity
ICC: 0.977
80%1RM
Mean velocity
Combined Load
Mean velocity
Mitter et al. [9]
GymAware
Vicon
F/W Back Squat
30–100%1RM
Peak velocity
SEE: 0.019 m·s−1; RMSE: 0.025 m·s−1
    
Mean velocity
SEE: 0.024 m·s−1; RMSE: 0.035 m·s−1
  
F/W Bench Press
30–100%1RM
Peak velocity
SEE: 0.014 m·s−1; RMSE: 0.017 m·s−1
    
Mean velocity
SEE: 0.030 m·s−1; RMSE: 0.041 m·s−1
  
F/W Deadlift
30–100%1RM
Peak velocity
SEE: 0.017 m·s−1; RMSE: 0.021 m·s−1
    
Mean velocity
SEE: 0.029 m·s−1; RMSE: 0.029 m·s−1
FitroDyne (Fitronic)
Vicon
F/W Back Squat
30–100%1RM
Peak velocity
SEE: 0.022 m·s−1; RMSE: 0.043 m·s−1
    
Mean velocity
SEE: 0.073 m·s−1; RMSE: 0.104 m·s−1
  
F/W Bench Press
30–100%1RM
Peak velocity
SEE: 0.019 m·s−1; RMSE: 0.022 m·s−1
    
Mean velocity
SEE: 0.100 m·s−1; RMSE: 0.162 m·s−1
  
F/W Deadlift
30–100%1RM
Peak velocity
SEE: 0.018 m·s−1; RMSE: 0.035 m·s−1
    
Mean velocity
SEE: 0.084 m·s−1; RMSE: 0.182 m·s−1
Perez-Castilla et al. [10]
T-Force
OptiTrack
S/M Bench Press
55–85%1RM
Mean velocity
Bias: − 0.01 ± 0.03 m·s−1
Chronojump
OptiTrack
S/M Bench Press
55–85%1RM
Mean velocity
Bias: − 0.03 ± 0.03 m·s−1
Speed4Lift
OptiTrack
S/M Bench Press
55–85%1RM
Mean velocity
Bias: − 0.04 ± 0.02 m·s−1
Thompson et al. [24]
GymAware
12 Camera Raptor 3D Motion Capture
F/W Back Squat
40%1RM
Mean velocity
R2: 0.95; LoA: − 0.02 ± 0.05 m·s−1
  
Peak velocity
R2: 0.97; LoA: 0.01 ± 0.07 m·s−1
 
50%1RM
Mean velocity
R2: 0.95; LoA: − 0.01 ± 0.04 m·s−1
  
Peak velocity
R2: 0.98; LoA: 0.01 ± 0.06 m·s−1
 
60%1RM
Mean velocity
R2: 0.98; LoA: − 0.02 ± 0.02 m·s−1
  
Peak velocity
R2: 0.99; LoA: 0.01 ± 0.04 m·s−1
 
70%1RM
Mean velocity
R2: 0.97; LoA: − 0.01 ± 0.03 m·s−1
  
Peak velocity
R2: 0.99; LoA: 0.01 ± 0.05 m·s−1
 
80%1RM
Mean velocity
R2: 0.99; LoA: − 0.01 ± 0.02 m·s−1
  
Peak velocity
R2: 0.99; LoA: 0.02 ± 0.05 m·s−1
 
90%1RM
Mean velocity
R2: 0.99; LoA: − 0.01 ± 0.01 m·s−1
  
Peak velocity
R2: 0.96; LoA: 0.02 ± 0.10 m·s−1
 
100%1RM
Mean velocity
R2: 0.97; LoA: − 0.02 ± 0.04 m·s−1
  
Peak velocity
R2: 0.97; LoA: 0.01 ± 0.08 m·s−1
 
Full
Mean velocity
R2: 0.99; LoA: − 0.01 ± 0.03 m·s−1
  
Peak velocity
R2: 0.99; LoA: 0.01 ± 0.06 m·s−1
Power Clean
40%1RM
Mean velocity
R2: 0.93; LoA: − 0.03 ± 0.08 m·s−1
  
Peak velocity
R2: 0.91; LoA: − 0.01 ± 0.14 m·s−1
 
50%1RM
Mean velocity
R2: 0.95; LoA: − 0.03 ± 0.05 m·s−1
  
Peak velocity
R2: 0.93; LoA: − 0.01 ± 0.12 m·s−1
 
60%1RM
Mean velocity
R2: 0.95; LoA: − 0.03 ± 0.05 m·s−1
  
Peak velocity
R2: 0.95; LoA: − 0.01 ± 0.10 m·s−1
 
70%1RM
Mean velocity
R2: 0.78; LoA: − 0.02 ± 0.07 m·s−1
  
Peak velocity
R2: 0.95; LoA: 0.00 ± 0.08 m·s−1
 
80%1RM
Mean velocity
R2: 0.86; LoA: − 0.02 ± 0.05 m·s−1
  
Peak velocity
R2: 0.91; LoA: 0.00 ± 0.10 m·s−1
 
90%1RM
Mean velocity
R2: 0.42; LoA: 0.00 ± 0.11 m·s−1
  
Peak velocity
R2: 0.86; LoA: 0.01 ± 0.11 m·s−1
 
100%1RM
Mean velocity
R2: 0.64; LoA: − 0.01 ± 0.07 m·s−1
  
Peak velocity
R2: 0.86; LoA: 0.08 ± 0.11 m·s−1
 
Full
Mean velocity
R2: 0.94; LoA: − 0.02 ± 0.07 m·s−1
  
Peak velocity
R2: 0.96; LoA: 0.00 ± 0.11 m·s−1
1RM one repetition maximum, SEE standard error of the estimate, MV mean concentric velocity, T-Force T-force linear velocity transducer, GymAware GymAware PowerTool, CV coefficient of variation, RMSE root mean square of the estimate, TEE typical error of the estimate, S/M Smith machine, F/W free weight, MD mean difference, r Pearson’s correlation coefficient, ICC intraclass correlation coefficient, SEM standard error of measurement, CMJ countermovement jump, ES effect size, ROM range of motion, ECC eccentric, CON concentric, LoA limits of agreement
Table 5
Summary of studies that investigated the validity of accelerometer devices used to measure kinetic and kinematic variables during resistance training
Study
Device
Criterion
Exercise
Intensity/load
Variable measured
Findings
Abbott et al. [59]
Bar Sensei
Vicon (Nexus 1.8.5)
F/W Back Squat
20%1RM
Peak velocity
SEE: 0.06 m·s−1
Mean velocity
SEE: 0.05 m·s−1
Mean propulsive velocity
SEE: 0.11 m·s−1
30%1RM
Peak velocity
SEE: 0.05 m·s−1
Mean velocity
SEE: 0.04 m·s−1
Mean propulsive velocity
SEE: 0.08 m·s−1
40%1RM
Peak velocity
SEE: 0.05 m·s−1
Mean velocity
SEE: 0.05 m·s−1
Mean propulsive velocity
SEE: 0.07 m·s−1
50%1RM
Peak velocity
SEE: 0.06 m·s−1
Mean velocity
SEE: 0.05 m·s−1
Mean propulsive velocity
SEE: 0.10 m·s−1
60%1RM
Peak velocity
SEE: 0.09 m·s−1
Mean velocity
SEE: 0.04 m·s−1
Mean propulsive velocity
SEE: 0.06 m·s−1
70%1RM
Peak velocity
SEE: 0.14 m·s−1
Mean velocity
SEE: 0.04 m·s−1
Mean propulsive velocity
SEE: 0.07 m·s−1
80%1RM
Peak velocity
SEE: 0.17 m·s−1
Mean velocity
SEE: 0.05 m·s−1
Mean propulsive velocity
SEE: 0.05 m·s−1
90%1RM
Peak velocity
SEE: 0.19 m·s−1
Mean velocity
SEE: 0.04 m·s−1
Mean propulsive velocity
SEE: 0.04 m·s−1
100%1RM
Peak velocity
SEE: 0.16 m·s−1
Mean velocity
SEE: 0.04 m·s−1
Mean propulsive velocity
SEE: 0.03 m·s−1
Balsalobre-Fernández et al. [62]
Push Band
T-Force
S/M Back Squat
20–70 kg
Peak velocity
r: 0.91; SEE: 0.1 m·s−1; MD: − 0.07 ± 0.1 m·s−1
Mean velocity
r: 0.86; SEE: 0.08 m·s−1; MD: 0.11 ± 0.1 m·s−1
Balsalobre-Fernández et al. [69]
Beast Sensor (wrist)
SmartCoach Power Encoder
F/W Back Squat
50–95%1RM
Mean velocity
Bias: 0.03 ± 0.06 m·s−1; SEE: 0.06 m·s−1
F/W Bench Press
50–95%1RM
Mean velocity
Bias: 0.009 ± 0.04 m·s−1; SEE: 0.04 m·s−1
F/W Hip-Thrust
50–95%1RM
Mean velocity
Bias: 0.06 ± 0.07 m·s−1; SEE: 0.07 m·s−1
Beast Sensor (barbell)
SmartCoach Power Encoder
F/W Back Squat
50–95%1RM
Mean velocity
Bias: − 0.003 ± 0.05 m·s−1; SEE: 0.05 m·s−1
F/W Bench Press
50–95%1RM
Mean velocity
Bias: 0.04 ± 0.05 m·s−1; SEE: 0.05 m·s−1
F/W Hip-Thrust
50–95%1RM
Mean velocity
Bias: 0.03 ± 0.05 m·s−1; SEE: 0.04 m·s−1
Banyard et al. [8]
Push Band
4 x Celesco PT5A-250 LPT & 1 x AMTI BP6001200 Force Plate
F/W Back Squat
20%1RM
Mean velocity
r: 0.86; CV: 6.9%; ES: 0.24; SEE: 0.08 m·s−1
Peak velocity
r: 0.80; CV: 8.1%; ES: 0.03; SEE: 0.16 m·s−1
Mean force
r: 0.91; CV: 6.1%; ES: 2.29; SEE: 63.9N
Peak force
r: 0.98; CV: 4%; ES: 0.04; SEE: 79.75N
Mean power
r: 0.89; CV: 9.6%; ES: 0.28; SEE: 122.22W
Peak power
r: 0.87; CV: 11.9%; ES: − 0.29; SEE: 299.89W
40%1RM
Mean velocity
r: 0.80; CV: 8.2%; ES: 0.18; SEE: 0.08 m·s−1
Peak velocity
r: 0.76; CV: 9.6%; ES: − 0.16; SEE: 0.15 m·s−1
Mean force
r: 0.96; CV: 5%; ES: 1.41; SEE: 70.29Nr: 0.98; CV: 4.7%; ES: 0.04; SEE: 109.92N
Peak force
Mean power
r: 0.82; CV: 10.9%; ES: − 0.35; SEE: 145.92W
Peak power
r: 0.81; CV: 14.2%; ES: − 0.5; SEE: 364.36W
60%1RM
Mean velocity
r: 0.76; CV: 8.4%; ES: 0.49; SEE: 0.06 m·s−1
Peak velocity
r: 0.74; CV: 10%; ES: − 0.22; SEE: 0.13 m·s−1
Mean force
r: 0.96; CV: 5%; ES: 1.2; SEE: 87.53N
Peak force
r: 0.97; CV: 5%; ES: 0.09; SEE: 117.37N
Mean power
r: 0.79; CV: 13.1%; ES: − 0.36; SEE: 163.11W
Peak power
r: 0.79; CV: 15.8%; ES: − 0.33; SEE: 383.25W
80%1RM
Mean velocity
r: 0.73; CV: 10.7%; ES: 0.54; SEE: 0.05 m·s−1
Peak velocity
r: 0.68; CV: 13.2%; ES: − 0.29; SEE: 0.14 m·s−1
Mean force
r: 0.97; CV: 4.9%; ES: 0.83; SEE: 102.78N
Peak force
r: 0.98; CV: 4.2%; ES: 0.07; SEE: 103.68N
Mean power
r: 0.78; CV: 14.2%; ES: − 0.09; SEE: 126.79W
Peak power
r: 0.78; CV: 18.7%; ES: − 0.5; SEE: 402.16W
90%1RM
Mean velocity
r: 0.65; CV: 11.8%; ES: 0.69; SEE: 0.04 m·s−1
Peak velocity
r: 0.65; CV: 12.9%; ES: − 0.52; SEE: 0.12 m·s−1
Mean force
r: 0.98; CV: 3.4%; ES: 0.65; SEE: 77.28N
Peak force
r: 0.97; CV: 4.9%; ES: 0.13; SEE: 135.34N
Mean power
r: 0.67; CV: 22.7%; ES: 0.35; SEE: 163.23W
Peak power
r: 0.81; CV: 17.1%; ES: − 0.41; SEE: 346.51W
100%1RM
Mean velocity
r: 0.33; CV: 27.2%; ES: 1.62; SEE: 0.05 m·s−1
Peak velocity
r: 0.49; CV: 18.4%; ES: − 0.13; SEE: 0.13 m·s−1
Mean force
r: 0.97; CV: 5%; ES: 0.52; SEE: 115.17N
Peak force
r: 0.92; CV: 8.3%; ES: 0.26; SEE: 213.05N
Mean power
r: 0.32; CV: 38.3%; ES: 1.23; SEE: 162.09W
Peak power
r: 0.66; CV: 18.7%; ES: − 0.18; SEE: 319.13W
Beckham et al. [28]
Bar Sensei
GymAware
F/W Back Squat
45%1RM
Mean velocity
ICC: 0.482; MD: − 0.106 m·s−1
Peak velocity
ICC: 0.555; MD: 0.009 m·s−1
60%1RM
Mean velocity
ICC: 0.303; MD: − 0.094 m·s−1
Peak velocity
ICC: 0.362; MD: − 0.037 m·s−1
75%1RM
Mean velocity
ICC: 0.329; MD: − 0.081 m·s−1
Peak velocity
ICC: 0.361; MD: − 0.099 m·s−1
Chery & Ruf [60]
PUSH Band
GymAware
F/W Deadlift
20%1RM
Mean velocity
CV: 11.21%; MD: 0.05 m·s−1CV: 10.63%; MD: 0.12 m·s−1
Peak velocity
40%1RM
Mean velocity
CV: 17.51%; MD: − 0.10 m·s−1
Peak velocity
CV: 15.23%; MD:− 0.16 m·s−1
60%1RM
Mean velocity
CV: 9.51%; MD: 0.02 m·s−1
Peak velocity
CV: 10.34%; MD: 0.02 m·s−1
80%1RM
Mean velocity
CV: 16.02%; MD: 0.13 m·s−1CV: 11.76%; MD: 0.18 m·s−1
Peak velocity
90%1RM
Mean velocity
CV: 14.23%; MD: 0.10 m·s−1
Peak velocity
CV: 8.15%; MD: 0.12 m·s−1
100%1RM
Mean velocity
CV: 35.00%; MD: 0.08 m·s−1
Peak velocity
CV: 33.34%; MD: 0.13 m·s−1
All Loads
Mean velocity
CV: 22.69%; MD: 0.05 m·s−1
Peak velocity
CV: 20.35%; MD: 0.07 m·s−1
Comstock et al. [48]
Myotest
Ballistic Measurement System force plate and Celesco linear transducer
S/M Bench Press
100% 1RM
Peak force
R2:0.92
S/M Bench Throw
30% 1RM
Peak power
R2: 0.92
S/M Squat
100% 1RM
Peak force
R2: 0.97
S/M Squat Jump
30% 1RM
Peak power
R2: 0.82
Courel-Ibanez et al. [36]
Push Band
T-Force
S/M Bench Press
20–80 kg
Mean velocity
SEM: 0.13 m·s−1; CV: 18.3%; ICC: 0.928
Peak velocity
SEM: 0.23 m·s−1; CV: 17.1%; ICC: 0.937
S/M Back Squat
20–80 kg
Mean velocity
SEM: 0.07 m·s−1; CV: 8.8%; ICC: 0.941
Peak velocity
SEM: 0.10 m·s−1; CV: 6.4%; ICC: 0.952
Crewther et al. [50]
MyoTest
Force Plate
F/W Loaded squat jump
20 kg
Peak force
r: 0.87; bias: 171 ± 336N
Peak power
r: 0.66; bias: 141 ± 896W
40 kg
Peak force
r: 0.89; bias: 73 ± 256N
Peak power
r: 0.88; bias: − 180 ± 593W
60 kg
Peak force
r: 0.95; bias: 32 ± 196N
Peak power
r: 0.82; bias: − 112 ± 610W
80 kg
Peak force
r: 0.97; bias: 7 ± 219N
Peak power
r: 0.90; bias: 23 ± 400W
Garcia-Pinillos et al. [61]
WIMU System
T-Force
S/M Concentric-Only Half ROM Back Squat
10–100%1RM
Mean velocity
Bias: 0.02 ± 0.06 m·s−1
Mean propulsive velocity
Bias: 0.06 ± 0.07 m·s−1
Maximum velocity
Bias: 0.16 ± 0.16 m·s−1
10%1RM
Mean velocity
r: 0.865
Mean propulsive velocity
r: 0.898
Maximum velocity
r: 0.971
20%1RM
Mean velocity
r: 0.520
Mean propulsive velocity
r: 0.398
Maximum velocity
r: 0.773
30%1RM
Mean velocity
r: 0.696
Mean propulsive velocity
r: 0.813
Maximum velocity
r: 0.196
40%1RM
Mean velocity
r: 0.877
Mean propulsive velocity
r: 0.882
Maximum velocity
r: 0.842
50%1RM
Mean velocity
r: 0.760
Mean propulsive velocity
r: 0.823
Maximum velocity
r: 0.908
60%1RM
Mean velocity
r: 0.646
Mean propulsive velocity
r: 0.645
Maximum velocity
r: 0.729
70%1RM
Mean velocity
r: 0.419
Mean propulsive velocity
r: 0.628
Maximum velocity
r: 0.819
80%1RM
Mean velocity
r: 0.662
Mean propulsive velocity
r: 0.632
Maximum velocity
r: 0.498
90%1RM
Mean velocity
r: 0.739
Mean propulsive velocity
r: 0.717
Maximum velocity
r: 0.742
100%1RM
Mean velocity
r: 0.687
Mean propulsive velocity
r: 0.685
Maximum velocity
r: 0.861
Hughes et al. [52]
PUSH Band 2.0 (body)
GymAware
F/W Back Squat
30–90%1RM
Mean velocity
r: 0.99
F/W Bench Press
 
Mean velocity
r: 0.99
F/W Bench Pull
 
Mean velocity
r: 0.98
F/W OH Press
 
Mean velocity
r: 0.99
S/M Back Squat
30–90%1RM
Mean velocity
r: 0.97
S/M Bench Press
 
Mean velocity
r: 0.99
S/M Bench Pull
 
Mean velocity
r: 0.99
S/M OH Press
 
Mean velocity
r: 0.99
 
PUSH Band 2.0 (bar)
GymAware
F/W Back Squat
30–90%1RM
Mean velocity
r: 0.97
F/W Bench Press
 
Mean velocity
r: 0.99
F/W OH Press
 
Mean velocity
r: 0.96
S/M Back Squat
30–90%1RM
Mean velocity
r: 0.97
S/M Bench Press
 
Mean velocity
r: 0.98
S/M OH Press
 
Mean velocity
r: 0.96
Lake et al. [29]
PUSH Band 2.0
Vicon T40S
F/W Bench Press
60%1RM
Peak velocity
MD: − 0.039 m·s−1; LPR: 0.907
Mean velocity
MD: − 0.065 m·s−1; LPR: 0.797
F/W Bench Press
90%1RM
Peak velocity
MD: − 0.063 m·s−1; LPR: 1.110
Mean velocity
MD: − 0.038 m·s−1; LPR: 0.816
Lorenzetti et al. [54]
MyoTest
Vicon
F/W Ballistic Squat
25 kg
Mean velocity
RMSE: 0.233 m·s−1; MD: 0.149 m·s−1
Maximum velocity
RMSE: 0.418 m·s−1; MD: 0.278 m·s−1
Time to maximum velocity
RMSE: 0.054s; MD: − 0.034s
Garcia-Mateo [63]
RehaGait (bar)RehaGait (body)
MyLift via iPhone 6 iOS 9.3.2MyLift via iPhone 6 iOS 9.3.2
F/W Squat with arms extended
<1 kg
Mean velocity
MD ± SD: 0.364 ± 0.069 m·s−1
F/W Squat with arms extended
<1 kg
Mean velocity
MD ± SD: 0.318 ± 0.08 m·s−1
McGrath et al. [58]
PUSH Band
3D Motion Camera Eagle Motion Camera
F/W Bench Press
40%1RM
Mean velocity
Mean ± SD: 0.746 ± 0.124 m·s−1; CV: 16.62%
80%1RM
mean velocity
Mean ± SD: 0.322 ± 0.124 m·s−1; CV: 38.50%
Combined Load
Mean velocity
Mean ± SD: 0.510 ± 0.244 m·s−1; CV: 47.83%; ICC: 0.923
Mitter et al. [9]
Beast Sensor
Vicon
F/W Back Squat
30–100%1RM
Peak velocity
SEE: 0.176 m·s−1; RMSE: 0.320 m·s−1SEE: 0.116 m·s−1; RMSE: 0.177 m·s−1
 
Mean velocity
 
F/W Bench Press
30–100%1RM
Peak velocity
SEE: 0.113 m·s−1; RMSE: 0.134 m·s−1
Mean velocity
SEE: 0.084 m·s−1; RMSE: 0.098 m·s−1
F/W Deadlift
30–100%1RM
Peak velocity
SEE: 0.147 m·s−1; RMSE: 0.361 m·s−1
Mean velocity
SEE: 0.105 m·s−1; RMSE: 0.200 m·s−1
 
PUSH Band
Vicon
F/W Back Squat
30–100%1RM
Peak velocity
SEE: 0.137 m·s−1; RMSE: 0.229 m·s−1
Mean velocity
SEE: 0.078 m·s−1; RMSE: 0.147 m·s−1
F/W Bench Press
30–100%1RM
Peak velocity
SEE: 0.113 m·s−1; RMSE: 0.121 m·s−1
Mean velocity
SEE: 0.065 m·s−1; RMSE: 0.101 m·s−1
F/W Deadlift
30–100%1RM
Peak velocity
SEE: 0.183 m·s−1; RMSE: 0.235 m·s−1
Mean velocity
SEE: 0.105 m·s−1; RMSE: 0.136 m·s−1
Muyor et al [38]
WIMU
T-Force
S/M Back Squat
40%1RM
Mean velocity (con)
ES: 0.34d; SEM: 0.003 m·s−1; ICC: 0.970
Mean velocity (ecc)
ES: 0.21d; SEM: 0.007 m·s−1; ICC: 0.971
80%1RM
Mean velocity (con)
ES: 0.25d; SEM: 0.003 m·s−1; ICC: 0.976
Mean velocity (ecc)
ES: 0.44d; SEM: 0.005 m·s−1; ICC: 0.953
Orange et al. [47]
PUSH Band
PUSH Band
GymAware
F/W Back Squat
20%1RM
Mean velocity
Standardised mean bias: 0.61 m·s−1; r:0.80
Peak velocity
Standardised mean bias: 0.53 m·s−1; r:0.80
Mean power
Standardised mean bias: 0.51W; r:0.91
Peak power
Standardised mean bias: 1.20W; r:0.90
40%1RM
Mean velocity
Standardised mean bias: 1.17 m·s−1; r: 0.72
Peak velocity
Standardised mean bias: 1.20 m·s−1; r:0.70
Mean power
Standardised mean bias: 1.10W; r:0.77
Peak power
Standardised mean bias: 1.01W; r:0.88
60%1RM
Mean velocity
Standardised mean bias: 1.41 m·s−1; r: 0.78
Peak velocity
Standardised mean bias: 1.58 m·s−1; r:0.68
Mean power
Standardised mean bias: 1.73W; r:0.76
Peak power
Standardised mean bias: 1.39W; r:0.77
80%1RM
Mean velocity
Standardised mean bias: 2.23 m·s−1; r: 0.79
Peak velocity
Standardised mean bias: 2.23 m·s−1; r:0.84
Mean power
Standardised mean bias: 2.24W; r:0.76
Peak power
Standardised mean bias: 1.43W; r:0.85
90%1RM
Mean velocity
Standardised mean bias: 2.61 m·s−1; r:0.66
Peak velocity
Standardised mean bias: 2.74 m·s−1; r:0.41
Mean power
Standardised mean bias: 2.08W; r:0.67
Peak power
Standardised mean bias: 1.59W; r:0.59
GymAware
F/W Bench Press
20%1RM
Mean velocity
Standardised mean bias: 1.06 m·s−1; r: 0.30
Peak velocity
Standardised mean bias: 0.55 m·s−1; r:0.44
Mean power
Standardised mean bias: 0.35W; r:0.50
Peak power
Standardised mean bias: 0.74W; r:0.66
  
40%1RM
Mean velocity
Standardised mean bias: 0.68 m·s−1; r: 0.85
Peak velocity
Standardised mean bias: 0.37 m·s−1; r:0.73
Mean power
Standardised mean bias: 0.31W; r:0.88
Peak power
Standardised mean bias: 0.73W; r:0.59
60%1RM
Mean velocity
Standardised mean bias: 0.55 m·s−1; r: 0.59
Peak velocity
Standardised mean bias: 0.18 m·s−1; r:0.52
Mean power
Standardised mean bias: 0.00W; r:0.68
Peak power
Standardised mean bias: 0.70W; r:0.62
80%1RM
Mean velocity
Standardised mean bias: 1.03 m·s−1; r: 0.73
Peak velocity
Standardised mean bias: 0.00 m·s−1; r: 0.50
Mean power
Standardised mean bias: 0.64W; r:0.76
Peak power
Standardised mean bias: 0.88W; r:0.46
90%1RM
Mean velocity
Standardised mean bias: 1.12 m·s−1; r: 0.44
Peak velocity
Standardised mean bias: 0.10 m·s−1; r: 0.45
Mean power
Standardised mean bias: 0.60W; r:0.48
Peak power
Standardised mean bias: 0.48W; r:0.49
Perez-Castilla et al. [10]
PUSH Band
OptiTrack
S/M Bench Press
55–85%1RM
Mean velocity
Bias: 0.10 ± 0.06 m·s−1
Beast sensor
OptiTrack
S/M Bench Press
55–85%1RM
Mean velocity
Bias: 0.05 ± 0.21 m·s−1
Pino-Ortega et al. [66]
WIMU
GymAware
Leg Extension Machine
30–90 kg
Mean linear velocity
R2:0.9995; Bias: 0.011 ± 0.006 m·s−1; LoA: − 0.024 to 0.01 m·s−1
Sato et al. [37]
PUSH Band
Vicon (Nexus 1.8.5)
DB Biceps Curl
4.54–6.82 kg
Mean velocity
TE: 0.060 m·s−1; RTE: 7.2%; r: 0.883
Peak velocity
TE: 0.105 m·s−1; RTE: 6.5%; r: 0.923
DB Shoulder Press
4.54–6.82 kg
Mean velocity
TE: 0.090 m·s−1; RTE: 12.6%; r: 0.864
Peak velocity
TE: 0.163 m·s−1; RTE: 14.0%; r: 0.801
Thompson et al. [24]
PUSH Band (body)
PUSH Band (bar)
Bar Sensei
Beast Sensor
12 Camera raptor 3D motion capture
F/W Back Squat
40%1RM
Mean velocity
R2: 0.92; LoA: 0.00 ± 0.06 m·s−1
Peak velocity
R2: 0.94; LoA: 0.09 ± 0.10 m·s−1
50%1RM
Mean velocity
R2: 0.96; LoA: 0.00 ± 0.04 m·s−1
Peak velocity
R2: 0.76; LoA: 0.09 ± 0.22 m·s−1
60%1RM
Mean velocity
R2: 0.95; LoA: 0.01 ± 0.05 m·s−1
Peak velocity
R2: 0.45; LoA: 0.12 ± 0.33 m·s−1
70%1RM
Mean velocity
R2: 0.88; LoA: 0.02 ± 0.07 m·s−1
Peak velocity
R2: 0.60; LoA: 0.11 ± 0.29 m·s−1
80%1RM
Mean velocity
R2: 0.92; LoA: 0.00 ± 0.08 m·s−1
Peak velocity
R2: 0.37; LoA: 0.13 ± 0.44 m·s−1
90%1RM
Mean velocity
R2: 0.79; LoA: 0.00 ± 0.10 m·s−1
Peak velocity
R2: 0.53; LoA: 0.15 ± 0.30 m·s−1
100%1RM
Mean velocity
R2: 0.58; LoA: − 0.07 ± 0.10 m·s−1
Peak velocity
R2: 0.48; LoA: 0.12 ± 0.35 m·s−1
Full
Mean velocity
R2: 0.97; LoA: − 0.01 ± 0.09 m·s−1
Peak velocity
R2: 0.80; LoA: 0.12 ± 0.30 m·s−1
 
Power clean
40%1RM
Mean velocity
R2: 0.38; LoA: 0.07 ± 0.24 m·s−1
Peak velocity
R2: 0.27; LoA: 0.61 ± 0.40 m·s−1
50%1RM
Mean velocity
R2: 0.50; LoA: 0.07 ± 0.23 m·s−1
Peak velocity
R2: 0.43; LoA: 0.60 ± 0.38 m·s−1
60%1RM
Mean velocity
R2: 0.50; LoA: 0.07 ± 0.18 m·s−1
Peak velocity
R2: 0.24; LoA: 0.56 ± 0.42 m·s−1
70%1RM
Mean velocity
R2: 0.66; LoA: 0.07 ± 0.18 m·s−1
Peak velocity
R2: 0.43; LoA: 0.59 ± 0.32 m·s−1
80%1RM
Mean velocity
R2: 0.54; LoA: 0.07 ± 0.22 m·s−1
Peak velocity
R2: 0.27; LoA: 0.58 ± 0.36 m·s−1
90%1RM
Mean velocity
R2: 0.61; LoA: 0.10 ± 0.19 m·s−1
Peak velocity
R2: 0.60; LoA: 0.62 ± 0.24 m·s−1
100%1RM
Mean velocity
R2: 0.34; LoA: 0.09 ± 0.16 m·s−1
Peak velocity
R2: 0.66; LoA: 0.59 ± 0.17 m·s−1
Full
Mean velocity
R2: 0.72; LoA: 0.08 ± 0.19 m·s−1
Peak velocity
R2: 0.65; LoA: 0.59 ± 0.32 m·s−1
12 Camera raptor 3D motion capture
F/W Back Squat
40%1RM
Mean velocity
R2: 0.69; LoA: − 0.08 ± 0.09 m·s−1
Peak velocity
R2: 0.91; LoA: 0.02 ± 0.14 m·s−1
50%1RM
Mean velocity
R2: 0.95; LoA: − 0.06 ± 0.05 m·s−1
Peak velocity
R2: 0.89; LoA: 0.07 ± 0.14 m·s−1
60%1RM
Mean velocity
R2: 0.83; LoA: − 0.07 ± 0.08 m·s−1
Peak velocity
R2: 0.84; LoA: 0.06 ± 0.17 m·s−1
70%1RM
Mean velocity
R2: 0.84; LoA: − 0.07 ± 0.07 m·s−1
Peak velocity
R2: 0.80; LoA: 0.09 ± 0.18 m·s−1
80%1RM
Mean velocity
R2: 0.87; LoA: − 0.07 ± 0.09 m·s−1
Peak velocity
R2: 0.60; LoA: 0.08 ± 0.28 m·s−1
90%1RM
Mean velocity
R2: 0.92; LoA: − 0.07 ± 0.05 m·s−1
Peak velocity
R2: 0.56; LoA: 0.08 ± 0.29 m·s−1
100%1RM
Mean velocity
R2: 0.39; LoA: 0.10 ± 0.13 m·s−1
Peak velocity
R2: 0.41; LoA: 0.01 ± 0.36 m·s−1
Full
Mean velocity
R2: 0.97; LoA: − 0.07 ± 0.08 m·s−1
Peak velocity
R2: 0.86; LoA: 0.06 ± 0.23 m·s−1
 
Power clean
40%1RM
Mean velocity
R2: 0.62; LoA: 0.22 ± 0.18 m·s−1
Peak velocity
R2: 0.59; LoA: 0.35 ± 0.43 m·s−1
50%1RM
Mean velocity
R2: 0.54; LoA: 0.22 ± 0.22 m·s−1
Peak velocity
R2: 0.11; LoA: 0.36 ± 0.62 m·s−1
60%1RM
Mean velocity
R2: 0.50; LoA: 0.22 ± 0.15 m·s−1
Peak velocity
R2: 0.68; LoA: 0.35 ± 0.26 m·s−1
70%1RM
Mean velocity
R2: 0.24; LoA: 0.16 ± 0.26 m·s−1
Peak velocity
R2: 0.08; LoA: 0.31 ± 0.74 m·s−1
80%1RM
Mean velocity
R2: 0.35; LoA: 0.14 ± 0.22 m·s−1
Peak velocity
R2: 0.06; LoA: 0.30 ± 0.64 m·s−1
90%1RM
Mean velocity
R2: 0.41; LoA: 0.19 ± 0.15 m·s−1
Peak velocity
R2: 0.26; LoA: 0.46 ± 0.35 m·s−1
100%1RM
Mean velocity
R2: 0.23; LoA: 0.14 ± 0.16 m·s−1
Peak velocity
R2: 0.60; LoA: 0.35 ± 0.23 m·s−1
Full
Mean velocity
R2: 0.62; LoA: 0.18 ± 0.20 m·s−1
Peak velocity
R2: 0.48; LoA: 0.35 ± 0.49 m·s−1
12 Camera raptor 3D motion capture
F/W Back Squat
40%1RM
Mean velocity
R2: 0.82; LoA: 0.07 ± 0.12 m·s−1
Peak velocity
R2: 0.96; LoA: 0.03 ± 0.12 m·s−1
50%1RM
Mean velocity
R2: 0.75; LoA: 0.05 ± 0.16 m·s−1
Peak velocity
R2: 0.93; LoA: 0.07 ± 0.16 m·s−1
 
Power clean
60%1RM
Mean velocity
R2: 0.67; LoA: 0.04 ± 0.12 m·s−1
Peak velocity
R2: 0.82; LoA: 0.12 ± 0.17 m·s−1
70%1RM
Mean velocity
R2: 0.86; LoA: 0.04 ± 0.08 m·s−1
Peak velocity
R2: 0.66; LoA: 0.19 ± 0.25 m·s−1
80%1RM
Mean velocity
R2: 0.66; LoA: 0.05 ± 0.11 m·s−1
Peak velocity
R2: 0.52; LoA: 0.31 ± 0.33 m·s−1
90%1RM
Mean velocity
R2: 0.23; LoA: 0.01 ± 0.21 m·s−1
Peak velocity
R2: 0.10; LoA: 0.31 ± 0.33 m·s−1
100%1RM
Mean velocity
R2: 0.01; LoA: − 0.05 ± 0.18 m·s−1
Peak velocity
R2: 0.02; LoA: 0.24 ± 0.49 m·s−1
Full
Mean velocity
R2: 0.87; LoA: 0.03 ± 0.16 m·s−1
Peak velocity
R2: 0.80; LoA: 0.18 ± 0.37 m·s−1
40%1RM
Mean velocity
R2: 0.82; LoA: − 0.13 ± 0.14 m·s−1
Peak velocity
R2: 0.47; LoA: − 0.36 ± 0.38 m·s−1
50%1RM
Mean velocity
R2: 0.82; LoA: − 0.08 ± 0.15 m·s−1
Peak velocity
R2: 0.22; LoA: − 0.25 ± 0.49 m·s−1
60%1RM
Mean velocity
R2: 0.73; LoA: − 0.10 ± 0.18 m·s−1
Peak velocity
R2: 0.61; LoA: − 0.20 ± 0.35 m·s−1
70%1RM
Mean velocity
R2: 0.04; LoA: − 0.02 ± 0.34 m·s−1
Peak velocity
R2: 0.50; LoA: − 0.15 ± 0.38 m·s−1
80%1RM
Mean velocity
R2: 0.07; LoA: 0.01 ± 0.27 m·s−1
peak velocity
R2: 0.69; LoA: − 0.12 ± 0.27 m·s−1
90%1RM
Mean velocity
R2: 0.18; LoA: 0.02 ± 0.22 m·s−1
Peak velocity
R2: 0.84; LoA: − 0.04 ± 0.18 m·s−1
100%1RM
Mean velocity
R2: 0.02; LoA: 0.01 ± 0.27 m·s−1
Peak velocity
R2: 0.57; LoA: − 0.05 ± 0.27 m·s−1
 
Mean velocity
R2: 0.73; LoA: − 0.04 ± 0.25 m·s−1
Full
Peak velocity
R2: 0.74; LoA: − 0.17 ± 0.39 m·s−1
12 Camera raptor 3D motion capture
F/W Back Squat
40%1RM
Mean velocity
R2: 0.64; LoA: − 0.01 ± 0.16 m·s−1
Peak velocity
R2: 0.10; LoA: − 0.05 ± 0.50 m·s−1
50%1RM
Mean velocity
R2: 0.71; LoA: 0.04 ± 0.13 m·s−1
Peak velocity
R2: 0.12; LoA: − 0.04 ± 0.43 m·s−1
60%1RM
Mean velocity
R2: 0.49; LoA: 0.08 ± 0.21 m·s−1
Peak velocity
R2: 0.00; LoA: 0.02 ± 0.53 m·s−1
70%1RM
Mean velocity
R2: 0.46; LoA: 0.11 ± 0.18 m·s−1
Peak velocity
R2: 0.00; LoA: 0.01 ± 0.56 m·s−1
80%1RM
Mean velocity
R2: 0.58; LoA: 0.16 ± 0.18 m·s−1
Peak velocity
R2: 0.02; LoA: 0.04 ± 0.44 m·s−1
90%1RM
Mean velocity
R2: 0.12; LoA: 0.10 ± 0.22 m·s−1
Peak velocity
R2: 0.58; LoA: 0.22 ± 0.28 m·s−1
100%1RM
Mean velocity
R2: 0.20; LoA: − 0.09 ± 0.26 m·s−1
Peak velocity
R2: 0.15; LoA: 0.25 ± 0.52 m·s−1
Full
Mean velocity
R2: 0.80; LoA: 0.06 ± 0.24 m·s−1
Peak velocity
R2: 0.57; LoA: 0.06 ± 0.51 m·s−1
van den Tillaar and Ball [11]
PUSH Band
ET-Enc-02 Ergotest linear encoder
F/W Bench Press
50%1RM, + 10 to 30 kg
Mean velocity
Bias: 0.11 m·s−1; SEE: 0.17 m·s−1; r:0.62
 
Mean peak velocity
Bias: 0.22 m·s−1; SEE: 0.33 m·s−1; r:0.49
Push-Up
Body Weight, 10–30 kg Weight vests
Mean velocity
Bias: 0.12 m·s−1; SEE: 0.16 m·s−1; r: 0.70
Mean peak velocity
Bias: 0.15 m·s−1; SEE: 0.34 m·s−1; r: 0.46
1RM one repetition maximum, SEE standard error of the estimate, MV mean concentric velocity, T-Force T-force linear velocity transducer, GymAware GymAware PowerTool, CV coefficient of variation, RMSE root mean square of the estimate, LPR least products regression, TEE typical error of the estimate, S/M Smith machine, F/W free weight, MD mean difference, r Pearson’s correlation coefficient, ICC intraclass correlation coefficient, SEM standard error of measurement, CMJ countermovement jump, ES effect size, ROM range of motion, RTE relative typical error, OH overhead, DB dumbbell
Table 6
Summary of studies that investigated the validity of mobile phone and tablet applications used to measure kinetic and kinematic variables during resistance training
Study
Device
Criterion
Exercise
Intensity/load
Variable measured
Findings
Balsalobre-Fernández et al. [69]
PowerLift (v4.0 iOS)
SmartCoach Power Encoder
F/W Back Squat
50–95%1RM
Mean velocity
Bias: − 0.005 ± 0.04 m·s−1
   
SEE: 0.04 m·s−1
F/W Bench Press
50–95%1RM
Mean velocity
Bias: − 0.01 ± 0.05 m·s−1
   
SEE: 0.05 m·s−1
F/W Hip-Thrust
50–95%1RM
Mean velocity
Bias: 0.02 ± 0.04 m·s−1
   
SEE: 0.03 m·s−1
Balsalobre-Fernández et al. [70]
PowerLift (v2.8 iOS)
SmartCoach Power Encoder
F/W Bench Press
75–100%1RM
Mean velocity
r: 0.94; SEE: 0.028 m·s−1; ICC: 0.965
MD: 0.008± 0.03 m·s−1
Courel-Ibanez et al. [36]
PowerLift (v4.0 iOS)
T-Force
S/M Bench Press
20–80 kg
Mean velocity
SEM: 0.09 m·s−1; CV: 11.7%; ICC: 0.966
S/M Back Squat
20–80 kg
Mean velocity
SEM: 0.06 m·s−1; CV: 7.6%; ICC: 0.955
de Sá et al. [80]
iLoad App (v 1.0)
Chronojump
S/M Half ROM Back Squat
10RM
Mean velocity
Bias ± random error: − 0.022 ± 0.034 m·s−1
  
ES: − 0.21 (− 0.39, − 0.04); r: 0.948
10RM
Total work
Bias ± random error: 0.706 ± 3.391 kJ
  
ES: 0.04 (− 0.07, 0.16); r: 0.977
Martinez-Cava et al. [51]
My Lift (v8.1 iOS)
T-Force
S/M Back Squat
25–95 kg
Peak velocity
SEM: 0.12 m·s−1; CV: 7.59%; ICC: 0.937
S/M Bench Press
25–95 kg
Peak velocity
SEM: 0.10 m·s−1; CV: 7.04%; ICC: 0.991
Perez-Castilla et al. [10]
PowerLift (v.6.0.1 iOS)
OptiTrack
S/M Bench Press
55–85%1RM
Mean velocity
Bias: − 0.01 ± 0.05 m·s−1
Sanchez-Pay et al. [23]
Kinovea (v0.8.15) via
T-Force
S/M Bench Press
All loads
Mean velocity
Bias: 0.10 ± 0.06 m·s−1; r: 0.997
Samsung S6
   
Distance
Bias: 1.07 ± 0.65 cm; r: 0.996
    
Time
Bias: − 61.6 ± 36.1 ms; r: 0.998
   
High Loads (MV < 0.80 m·s−1)
Mean velocity
Bias: 0.06 ± 0.05 m·s−1; r: 0.986
    
Distance
Bias: − 0.95 ± 0.69 cm; r: 0.992
    
Time
Bias: − 76.6 ± 41.3 ms; r: 0.997
   
Low Loads (MV > 0.80 m·s−1)
Mean velocity
Bias: 0.14 ± 0.06 m·s−1; r: 0.985
    
Distance
Bias: 1.21 ± 0.59 cm; r: 0.996
    
Time
Bias: − 44.2 ± 17.2 ms; r: 0.978
Kinovea (v0.8.15) via
T-Force
S/M Bench Press
All Loads
Mean velocity
Bias: 0.09 ± 0.06 m·s−1; r: 0.996
Xiaomi A1
   
Distance
Bias: 1.24 ± 0.45 cm; r: 0.998
    
Time
Bias: − 57.4 ± 33.4 ms; r: 0.998
   
High Loads (MV < 0.80 m·s−1)
Mean velocity
Bias: 0.06 ± 0.03 m·s−1; r: 0.994
    
Distance
Bias: 1.21 ± 0.47 cm; r: 0.995
    
Time
Bias: − 74.3 ± 34.5 ms; r: 0.998
   
Low Loads (MV > 0.80 m·s−1)
Mean velocity
Bias: 0.13 ± 0.06 m·s−1; r: 0.981
    
Distance
Bias: 1.38 ± 0.39 cm; r: 0.997
    
Time
Bias: − 37.6 ± 18.0 ms; r: 0.975
 
Kinovea (v0.8.15) via iPhone X
T-Force
S/M Bench Press
All Loads
Mean velocity
Bias: 0.11 ± 0.08 m·s−1; r: 0.994
    
Distance
Bias: 1.34 ± 0.75 cm; r: 0.993
    
Time
Bias: − 69.5 ± 34.8 ms; r: 0.998
   
High Loads (MV < 0.80 m·s−1)
Mean velocity
Bias: 0.07 ± 0.04 m·s−1; r: 0.995
    
Distance
Bias: 1.29 ± 0.81 cm; r: 0.986
    
Time
Bias: − 85.6 ± 41.3 ms; r: 0.998
   
Low Loads (MV > 0.80 m·s−1)
Mean velocity
Bias: 0.17 ± 0.09 m·s−1; r: 0.977
    
Distance
Bias: 1.40 ± 0.68 cm; r: 0.993
    
Time
Bias: − 50.4 ± 22.0 ms; r: 0.961
Kinovea (v0.8.15) via Casio FH20
T-Force
S/M Bench Press
All Loads
Mean velocity
Bias: 0.14 ± 0.09 m·s−1; r: 0.992
    
Distance
Bias: 2.48 ± 0.87 cm; r: 0.990
    
Time
Bias: − 69.5 ± 40.7 ms; r: 0.997
   
High Loads (MV < 0.80 m·s−1)
Mean velocity
Bias: 0.08 ± 0.05 m·s−1; r: 0.990
    
Distance
Bias: 2.36 ± 0.91 cm; r: 0.984
    
Time
Bias: − 83.4 ± 44.3 ms; r: 0.996
   
Low Loads (MV > 0.80 m·s−1)
Mean velocity
Bias: 0.20 ± 0.09 m·s−1; r: 0.963
    
Distance
Bias: 2.62 ± 0.81 cm; r: 0.989
    
Time
Bias: − 53.2 ± 28.9 ms; r: 0.932
Sanudo et al. [81]
Kinovea (v0.8.15) via Digital Video Camera (50Hz)
T-Force
S/M Bench Press
20 kg
Mean propulsive velocity
Bias: − 0.43 m·s−1
     
Maximal velocity
Bias: − 0.57 m·s−1
    
30 kg
Mean propulsive velocity
Bias: − 0.41 m·s−1
     
Maximal velocity
Bias: − 0.59 m·s−1
    
40 kg
Mean propulsive velocity
Bias: − 0.30 m·s−1
     
Maximal velocity
Bias: − 0.42 m·s−1
    
50 kg
Mean propulsive velocity
Bias: − 0.23 m·s−1
     
Maximal velocity
Bias: − 0.36 m·s−1
    
60 kg
Mean propulsive velocity
Bias: − 0.16 m·s−1
     
Maximal velocity
Bias: − 0.28 m·s−1
    
70 kg
Mean propulsive velocity
Bias: − 0.14 m·s−1
     
Maximal velocity
Bias: − 0.28 m·s−1
    
80 kg
Mean propulsive velocity
Bias: − 0.16 m·s−1
     
Maximal velocity
Bias: − 0.23 m·s−1
Thompson et al. [24]
MyLift (PowerLift at the time of data collection)
12 Camera raptor 3D motion capture
F/W Back Squat
40%1RM
Mean velocity
R2: 0.96; LoA: 0.02 ± 0.06 m·s−1
50%1RM
Mean velocity
R2: 0.94; LoA: 0.01 ± 0.05 m·s−1
60%1RM
Mean velocity
R2: 0.88; LoA: 0.01 ± 0.07 m·s−1
70%1RM
Mean velocity
R2: 0.95; LoA: 0.01 ± 0.04 m·s−1
80%1RM
Mean velocity
R2: 0.93; LoA: 0.00 ± 0.05 m·s−1
90%1RM
Mean velocity
R2: 0.92; LoA: 0.00 ± 0.04 m·s−1
100%1RM
Mean velocity
R2: 0.85; LoA: 0.00 ± 0.06 m·s−1
Full
Mean velocity
R2: 0.99; LoA: 0.01 ± 0.05 m·s−1
1RM one repetition maximum, MV mean concentric velocity, CV coefficient of variation, T-Force T-force linear velocity transducer, S/M Smith machine, F/W free weight, r Pearson’s correlation coefficient, ES effect size, ROM range of motion, RE random error, SEE standard error of the estimate, SEM standard error of the measurement
Table 7
Summary of studies that investigated the validity of optic devices used to measure kinetic and kinematic variables during resistance training
Study
Device
Criterion
Exercise
Intensity/load
Variable measured
Findings
Courel-Ibanez et al. [36]
Velowin
T-Force
S/M Bench Press
20–80 kg
Mean velocity
SEM: 0.02 m·s−1; CV: 3.1%; ICC: 0.998
  
Mean propulsive velocity
SEM: 0.03 m·s−1; CV: 3.5%; ICC: 0.997
  
Peak velocity
SEM: 0.02 m·s−1; CV: 1.7%; ICC: 0.999
S/M Back Squat
20–80 kg
Mean velocity
SEM: 0.03 m·s−1; CV: 4.4%; ICC: 0.992
  
Mean propulsive velocity
SEM: 0.03 m·s−1; CV: 3.6%; ICC: 0.992
  
Peak velocity
SEM: 0.04 m·s−1; CV: 2.3%; ICC: 0.993
S/M Prone Bench Pull
20–80 kg
Mean velocity
SEM: 0.09 m·s−1; CV: 8.1%; ICC: 0.967
  
Mean propulsive velocity
SEM: 0.25 m·s−1; CV: 8.1%; ICC: 0.967
  
Peak velocity
SEM: 0.03 m·s−1; CV: 1.9%; ICC: 0.999
Garcia-Ramos et al. [71]
Velowin
T-Force
F/W Back Squat
20–70 kg
Mean velocity
Bias: 0.02 ± 0.05 m·s−1; SEE: 0.040 m·s−1
Mean propulsive velocity
Bias: 0.02 ± 0.06 m·s−1; SEE: 0.055 m·s−1
Maximum velocity
Bias: − 0.09 ± 0.06 m·s−1; SEE: 0.057 m·s−1
Laza-Cagigas et al. [68]
Velowin
Oqus Infrared cameras and kistler multicomponent force platform
F/W Back Squat
< 30–90%1RM
Displacement
RMSE: 3.73 cm; CV: 6.6%; ICC: 0.84
Mean velocity
RMSE: 0.06 m·s−1; CV: 7.3%; ICC: 0.97
Peak velocity
RMSE: 0.09 m·s−1; CV: 6.5%; ICC: 0.96
Mean force
RMSE: 43N; CV: 3.6%; ICC: 0.99
Peak force
RMSE: 100N; CV: 5.2%; ICC: 0.98
Mean power
RMSE: 73W; CV: 8.2%; ICC: 0.92
Peak power
RMSE: 160W; CV: 8.3%; ICC: 0.85
Peña Garcia-Orea et al. [82]
Velowin
T-Force
S/M Squat
20–70 kg
Mean velocity
No significant differences were found between the variances of the two devices
Mean propulsive velocity
Peak velocity
Peña Garcia-Orea et al. [72]
Velowin
T-Force
Loaded CMJ
3.5–43.5 kg
Mean velocity
No significant differences were found between the variances of the two devices
Peak velocity
Perez-Castilla et al. [10]
Velowin
OptiTrack
S/M Bench Press
55–85%1RM
Mean velocity
Bias: − 0.05 ± 0.03 m·s−1
Weakley et al. [22]
FLEX
Vicon
F/W Back Squat
20%1RM
Mean velocity
Bias: 0.00 ± 0.01 m·s−1; TEE: 0.06 ± 0.02 m·s−1; r: 0.97 ± 0.03
    
40%1RM
Mean velocity
Bias: 0.00 ± 0.00 m·s−1; TEE: 0.02 ± 0.008 m·s−1; r: 0.99 ± 0.01
    
60%1RM
Mean velocity
Bias: 0.00 ± 0.00 m·s−1; TEE: 0.02 ± 0.008 m·s−1; r: 0.97 ± 0.03
    
80%1RM
Mean velocity
Bias: 0.00 ± 0.00 m·s−1; TEE: 0.02 ± 0.004 m·s−1; r: 0.95 ± 0.05
    
≥ 90%1RM
Mean velocity
Bias: 0.00 ± 0.00 m·s−1; TEE: 0.02 ± 0.004 m·s−1; r: 0.99 ± 0.01
    
Overall
Mean velocity
Bias: 0.00 ± 0.00 m·s−1; TEE: 0.03 ± 0.004 m·s−1; r: 0.99 ± 0.00
   
F/W Bench Press
20%1RM
Mean velocity
Bias: − 0.01 ± 0.03 m·s−1; TEE: 0.08 ± 0.04 m·s−1; r: 0.97 ± 0.04
    
40%1RM
Mean velocity
Bias: − 0.02 ± 0.06 m·s−1; TEE: 0.04 ± 0.02 m·s−1; r: 0.99 ± 0.02
    
60%1RM
Mean velocity
Bias: 0.00 ± 0.01 m·s−1; TEE: 0.02 ± 0.04 m·s−1; r: 0.98 ± 0.02
    
80%1RM
Mean velocity
Bias: 0.00 ± 0.00 m·s−1; TEE: 0.01 ± 0.005 m·s−1; r: 0.99 ± 0.01
    
≥ 90%1RM
Mean velocity
Bias: 0.00 ± 0.00 m·s−1; TEE: 0.02 ± 0.005 m·s−1; r: 0.98 ± 0.01
    
Overall
Mean velocity
Bias: − 0.01 ± 0.01 m·s−1; TEE: 0.04 ± 0.005 m·s−1; r: 0.99 ± 0.00
1RM one repetition maximum, SEE standard error of the estimate, T-force T-force linear velocity transducer, CV coefficient of variation, RMSE root mean square of the estimate, TEE typical error of the estimate, S/M Smith machine, F/W free weight, r Pearson’s correlation coefficient, ICC intraclass correlation coefficient, SEM standard error of measurement, CMJ countermovement jump
Table 8
Summary of studies that investigated the reliability of linear transducer devices used to measure kinetic and kinematic variables during resistance training
Study
Device
Reliability
Exercise
Intensity/load
Variable Measured
Findings
Balsalobre-Fernández et al. [62]
T-Force
Intra-device
S/M Back Squat
20–70 kg
Peak velocity
CV: 4.2 ± 2.5%; ICC: 0.988; r: 0.975
 
Mean velocity
CV: 3.9 ± 2.4%; ICC: 0.989; r: 0.989
Balsalobre-Fernández et al. [69]
SmartCoach
Intra-device
F/W Back Squat
50–95%1RM
Mean velocity
ICC: 0.981
 
F/W Bench Press
50–95%1RM
Mean velocity
ICC: 0.981
 
F/W Hip Thrust
50–95%1RM
Mean velocity
ICC: 0.966
Beckham et al. [28]
GymAware
Intra-device
F/W Back Squat
45%1RM
Mean velocity
ICC: 0.774
 
Peak velocity
ICC: 0.793
60%1RM
Mean velocity
ICC: 0.752
 
Peak velocity
ICC: 0.775
75%1RM
Mean velocity
ICC: 0.651
 
Peak velocity
ICC: 0.761
Boehringer and Whyte [77]
1080Q
Intra-device
S/M Bench Press
30–80%1RM
Mean velocity
MD: 0.004 m·s−1; CV:7.0%; ICC: 0.97
30%1RM
 
MD: − 0.003 m·s−1; CV: 4.5%; ICC: 0.64
40%1RM
 
MD: 0.001 m·s−1; CV: 3.7; ICC: 0.82
50%1RM
 
MD: 0.010 m·s−1; CV: 5.7 ICC: 0.53
60%1RM
 
MD: 0.017 m·s−1; CV: 6.5 ICC: 0.45
70%1RM
 
MD: 0.000 m·s−1; CV: 7.6 ICC: 0.63
80%1RM
 
MD: − 0.003 m·s−1; CV: 11.0 ICC: 0.69
30–80%1RM
Mean force
MD: − 0.3N; CV: 1.7%; ICC: 1.00
30%1RM
 
MD: − 4.1N; CV: 2.0%; ICC: 0.93
40%1RM
 
MD: − 0.9N; CV: 1.9%; ICC: 0.98
50%1RM
 
MD: 3.4N; CV: 2.3%; ICC: 0.96
60%1RM
 
MD: 3.2N; CV: 1.7%; ICC: 0.98
70%1RM
 
MD: − 4.8N; CV: 1.1%; ICC: 0.99
80%1RM
 
MD: − 0.9N; CV: 0.9%; ICC: 0.99
30–80%1RM
Mean power
MD: 3.4W; CV: 8.0%; ICC: 0.90
30%1RM
 
MD: − 4.1W; CV: 6.7%; ICC: 0.73
40%1RM
 
MD: − 1.6W; CV: 5.1%; ICC: 0.91
50%1RM
 
MD: 8.1W; CV: 7.3%; ICC: 0.79
60%1RM
 
MD: 14.8W; CV: 7.6%; ICC: 0.74
70%1RM
 
MD: − 0.4W; CV: 8.3%; ICC: 0.73
80%1RM
 
MD: − 1.1W; CV: 11.4%; ICC: 0.65
    
30–80%1RM
Peak velocity
MD: 0.002 m·s−1; CV: 6.3%; ICC: 0.97
30%1RM
 
MD: 0.002 m·s−1; CV: 4.1%; ICC: 0.61
40%1RM
 
MD: 0.001 m·s−1; CV: 3.6%; ICC: 0.84
50%1RM
 
MD: 0.008 m·s−1; CV: 5.0%; ICC: 0.68
60%1RM
 
MD: 0.000 m·s−1; CV: 5.0%; ICC: 0.75
70%1RM
 
MD: 0.004 m·s−1; CV: 8.2%; ICC: 0.58
80%1RM
 
MD: − 0.001 m·s−1; CV: 9.5%; ICC: 0.80
30–80%1RM
Peak force
MD: − 2.6N; CV: 4.4%; ICC: 0.94
30%1RM
 
MD: − 20.9N; CV: 7.0%; ICC: 0.51
40%1RM
 
MD: − 4.9N; CV: 3.5%; ICC: 0.90
50%1RM
 
MD: 7.4N; CV: 4.9%; ICC: 0.79
60%1RM
 
MD: 1.3N; CV: 4.2%; ICC: 0.80
70%1RM
 
MD: 0.4N; CV: 4.3%; ICC: 0.78
80%1RM
 
MD: − 9.4N; CV: 3.7%; ICC: 0.87
30–80%1RM
Peak power
MD: 2.0W; CV: 7.4%; ICC: 0.91
30%1RM
 
MD: 2.4W; CV: 6.1%; ICC: 0.79
40%1RM
 
MD: − 2.2W; CV: 5.1%; ICC: 0.92
50%1RM
 
MD: 6.9W; CV: 7.0%; ICC: 0.85
60%1RM
 
MD: 1.3W; CV: 6.1%; ICC: 0.88
70%1RM
 
MD: 1.6W; CV: 8.9%; ICC: 0.77
80%1RM
 
MD: 2.5W; CV: 10.2%; ICC: 0.79
Courel-Ibanez et al. [36]
T-Force
Inter-device
S/M Bench Press
20–80 kg
Mean velocity
SEM: 0.01 m·s−1; CV: 1.4%; ICC: 1.000
    
Mean propulsive velocity
SEM: 0.01 m·s−1; CV: 1.3%; ICC: 1.000
    
Peak velocity
SEM: 0.01 m·s−1; CV: 0.6%; ICC: 1.000
  
S/M Back Squat
20–80 kg
Mean velocity
SEM: 0.01 m·s−1; CV: 1.0%; ICC: 0.999
    
Mean propulsive velocity
SEM: 0.01 m·s−1; CV: 1.1%; ICC: 0.999
    
Peak velocity
SEM: 0.01 m·s−1; CV: 0.8%; ICC: 0.999
  
S/M Prone Bench Pull
20–80 kg
Mean velocity
SEM: 0.02 m·s−1; CV: 2.1%; ICC: 0.998
    
Mean propulsive velocity
SEM: 0.02 m·s−1; CV: 1.9%; ICC: 0.998
    
Peak velocity
SEM: 0.01 m·s−1; CV: 0.8%; ICC: 1.000
Chronojump
Inter-device
S/M Bench Press
20–80 kg
Mean velocity
SEM: 0.04 m·s−1; CV: 4.7%; ICC: 0.995
    
Mean propulsive velocity
SEM: 0.04 m·s−1; CV: 5.2%; ICC: 0.995
    
Peak velocity
SEM: 0.02 m·s−1; CV: 1.4%; ICC: 1.000
   
20–80 kg
Mean velocity
SEM: 0.03 m·s−1; CV: 3.6%; ICC: 0.991
    
Mean propulsive velocity
SEM: 0.03 m·s−1; CV: 3.9%; ICC: 0.991
  
S/M Back Squat
 
Peak velocity
SEM: 0.03 m·s−1; CV: 1.8%; ICC: 0.996
   
20–80 kg
Mean velocity
SEM: 0.04 m·s−1; CV: 3.3%; ICC: 0.995
    
Mean propulsive velocity
SEM: 0.04 m·s−1; CV: 3.4%; ICC: 0.995
  
S/M Prone Bench Pull
 
Peak velocity
SEM: 0.04 m·s−1; CV: 2.4%; ICC: 1.00
 
T-Force
Intra-device
S/M Bench Press
20–80 kg
Mean velocity
SEM: 0.02 m·s−1; CV: 1.9%; ICC: 0.999
    
Mean propulsive velocity
SEM: 0.02 m·s−1; CV: 1.8%; ICC: 0.999
    
Peak velocity
SEM: 0.03 m·s−1; CV: 2.0%; ICC: 0.999
  
S/M Back Squat
20–80 kg
Mean velocity
SEM: 0.03 m·s−1; CV: 2.5%; ICC: 0.995
    
Mean propulsive velocity
SEM: 0.02 m·s−1; CV: 2.6%; ICC: 0.996
    
Peak velocity
SEM: 0.05 m·s−1; CV: 2.9%; ICC: 0.989
  
S/M Prone Bench Pull
20–80 kg
Mean velocity
SEM: 0.04 m·s−1; CV: 3.0%; ICC: 0.995
    
Mean propulsive velocity
SEM: 0.03 m·s−1; CV: 3.0%; ICC: 0.995
    
Peak velocity
SEM: 0.03 m·s−1; CV: 1.8%; ICC: 0.999
Chronojump
Intra-device
S/M Bench Press
20–80 kg
Mean velocity
SEM: 0.04 m·s−1; CV: 4.3%; ICC: 0.997
    
Mean propulsive velocity
SEM: 0.03 m·s−1; CV: 3.2%; ICC: 0.998
    
Peak velocity
SEM: 0.04 m·s−1; CV: 2.4%; ICC: 0.999
  
S/M Back Squat
20–80 kg
Mean velocity
SEM: 0.04 m·s−1; CV: 3.9%; ICC: 0.990
    
Mean propulsive velocity
SEM: 0.04 m·s−1; CV: 3.8%; ICC: 0.991
    
Peak velocity
SEM: 0.06 m·s−1; CV: 3.4%; ICC: 0.985
  
S/M Prone Bench Pull
20–80 kg
Mean velocity
SEM: 0.07 m·s−1; CV: 5.2%; ICC: 0.990
    
Mean propulsive velocity
SEM: 0.07 m·s−1; CV: 5.4%; ICC: 0.987
    
Peak velocity
SEM: 0.04 m·s−1; CV: 2.3%; ICC: 0.998
Dorrell et al. [26]
GymAware
Intra-device
F/W Back Squat
80%1RM
Bar displacement
Mean TE: 3.8% (3.0–5.3%)
  
Peak velocity
Mean TE: 8.1% (6.4–11.5%)
  
Mean velocity
Mean TE: 7.0% (5.6–10.0%)
  
Peak force
Mean TE: 4.3% (3.4–6.1%)
  
Mean force
Mean TE: 0.6% (0.5–0.9%)
F/W Bench Press
80%1RM
Bar displacement
Mean TE: 3.0% (2.3–4.1)
  
Peak velocity
Mean TE: 6.2% (4.9–8.7)
  
Mean velocity
Mean TE: 7.4% (5.8–10.5%)
F/W Deadlift
80%1RM
Bar displacement
Mean TE: 2.0% (1.6–2.7%)
  
Peak velocity
Mean TE: 8.8% (7.0–12.5%)
  
Mean velocity
Mean TE: 7.0% (5.5–9.8%)
  
Peak force
Mean TE: 3.1% (2.5–4.4%)
  
Mean force
Mean TE: 1.6% (1.3–2.2%)
Fernandes et al. [55]
FitroDyne (fitronic)
Intra-device (intra-day)
S/M Bench Press
20%1RM
Peak power
TE: 18.3W; CV: 4.3%
  
Mean power
TE: 8.2W; CV: 3.4%
  
Peak velocity
TE: 6.9 cm·s−1; CV: 3.3%
  
Mean velocity
TE: 3.4 cm·s−1; CV: 2.9%
 
30%1RM
Peak power
TE: 11.3W; CV: 2.1%
  
Mean power
TE: 8.4W; CV: 2.6%
  
Peak velocity
TE: 3.1 cm·s−1; CV: 1.7%
  
Mean velocity
TE: 2.9 cm·s−1; CV: 2.7%
 
40%1RM
Peak power
TE: 10.1W; CV: 1.6%
  
Mean power
TE: 11.0W; CV: 2.9%
  
Peak velocity
TE: 2.8 cm·s−1; CV: 1.8%
  
Mean velocity
TE: 2.9 cm·s−1; CV: 3.1%
 
50%1RM
Peak power
TE: 16.9W; CV: 2.6%
  
Mean power
TE: 10.7W; CV: 2.7%
  
Peak velocity
TE: 3.6 cm·s−1; CV: 2.8%
  
Mean velocity
TE: 2.2 cm·s−1; CV: 2.8%
 
60%1RM
Peak power
TE: 23.8W; CV: 4.0%
  
Mean power
TE: 17.7W; CV: 4.6%
  
Peak velocity
TE: 3.8 cm·s−1; CV: 3.9%
  
Mean velocity
TE: 2.8 cm·s−1; CV: 4.4%
 
70%1RM
Peak power
TE: 18.6W; CV: 3.4%
  
Mean power
TE: 16.4W; CV: 4.8%
  
Peak velocity
TE: 2.6 cm·s−1; CV: 3.3%
  
Mean velocity
TE: 2.2 cm·s−1; CV: 4.5%
 
80%1RM
Peak power
TE: 53.0W; CV: 12.2%
  
Mean power
TE: 44.2W; CV: 17.1%
  
Peak velocity
TE: 5.3 cm·s−1; CV: 9.7%
  
Mean velocity
TE: 4.3 cm·s−1; CV: 13.4%
S/M Back Squat
20%1RM
Peak power
TE: 21.8W; CV:4.9 %
  
Mean power
TE: 13.3W; CV: 5.3%
  
Peak velocity
TE: 7.0 cm·s−1; CV: 4.1%
  
Mean velocity
TE: 3.9 cm·s−1; CV: 4.0%
 
30%1RM
Peak power
TE: 34.6W; CV: 5.4%
  
Mean power
TE: 19.9W; CV: 5.6%
  
Peak velocity
TE: 7.4 cm·s−1; CV: 4.5%
  
Mean velocity
TE: 4.2 cm·s−1; CV: 4.6%
 
40%1RM
Peak power
TE: 35.2W; CV: 4.3%
  
Mean power
TE: 28.2W; CV: 6.4%
  
Peak velocity
TE: 6.1 cm·s−1; CV: 4.0%
  
Mean velocity
TE: 4.8 cm·s−1; CV: 5.7%
 
50%1RM
Peak power
TE: 22.8W; CV: 2.4%
  
Mean power
TE: 14.2W; CV: 2.9%
  
Peak velocity
TE: 3.9 cm·s−1; CV: 2.7%
  
Mean velocity
TE: 2.4 cm·s−1; CV: 3.2%
 
60%1RM
Peak power
TE: 36.7W; CV: 3.5%
  
Mean power
TE: 22.3W; CV: 4.1%
  
Peak velocity
TE: 4.5 cm·s−1; CV: 3.3%
  
Mean velocity
TE: 3.0 cm·s−1; CV: 4.3%
 
70%1RM
Peak power
TE: 55.6W; CV: 4.9%
  
Mean power
TE: 29.6W; CV: 5.4%
  
Peak velocity
TE: 6.4 cm·s−1; CV: 5.2%
  
Mean velocity
TE: 3.8 cm·s−1; CV: 6.3%
 
80%1RM
Peak power
TE: 46.7W; CV: 3.9%
  
Mean power
TE: 28.4W; CV: 5.5%
  
Peak velocity
TE: 5.1 cm·s−1; CV: 4.4%
  
Mean velocity
TE: 3.1 cm·s−1; CV: 6.4%
S/M Bent Over Row
20%1RM
Peak power
TE: 18.9W; CV: 5.1%
  
Mean power
TE: 14.5W; CV: 6.6%
  
Peak velocity
TE: 8.8 cm·s−1; CV: 4.4%
  
Mean velocity
TE: 6.6 cm·s−1; CV: 5.6%
 
30%1RM
Peak power
TE: 20.0W; CV: 3.8%
  
Mean power
TE: 23.0W; CV: 7.4%
  
Peak velocity
TE: 7.1 cm·s−1; CV: 3.8%
  
Mean velocity
TE: 8.7 cm·s−1; CV: 7.9%
 
40%1RM
Peak power
TE: 21.6W; CV: 3.5%
  
Mean power
TE: 16.3W; CV: 4.3%
  
Peak velocity
TE: 6.1 cm·s−1; CV: 3.7%
  
Mean velocity
TE: 4.8 cm·s−1; CV: 4.7%
 
50%1RM
Peak power
TE: 20.8W; CV: 2.9%
  
Mean power
TE: 26.7W; CV: 6.1%
  
Peak velocity
TE: 4.0 cm·s−1; CV: 2.6%
  
Mean velocity
TE: 6.0 cm·s−1; CV: 6.4%
 
60%1RM
Peak power
TE: 33.0W; CV: 4.1%
  
Mean power
TE: 33.0W; CV: 6.9%
  
Peak velocity
TE: 5.7 cm·s−1; CV: 4.0%
  
Mean velocity
TE: 6.4 cm·s−1; CV: 7.5%
 
70%1RM
Peak power
TE: 62.8W; CV: 7.8%
  
Mean power
TE: 40.0W; CV: 8.2%
  
Peak velocity
TE: 10.5 cm·s−1; CV: 8.5%
  
Mean velocity
TE: 6.7 cm·s−1; CV: 9.0%
 
80%1RM
Peak power
TE: 61.1W; CV: 7.7%
  
Mean power
TE: 37.3W; CV: 7.8%
  
Peak velocity
TE: 8.8 cm·s−1; CV: 8.3%
  
Mean velocity
TE: 5.4 cm·s−1; CV: 8.5%
Garcia-Pinillos et al. [61]
T-Force
Intra-device
S/M Concentric-Only Half Back Squat
10%1RM
Mean velocity
CV: 8.60%; SEM: 0.03 m·s−1
 
Mean propulsive velocity
CV: 11.28%; SEM: 0.04 m·s−1
 
Maximum velocity
CV: 9.18%; SEM: 0.06 m·s−1
20%1RM
Mean velocity
CV: 6.76%; SEM: 0.02 m·s−1
 
Mean propulsive velocity
CV: 8.29%; SEM: 0.03 m·s−1
 
Maximum velocity
CV: 8.17%; SEM: 0.05 m·s−1
30%1RM
Mean velocity
CV: 11.86%; SEM: 0.11 m·s−1
 
Mean propulsive velocity
CV: 14.39%; SEM: 0.04 m·s−1
 
Maximum velocity
CV: 7.42%; SEM: 0.04 m·s−1
40%1RM
Mean velocity
CV: 9.95%; SEM: 0.09 m·s−1
 
Mean propulsive velocity
CV: 10.87%; SEM: 0.03 m·s−1
 
Maximum velocity
CV: 6.64%; SEM: 0.03 m·s−1
50%1RM
Mean velocity
CV: 9.06%; SEM: 0.07 m·s−1
 
Mean propulsive velocity
CV: 11.21%; SEM: 0.02 m·s−1
 
Maximum velocity
CV: 6.49%; SEM: 0.03 m·s−1
60%1RM
Mean velocity
CV: 9.27%; SEM: 0.02 m·s−1
 
Mean propulsive velocity
CV: 13.81%; SEM: 0.03 m·s−1
 
Maximum velocity
CV: 9.91%; SEM: 0.04 m·s−1
70%1RM
Mean velocity
CV: 9.50%; SEM: 0.02 m·s−1
 
Mean propulsive velocity
CV: 12.27%; SEM: 0.02 m·s−1
 
Maximum velocity
CV: 8.68%; SEM: 0.03 m·s−1
80%1RM
Mean velocity
CV: 9.09%; SEM: 0.02 m·s−1
 
Mean propulsive velocity
CV: 9.07%; SEM: 0.02 m·s−1
 
Maximum velocity
CV: 5.67%; SEM: 0.02 m·s−1
90%1RM
Mean velocity
CV: 11.02%; SEM: 0.05 m·s−1
 
Mean propulsive velocity
CV: 11.00%; SEM: 0.02 m·s−1
 
Maximum velocity
CV: 7.73%; SEM: 0.02 m·s−1
100%1RM
Mean velocity
CV: 16.77%; SEM: 0.02 m·s−1
 
Mean propulsive velocity
CV: 17.26%; SEM: 0.02 m·s−1
 
Maximum velocity
CV: 9.79%; SEM: 0.02 m·s−1
Garcia-Ramos et al. [71]
T-Force
Intra-device
F/W Back Squat
20 kg Load
Mean velocity
SEM: 0.052 m·s−1; CV: 4.65%; ICC: 0.90
 
Mean propulsive velocity
SEM: 0.059 m·s−1; CV: 4.87%; ICC: 0.91
 
Maximum velocity
SEM: 0.075 m·s−1; CV: 4.17%; ICC: 0.93
40 kg Load
Mean velocity
SEM: 0.040 m·s−1; CV: 4.19%; ICC: 0.93
 
Mean propulsive velocity
SEM: 0.046 m·s−1; CV: 4.46%; ICC: 0.92
 
Maximum velocity
SEM: 0.058 m·s−1; CV: 3.59%; ICC: 0.95
50 kg Load
Mean velocity
SEM: 0.038 m·s−1; CV: 4.25%; ICC: 0.90
 
Mean propulsive velocity
SEM: 0.047 m·s−1; CV: 4.83%; ICC: 0.87
 
Maximum velocity
SEM: 0.044 m·s−1; CV: 2.84%; ICC: 0.95
60 kg Load
Mean velocity
SEM: 0.031 m·s−1; CV: 3.75%; ICC: 0.94
 
Mean propulsive velocity
SEM: 0.033 m·s−1; CV: 3.73%; ICC: 0.95
 
Maximum velocity
SEM: 0.049 m·s−1; CV: 3.35%; ICC: 0.94
70 kg Load
Mean velocity
SEM: 0.036 m·s−1; CV: 4.84%; ICC: 0.92
 
Mean propulsive velocity
SEM: 0.036 m·s−1; CV: 4.49%; ICC: 0.93
 
Maximum velocity
SEM: 0.047 m·s−1; CV: 3.45%; ICC: 0.95
Garnacho-Castano et al. [56]
Tendo
Intra-device
S/M Back Squat
40–60 kg,
Mean velocity
Bias: − 0.02 ± 0.07 m·s−1; CV: 8.5%
    
Peak velocity
Bias: − 0.05 ± 0.13 m·s−1; CV: 9.6%
   
+ 85%1RM
Mean power
Bias: − 5.45 ± 39.75W; CV: 10.9%
    
Peak power
Bias: − 19.99 ± 85.78W; CV: 13.0%
Tendo
Intra-device
S/M Bench Press
40–60 kg,
Mean velocity
Bias: 0.001 ± 0.08 m·s−1; CV: 9.6%
    
Peak velocity
Bias: − 0.004 ± 0.08 m·s−1; CV: 9.0%
   
+ 85%1RM
Mean power
Bias: − 3.53 ± 27.87W; CV: 10.7%
    
Peak power
Bias: − 18.40 ± 49.35W; CV: 13.2%
      
30%, 60%, 90%1RM
Hughes et al. [52]
GymAware
Intra-device
F/W Back Squat
30–90%1RM
Mean velocity
ICC: 0.86, 0.78, 0.76; CV: 1.5%, 4.7%, 5.1%
   
F/W Bench Press
 
Mean velocity
ICC: 0.97, 0.80, 0.85; CV: 0.6%, 2.0%, 2.4%
   
F/W Prone Bench Pull
 
Mean velocity
ICC: 0.90, 0.92, 0.85; CV: 1.2%, 1.0%, 2.3%
   
F/W OHP
 
Mean velocity
ICC: 0.88, 0.83, 0.85; CV: 1.2%, 2.4%, 2.5%
   
S/M Back Squat
30–90%1RM
Mean velocity
ICC: 0.97, 0.80, 0.97; CV: 1.0%, 3.3%, 2.8%
   
S/M Bench Press
 
Mean velocity
ICC: 0.98, 0.94, 0.93; CV: 0.4%, 1.4%, 1.7%
   
S/M Prone Bench Pull
 
Mean velocity
ICC: 0.89, 0.98, 0.88; CV: 0.7%, 1.0%, 0.8%
   
S/M OHP
 
Mean velocity
ICC: 0.82, 0.86, 0.91; CV: 2.2%, 4.6%, 2.3%
Jennings et al. [79]
FitroDyne (fitronic)
Intra-device
F/W Biceps curls
0–90%1RM
Maximum power
Limits of Agreement: 0.11 ± 13.60W; ICC: 0.97
F/W Squat Jump
0–90%1RM
Maximum power
Limits of Agreement: − 17 ± 96W; ICC: 0.97
Lorenzetti et al. [54]
T-Force (v2.3)
Intra-device
F/W Back Squat
70%1RM
Mean velocity
r: 0.970; RMSE: 0.070 m·s−1
    
Maximum velocity
r: 0.933; RMSE: 0.151 m·s−1 m·s−1
    
Time to peak velocity
r: 0.985; RMSE: 0.026s
  
F/W Ballistic Squat
25 kg
Mean velocity
r: 0.724; RMSE: 0.167 m·s−1
    
Maximum velocity
r: 0.810; RMSE: 0.263 m·s−1
    
Time to peak velocity
r: 0.655; RMSE: 0.045s
Tendo (v4.1.0)
Intra-device
F/W Back Squat
70%1RM
Mean velocity
r: 0.963; RMSE: 0.046 m·s−1
    
Maximum velocity
r: 0.932; RMSE: 0.194 m·s−1
    
Time to peak velocity
r: 0.985; RMSE: 0.041s
   
F/W Ballistic Squat
25 kg
Mean velocity
r: 0.770; RMSE: 0.157 m·s−1
    
Maximum velocity
r: 0.860; RMSE: 0.135 m·s−1
    
Time to peak velocity
r: 0.604; RMSE: 0.064s
GymAware (v1.1.2)
Intra-device
F/W Back Squat
70%1RM
Mean velocity
r: 0.958; RMSE: 0.064 m·s−1
    
Maximum velocity
r: 0.957; RMSE: 0.163 m·s−1
    
Time to peak velocity
r: 0.990; RMSE: 0.042s
  
F/W Ballistic Squat
25 kg
Mean velocity
r: 0.783; RMSE: 0.160 m·s−1
    
Maximum velocity
r: 0.852; RMSE: 0.304 m·s−1
    
Time to peak velocity
r: 0.701; RMSE: 0.046s
Martinez-Cava et al. 51]
T-Force
Inter-device
S/M Back Squat
25–95 kg
Peak velocity
SEM: 0.01 m·s−1; CV: 0.46%; ICC: 1.000; r: 0.9997
    
Mean propulsive velocity
SEM: 0.01 m·s−1; CV: 0.58%; ICC: 1.000; r: 0.9998
    
Mean velocity
SEM: <0.01 m·s−1; CV: 0.44%; ICC: 1.000; r: 0.9998
  
S/M Bench Press
25–95 kg
Peak velocity
SEM: 0.01 m·s−1; CV: 0.45%; ICC: 1.000; r: 0.9998
    
Mean propulsive velocity
SEM: 0.01 m·s−1; CV: 0.62%; ICC: 1.000; r: 0.9999
    
Mean velocity
SEM: <0.01 m·s−1; CV: 0.55%; ICC: 1.000; r: 0.9999
Speed4Lifts
Inter-device
S/M Back Squat
25–95 kg
Peak velocity
SEM: 0.01 m·s−1; CV: 0.86%; ICC: 0.999
    
Mean propulsive velocity
SEM: 0.01 m·s−1; CV: 1.24%; ICC: 0.999
  
S/M Bench Press
25–95 kg
Peak velocity
SEM: 0.02 m·s−1; CV: 1.54%; ICC: 1.000
    
Mean propulsive velocity
SEM: 0.02 m·s−1; CV: 1.80%; ICC: 0.999
Muyor et al [38]
Tendo
Intra-device
S/M Back Squat
40%1RM
Mean velocity (con)
ES: 0.08; SEM: 0.007 m·s−1; CV: 2.00%; ICC: 0.979
 
Mean velocity (ecc)
ES: 0.15; SEM: 0.009 m·s−1; CV: 3.65%; ICC: 0.970
80%1RM
Mean velocity (con)
ES: 0.24; SEM: 0.013 m·s−1; CV: 4.28%; ICC: 0.855
 
Mean velocity (ecc)
ES: 0.10; SEM: 0.011 m·s−1; CV: 4.55%; ICC: 0.924
Orange et al. [48]
GymAware
Intra-device
F/W Back Squat
20%1RM
Mean velocity
Standardised mean bias: 0.21; SEM: 0.05 m·s−1; ICC: 0.72
  
Peak velocity
Standardised mean bias: 0.08; SEM: 0.09 m·s−1; ICC: 0.77
  
Mean power
Standardised mean bias: 0.19; SEM: 102.5W; ICC: 0.79
  
Peak power
Standardised mean bias: 0.04; SEM: 250.4W; ICC: 0.81
 
40%1RM
Mean velocity
Standardised mean bias: 0.22; SEM: 0.04 m·s−1; ICC: 0.77
  
Peak velocity
Standardised mean bias: 0.08; SEM: 0.07 m·s−1; ICC: 0.78
  
Mean power
Standardised mean bias: 0.12; SEM: 79.6W; ICC: 0.82
  
Peak power
Standardised mean bias: 0.02; SEM: 219.1W; ICC: 0.84
 
60%1RM
Mean velocity
Standardised mean bias: 0.06; SEM: 0.04 m·s−1; ICC: 0.83
  
Peak velocity
Standardised mean bias: 0.13; SEM: 0.06 m·s−1; ICC: 0.79
  
Mean power
Standardised mean bias: 0.07; SEM: 73.0W; ICC: 0.81
  
Peak power
Standardised mean bias: 0.04; SEM: 196.4W; ICC: 0.77
 
80%1RM
Mean velocity
Standardised mean bias: 0.22; SEM: 0.03 m·s−1; ICC: 0.83
  
Peak velocity
Standardised mean bias: 0.33; SEM: 0.06 m·s−1; ICC: 0.68
  
Mean power
Standardised mean bias: 0.23; SEM: 76.7W; ICC: 0.79
  
Peak power
Standardised mean bias: 0.43; SEM: 217.0W; ICC: 0.60
 
90%1RM
Mean velocity
Standardised mean bias: 0.11; SEM: 0.04 m·s−1; ICC:0.79
  
Peak velocity
Standardised mean bias: 0.42; SEM: 0.06 m·s−1; ICC: 0.65
  
Mean power
Standardised mean bias: 0.20; SEM: 76.2W; ICC: 0.77
  
Peak power
Standardised mean bias: 0.50; SEM: 202.7W; ICC: 0.58
F/W Bench Press
20%1RM
Mean velocity
Standardised mean bias: 0.56; SEM: 0.09 m·s−1; ICC: 0.64
  
Peak velocity
Standardised mean bias: 0.27; SEM: 0.13 m·s−1; ICC: 0.70
  
Mean power
Standardised mean bias: 0.33; SEM: 52.8W; ICC: 0.81
  
Peak power
Standardised mean bias: 0.14; SEM: 60.9W; ICC: 0.87
 
40%1RM
Mean velocity
Standardised mean bias: 0.27; SEM: 0.05 m·s−1; ICC: 0.71
  
Peak velocity
Standardised mean bias: 0.21; SEM: 0.06 m·s−1; ICC: 0.82
  
Mean power
Standardised mean bias: 0.20; SEM: 27.4W; ICC: 0.91
  
Peak power
Standardised mean bias: 0.16; SEM: 43.2W; ICC: 0.91
 
60%1RM
Mean velocity
Standardised mean bias: 0.09; SEM: 0.04 m·s−1; ICC: 0.70
  
Peak velocity
Standardised mean bias: 0.12; SEM: 0.05 m·s−1; ICC: 0.81
  
Mean power
Standardised mean bias: 0.07; SEM: 27.1W; ICC: 0.89
  
Peak power
Standardised mean bias: 0.16; SEM: 38.7W; ICC: 0.89
 
80%1RM
Mean velocity
Standardised mean bias: 0.00; SEM: 0.04 m·s−1; ICC: 0.78
  
Peak velocity
Standardised mean bias: 0.03; SEM: 0.06 m·s−1; ICC: 0.77
  
Mean power
Standardised mean bias: 0.00; SEM: 28.2W; ICC: 0.83
  
Peak power
Standardised mean bias: 0.06; SEM: 51.8W; ICC: 0.77
 
90%1RM
Mean velocity
Standardised mean bias: 0.00; SEM: 0.03 m·s−1; ICC: 0.87
  
Peak velocity
Standardised mean bias: 0.03; SEM: 0.07 m·s−1; ICC: 0.68
  
Mean power
Standardised mean bias: 0.00; SEM: 29.6W; ICC: 0.85
  
Peak power
Standardised mean bias: 0.06; SEM:78.0W; ICC: 0.64
Perez-Castilla et al. [10]
T-Force
Intra-device
S/M Bench Press
45%1RM
Mean velocity
CV: 2.48%; ICC: 0.90
   
55%1RM
Mean velocity
CV: 1.82%; ICC: 0.95
   
65%1RM
Mean velocity
CV: 4.35%; ICC: 0.78
   
75%1RM
Mean velocity
CV: 4.78%; ICC: 0.77
   
85%1RM
Mean velocity
CV: 4.90%; ICC: 0.87
Chronojump
Intra-device
S/M Bench Press
45%1RM
Mean velocity
CV: 2.31%; ICC: 0.87
   
55%1RM
Mean velocity
CV: 2.09%; ICC: 0.90
   
65%1RM
Mean velocity
CV: 6.24%; ICC: 0.72
   
75%1RM
Mean velocity
CV: 4.53%; ICC: 0.85
   
85%1RM
Mean velocity
CV: 5.65%; ICC: 0.86
   
45%1RM
Mean velocity
CV: 2.61%; ICC: 0.87
Speed4Lift
Intra-device
S/M Bench Press
55%1RM
Mean velocity
CV: 2.39%; ICC: 0.84
   
65%1RM
Mean velocity
CV: 2.42%; ICC: 0.93
   
75%1RM
Mean velocity
CV: 3.92%; ICC: 0.81
   
85%1RM
Mean velocity
CV: 3.41%; ICC: 0.94
Stock et al. [78]
Tendo
Intra-device
F/W Bench Press
10%1RM
Mean velocity
MD: 0.35 m·s−1; SEM: 4.2%; ICC: 0.717
20%1RM
Mean velocity
MD: 0.33 m·s−1; SEM: 5.0%; ICC: 0.572
30%1RM
Mean velocity
MD: 0.17 m·s−1; SEM: 3.1%; ICC: 0.805
40%1RM
Mean velocity
MD: 0.21 m·s−1; SEM: 4.7%; ICC: 0.669
50%1RM
Mean velocity
MD: 0.17 m·s−1; SEM: 4.6%; ICC: 0.790
60%1RM
Mean velocity
MD: 0.15 m·s−1; SEM: 4.8%; ICC: 0.785
70%1RM
Mean velocity
MD: 0.14 m·s−1; SEM: 5.8%; ICC: 0.811
80%1RM
Mean velocity
MD: 0.19 m·s−1; SEM: 10.3%; ICC: 0.714
90%1RM
Mean velocity
MD: 0.18 m·s−1; SEM: 12.6%; ICC: 0.564
Thompson et al. [24]
GymAware
Intra-device
F/W Back Squat
40%1RM
Mean velocity
TE: 0.04 m·s−1; CV: 4.5%
  
Peak velocity
TE: 0.08 m·s−1; CV: 5.6%
 
50%1RM
Mean velocity
TE: 0.03 m·s−1; CV: 3.4%
  
Peak velocity
TE: 0.07 m·s−1; CV: 4.9%
 
60%1RM
Mean velocity
TE: 0.02 m·s−1; CV: 2.9%
  
Peak velocity
TE: 0.08 m·s−1; CV: 6.0%
 
70%1RM
Mean velocity
TE: 0.03 m·s−1; CV: 4.5%
  
Peak velocity
TE: 0.10 m·s−1; CV: 8.3%
 
80%1RM
Mean velocity
TE: 0.04 m·s−1; CV: 7.0%
  
Peak velocity
TE: 0.09 m·s−1; CV: 8.6%
 
90%1RM
Mean velocity
TE: 0.04 m·s−1; CV: 9.5%
  
Peak velocity
TE: 0.09 m·s−1; CV: 12.6%
 
100%1RM
Mean velocity
TE: 0.03 m·s−1; CV: 13.6%
  
Peak velocity
TE: 0.15 m·s−1; CV: 22.0%
 
Full
Mean velocity
TE: 0.04 m·s−1; CV: 9.8%
  
Peak velocity
TE: 0.10 m·s−1; CV: 11.3%
Power clean
40%1RM
Mean velocity
TE: 0.05 m·s−1; CV: 3.6%
  
Peak velocity
TE: 0.09 m·s−1; CV: 3.7%
 
50%1RM
Mean velocity
TE: 0.03 m·s−1; CV: 2.2%
  
Peak velocity
TE: 0.08 m·s−1; CV: 3.7%
 
60%1RM
Mean velocity
TE: 0.03 m·s−1; CV: 2.4%
  
Peak velocity
TE: 0.07 m·s−1; CV: 3.1%
 
70%1RM
Mean velocity
TE: 0.04 m·s−1; CV: 3.2%
  
Peak velocity
TE: 0.05 m·s−1; CV: 2.5%
 
80%1RM
Mean velocity
TE: 0.04 m·s−1; CV: 3.3%
  
Peak velocity
TE: 0.08 m·s−1; CV: 3.8%
 
90%1RM
Mean velocity
TE: 0.08 m·s−1; CV: 8.9%
  
Peak velocity
TE: 0.07 m·s−1; CV: 3.9%
 
100%1RM
Mean velocity
TE: 0.04 m·s−1; CV: 4.3%
  
Peak velocity
TE: 0.06 m·s−1; CV: 4.0%
 
Full
Mean velocity
TE: 0.05 m·s−1; CV: 4.9%
  
Peak velocity
TE: 0.07 m·s−1; CV: 3.3%
van den Tillaar and Ball [11]
Musclelab (Ergotest)
Intra-device
F/W Bench Press
50%1RM
Mean velocity
ICC: 0.98; CV: 6.6 ± 2.4%; r: 0.96
 
+ 10 kg
peak velocity
ICC: 0.98; CV: 6.9 ± 2.0%; r: 0.96
 
+ 10 kg
  
 
+ 10 kg
  
F/W push-up
Body weight, 10–20–30 kg Weight Vest
mean velocity
ICC: 0.98; CV: 5.9 ± 1.7%; r: 0.95
  
peak velocity
ICC: 0.98; CV: 7.3 ± 3.0%; r: 0.95
1RM one repetition maximum, T-Force T-force linear velocity transducer, GymAware GymAware PowerTool, Tendo tendo weightlifting analyser, CV coefficient of variation, TE typical error, S/M Smith machine, MD mean difference, r Pearson’s correlation coefficient, ICC intraclass correlation coefficient, SEM standard error of measurement, OHP overhead press, PBP prone bench pull, RMSE root-mean-square error
Table 9
Summary of studies that investigated the reliability of accelerometer devices used to measure kinetic and kinematic variables during resistance training
Study
Device
Reliability
Exercise
Intensity/load
Variable measured
Findings
Abbott et al. [59]
Bar Sensei
Intra-device
F/W Back Squat
20%1RM
Peak velocity
CV: 14.17%
 
Mean velocity
CV: 18.97%
 
Mean propulsive velocity
CV: 15.42%
30%1RM
Peak velocity
CV: 12.44%
 
Mean velocity
CV: 15.79%
 
Mean propulsive velocity
CV: 15.73%
40%1RM
Peak velocity
CV: 13.39%
 
Mean velocity
CV: 17.58%
 
Mean propulsive velocity
CV: 16.13%
50%1RM
Peak velocity
CV: 15.38%
 
Mean velocity
CV: 20.89%
 
Mean propulsive velocity
CV: 17.98%
60%1RM
Peak velocity
CV: 17.86%
 
Mean velocity
CV: 19.24%
 
Mean propulsive velocity
CV: 20.2%
70%1RM
Peak velocity
CV: 23.97%
 
Mean velocity
CV: 18.82%
 
Mean propulsive velocity
CV: 19.21%
80%1RM
Peak velocity
CV: 31.43%
 
Mean velocity
CV: 25.51%
 
Mean propulsive velocity
CV: 25.71%
90%1RM
Peak velocity
CV: 33.36%
 
Mean velocity
CV: 29.94%
 
Mean propulsive velocity
CV: 25.58%
100%1RM
Peak velocity
CV: 43.77%
 
Mean velocity
CV: 43.02%
 
Mean propulsive velocity
CV: 34.59%
Balsalobre-Fernández
PUSH Band
Intra-device
S/M Back Squat
20–70 kg
Peak velocity
CV: 6.0 ± 3.9%; ICC: 0.981; r: 0.952
et al. [62]
Mean velocity
CV: 5.0 ± 4.1%; ICC: 0.978; r: 0.956
Balsalobre-Fernández et al. [69]
Beast Sensor (Wrist)
Intra-device
F/W Back Squat
50–95%1RM
Mean velocity
ICC: 0.975
   
F/W Bench Press
50–95%1RM
Mean velocity
ICC: 0.977
   
F/W Hip Thrust
50–95%1RM
Mean velocity
ICC: 0.952
 
Beast Sensor (Barbell)
Intra-device
F/W Back Squat
50–95%1RM
Mean velocity
ICC: 0.979
   
F/W Bench Press
50–95%1RM
Mean velocity
ICC: 0.981
   
F/W Hip Thrust
50–95%1RM
Mean velocity
ICC: 0.958
Beckham et al. [28]
Bar Sensei
Intra-device
F/W Back Squat
45%1RM
Mean velocity
ICC: 0.419
 
Peak velocity
ICC: 0.451
60%1RM
Mean velocity
ICC: 0.171
 
Peak velocity
ICC: 0.273
75%1RM
Mean velocity
ICC: 0.295
 
Peak velocity
ICC: 0.349
Courel-Ibanez et al. [36]
Push Band
Intra-device
S/M Bench Press
20–80 kg
Mean velocity
SEM: 0.08 m·s−1; CV: 12.2%; ICC: 0.974
  
Peak velocity
SEM: 0.18 m·s−1; CV: 13.7%; ICC: 0.962
S/M Back Squat
20–80 kg
Mean velocity
SEM: 0.06 m·s−1; CV: 5.6%; ICC: 0.979
  
Peak velocity
SEM: 0.09 m·s−1; CV: 5.9%; ICC: 0.944
Garcia-Pinillos et al. [61]
WIMU System
Intra-device
S/M Concentric-Only Half Back Squat
10%1RM
Mean velocity
CV: 9.02%; SEM: 0.03 m·s−1
 
Mean propulsive velocity
CV: 11.69%; SEM: 0.04 m·s−1
 
Maximum velocity
CV: 11.76%; SEM: 0.07 m·s−1
20%1RM
Mean velocity
CV: 6.19%; SEM: 0.02 m·s−1
 
Mean propulsive velocity
CV: 8.14%; SEM: 0.03 m·s−1
 
Maximum velocity
CV: 8.45%; SEM: 0.05 m·s−1
30%1RM
Mean velocity
CV: 11.77%; SEM: 0.11 m·s−1
 
Mean propulsive velocity
CV: 12.44%; SEM: 0.03 m·s−1
 
Maximum velocity
CV: 14.44%; SEM: 0.06 m·s−1
40%1RM
Mean velocity
CV: 7.90%; SEM: 0.06 m·s−1
 
Mean propulsive velocity
CV: 8.32%; SEM: 0.02 m·s−1
 
Maximum velocity
CV: 7.48%; SEM: 0.03 m·s−1
50%1RM
Mean velocity
CV: 7.86%; SEM: 0.06 m·s−1
 
Mean propulsive velocity
CV: 8.99%; SEM: 0.02 m·s−1
 
Maximum velocity
CV: 7.52%; SEM: 0.03 m·s−1
60%1RM
Mean velocity
CV: 10.41%; SEM: 0.02 m·s−1
 
Mean propulsive velocity
CV: 11.23%; SEM: 0.02 m·s−1
 
Maximum velocity
CV: 13.62%; SEM: 0.05 m·s−1
70%1RM
Mean velocity
CV: 13.82%; SEM: 0.02 m·s−1
 
Mean propulsive velocity
CV: 16.75%; SEM: 0.03 m·s−1
 
Maximum velocity
CV: 16.80%; SEM: 0.05 m·s−1
80%1RM
Mean velocity
CV: 12.04%; SEM: 0.02 m·s−1
 
Mean propulsive velocity
CV: 13.23%; SEM: 0.02 m·s−1
 
Maximum velocity
CV: 7.18%; SEM: 0.03 m·s−1
90%1RM
Mean velocity
CV: 12.62%; SEM: 0.06 m·s−1
 
Mean propulsive velocity
CV: 16.47%; SEM: 0.02 m·s−1
 
Maximum velocity
CV: 11.77%; SEM: 0.03 m·s−1
100%1RM
Mean velocity
CV: 13.27%; SEM: 0.01 m·s−1
 
Mean propulsive velocity
CV: 14.21%; SEM: 0.01 m·s−1
 
Maximum velocity
CV: 15.66%; SEM: 0.03 m·s−1
      
30%, 60%, 90%1RM
Hughes et al. [52]
PUSH Band 2.0 (arm)
Intra-device
F/W Back Squat
30–90%1RM
Mean velocity
ICC: 0.89, 0.86, 0.85; CV: 1.6%, 4.6%, 5.5%
   
F/W Bench Press
 
Mean velocity
ICC: 0.94, 0.90, 0.88; CV: 0.8%, 1.6%, 2.5%
   
F/W Prone Bench Pull
 
Mean velocity
ICC: 0.84, 0.88, 0.85; CV: 1.3%, 1.2%, 2.0%
   
F/W OHP
 
Mean velocity
ICC: 0.67, 0.88, 0.75; CV: 3.3%, 3.7%, 4.2%
   
S/M Back Squat
30–90%1RM
Mean velocity
ICC: 0.86, 0.94, 0.85; CV: 1.3%, 3.3%, 6.9%
   
S/M Bench Press
 
Mean velocity
ICC: 0.83, 0.85, 0.95; CV: 1.1%, 2.4%, 4.2%
   
S/M Prone Bench Pull
 
Mean velocity
ICC: 0.80, 0.94, 0.75; CV: 2.1%, 1.5%, 2.3%
   
S/M OHP
 
Mean velocity
ICC: 0.80, 0.80, 0.75; CV: 2.1%, 5.1%, 3.2%
 
PUSH Band 2.0 (bar)
Intra-device
F/W Back Squat
30–90%1RM
Mean velocity
ICC: 0.81, 0.80, 0.85; CV: 1.9%, 5.1%, 7.1%
   
F/W Bench Press
 
Mean velocity
ICC: 0.84, 0.88, 0.80; CV: 1.5%, 0.7%, 3.8%
   
F/W OHP
 
Mean velocity
ICC: 0.58, 0.75, 0.72; CV: 3.2%, 3.8%, 5.7%
   
S/M Back Squat
30–90%1RM
Mean velocity
ICC: 0.87, 0.93, 0.80; CV: 1.7%, 4.6%, 6.5%
   
S/M Bench Press
 
Mean velocity
ICC: 0.88, 0.74, 0.75; CV: 1.2%, 3.5%, 3.8%
   
S/M OHP
 
Mean velocity
ICC: 0.86, 0.81, 0.65; CV: 1.8%, 3.0%, 4.2%
Lake et al. [29]
PUSH Band 2.0 (bar)
Intra-device
F/W Bench Press
60%1RM
Peak velocity
ICC: 0.947; CV: 4.2%
 
Mean velocity
ICC: 0.937; CV: 5.8%
90%1RM
Peak velocity
ICC: 0.957; CV: 4.7%
 
Mean velocity
ICC: 0.973; CV: 7.2%
Lorenzetti et al. [54]
MyoTest
Intra-device
F/W Ballistic Squat
25 kg
Mean velocity
r: 0.610
Maximum velocity
r: 0.552
Time to peak velocity
r: 0.700
Garcia-Mateo [63]
RehaGait
Inter-device
F/W Squat with arms extended
<1 kg
Mean velocity
MD ± SD: 0.046 ± 0.052 m·s−1
Muyor et al [38]
WIMU
Intra-device
S/M Back Squat
40%1RM
Mean velocity (con)
ES: 0.00; SEM: 0.007 m·s−1; CV: 2.60%; ICC: 0.976
 
Mean velocity (ecc)
ES: 0.06; SEM: 0.013 m·s−1; CV: 3.79%; ICC: 0.955
80%1RM
Mean velocity (con)
ES: 0.00; SEM: 0.011 m·s−1; CV: 3.53%; ICC: 0.905
 
Mean velocity (ecc)
ES: 0.11; SEM: 0.010 m·s−1; CV: 4.51%; ICC: 0.924
Orange et al. [47]
PUSH Band (arm)
Intra-device
F/W Back Squat
20%1RM
Mean velocity
SEM: 0.08 m·s−1; ICC: 0.68
  
Peak velocity
SEM: 0.12 m·s−1; ICC: 0.71
  
Mean power
SEM: 128.3W; ICC: 0.82
  
Peak power
SEM: 261.2W; ICC: 0.80
F/W Back Squat
40%1RM
Mean velocity
SEM: 0.07 m·s−1; ICC:0.62
  
Peak velocity
SEM: 0.18 m·s−1; ICC: 0.25
  
Mean power
SEM: 121.5W; ICC: 0.67
  
Peak power
SEM: 345.8W; ICC: 0.66
F/W Back Squat
60%1RM
Mean velocity
SEM: 0.06 m·s−1; ICC: 0.64
  
Peak velocity
SEM: 0.11 m·s−1; ICC: 0.55
  
Mean power
SEM: 105.9W; ICC: 0.58
  
Peak power
SEM: 279.4W; ICC: 0.67
F/W Back Squat
80%1RM
Mean velocity
SEM: 0.06 m·s−1; ICC: 0.60
  
Peak velocity
SEM: 0.11 m·s−1; ICC: 0.44
  
Mean power
SEM: 129.5W; ICC: 0.37
  
Peak power
SEM: 345.4W; ICC: 0.27
F/W Back Squat
90%1RM
Mean velocity
SEM: 0.06 m·s−1; ICC: 0.36
  
Peak velocity
SEM: 0.12 m·s−1; ICC: 0.66
  
Mean power
SEM: 117.0W; ICC: 0.41
  
Peak power
SEM: 359.5W; ICC: 0.34
 
PUSH Band (arm)
Intra-device
F/W Bench Press
20%1RM
Mean velocity
SEM: 0.11 m·s−1; ICC: 0.28
  
Peak velocity
SEM: 0.21 m·s−1; ICC: 0.27
  
Mean power
SEM: 70.6W; ICC: 0.43
  
Peak power
SEM: 221.9W; ICC: 0.63
F/W Bench Press
40%1RM
Mean velocity
SEM: 0.08 m·s−1; ICC: 0.60
  
Peak velocity
SEM: 0.11 m·s−1; ICC: 0.66
  
Mean power
SEM: 33.8W; ICC: 0.83
  
Peak power
SEM: 151.0W; ICC: 0.89
F/W Bench Press
60%1RM
Mean velocity
SEM: 0.08 m·s−1; ICC: 0.58
  
Peak velocity
SEM: 0.12 m·s−1; ICC:58
  
Mean power
SEM: 51.6W; ICC: 0.69
  
Peak power
SEM: 273.0W; ICC: 0.38
F/W Bench Press
80%1RM
Mean velocity
SEM: 0.06 m·s−1; ICC: 0.51
  
Peak velocity
SEM: 0.08 m·s−1; ICC: 0.47
  
Mean power
SEM: 51.3W; ICC: 0.58
  
Peak power
SEM: 137.5W; ICC: 0.55
F/W Bench Press
90%1RM
Mean velocity
SEM: 0.05 m·s−1; ICC: 0.37
  
Peak velocity
SEM: 0.10 m·s−1; ICC: 0.40
  
Mean power
SEM: 45.7W; ICC: 0.67
  
Peak power
SEM: 131.9W; ICC: 0.59
Perez-Castilla et al. [10]
PUSH Band (arm)
Intra-device
S/M Bench Press
45%1RM
Mean velocity
CV: 5.02%; ICC: 0.69
   
55%1RM
Mean velocity
CV: 7.84%; ICC: 0.46
   
65%1RM
Mean velocity
CV: 9.34%; ICC: 0.78
   
75%1RM
Mean velocity
CV: 14.6%; ICC: 0.50
Beast Sensor
  
85%1RM
Mean velocity
CV: 19.1%; ICC: 0.47
 
Intra-device
S/M Bench Press
45%1RM
Mean velocity
CV: 33.4%; ICC: 0.29
   
55%1RM
Mean velocity
CV: 24.2%; ICC: 0.64
   
65%1RM
Mean velocity
CV: 35.0%; ICC: 0.30
   
75%1RM
Mean velocity
CV: 40.2%; ICC: 0.31
   
85%1RM
Mean velocity
CV: 54.9%; ICC: 0.27
Thompson et al. [24]
PUSH Band (body)
Intra-device
F/W Back Squat
40%1RM
Mean velocity
TE: 0.04 m·s−1; CV: 3.5%
    
Peak velocity
TE: 0.08 m·s−1; CV: 6.0%
   
50%1RM
Mean velocity
TE: 0.03 m·s−1; CV: 4.1%
    
Peak velocity
TE: 0.07 m·s−1; CV: 9.9%
   
60%1RM
Mean velocity
TE: 0.02 m·s−1; CV: 5.4%
    
Peak velocity
TE: 0.08 m·s−1; CV: 9.1%
   
70%1RM
Mean velocity
TE: 0.03 m·s−1; CV: 5.0%
    
Peak velocity
TE: 0.10 m·s−1; CV: 8.9%
   
80%1RM
Mean velocity
TE: 0.04 m·s−1; CV: 5.2%
    
Peak velocity
TE: 0.09 m·s−1; CV: 6.8%
   
90%1RM
Mean velocity
TE: 0.04 m·s−1; CV: 15.6%
    
Peak velocity
TE: 0.09 m·s−1; CV: 11.0%
   
100%1RM
Mean velocity
TE: 0.03 m·s−1; CV: 14.9%
    
Peak velocity
TE: 0.15 m·s−1; CV: 11.4%
   
Full
Mean velocity
TE: 0.04 m·s−1; CV: 10.6%
    
Peak velocity
TE: 0.10 m·s−1; CV: 11.3%
  
Power Clean
40%1RM
Mean velocity
TE: 0.06 m·s−1; CV: 4.9%
    
Peak velocity
TE: 0.08 m·s−1; CV: 4.9%
   
50%1RM
Mean velocity
TE: 0.06 m·s−1; CV: 5.2%
    
Peak velocity
TE: 0.08 m·s−1; CV: 5.2%
   
60%1RM
Mean velocity
TE: 0.05 m·s−1; CV: 4.5%
    
Peak velocity
TE: 0.08 m·s−1; CV: 4.5%
   
70%1RM
Mean velocity
TE: 0.09 m·s−1; CV: 7.7%
    
Peak velocity
TE: 0.12 m·s−1; CV: 7.7%
   
80%1RM
Mean velocity
TE: 0.10 m·s−1; CV: 10.2%
    
Peak velocity
TE: 0.14 m·s−1; CV: 10.2%
   
90%1RM
Mean velocity
TE: 0.09 m·s−1; CV: 11.3%
    
Peak velocity
TE: 0.13 m·s−1; CV: 11.3%
   
100%1RM
Mean velocity
TE: 0.09 m·s−1; CV: 11.4%
    
Peak velocity
TE: 0.12 m·s−1; CV: 11.4%
   
Full
Mean velocity
TE: 0.08 m·s−1; CV: 8.3%
    
Peak velocity
TE: 0.11 m·s−1; CV: 8.3%
PUSH Band (bar)
Intra-device
F/W Back Squat
40%1RM
Mean velocity
TE: 0.06 m·s−1; CV: 5.2%
    
Peak velocity
TE: 0.09 m·s−1; CV: 5.7%
   
50%1RM
Mean velocity
TE: 0.08 m·s−1; CV: 9.2%
    
Peak velocity
TE: 0.10 m·s−1; CV: 7.5%
   
60%1RM
Mean velocity
TE: 0.05 m·s−1; CV: 5.1%
    
Peak velocity
TE: 0.12 m·s−1; CV: 9.4%
   
70%1RM
Mean velocity
TE: 0.04 m·s−1; CV: 5.9%
    
Peak velocity
TE: 0.09 m·s−1; CV: 8.3%
   
80%1RM
Mean velocity
TE: 0.09 m·s−1; CV: 14.3%
    
Peak velocity
TE: 0.09 m·s−1; CV: 8.8%
   
90%1RM
Mean velocity
TE: 0.09 m·s−1; CV: 20.3%
    
Peak velocity
TE: 0.12 m·s−1; CV: 14.2%
   
100%1RM
Mean velocity
TE: 0.06 m·s−1; CV: 15.4%
    
Peak velocity
TE: 0.09 m·s−1; CV: 11.6%
   
Full
Mean velocity
TE: 0.07 m·s−1; CV: 14.5%
    
Peak velocity
TE: 0.11 m·s−1; CV: 11.0%
  
Power Clean
40%1RM
Mean velocity
TE: 0.20 m·s−1; CV: 21.5%
    
Peak velocity
TE: 0.36 m·s−1; CV: 21.5%
   
50%1RM
Mean velocity
TE: 0.18 m·s−1; CV: 19.0%
    
Peak velocity
TE: 0.33 m·s−1; CV: 17.9%
   
60%1RM
Mean velocity
TE: 0.17 m·s−1; CV: 18.9%
    
Peak velocity
TE: 0.42 m·s−1; CV: 25.4%
   
70%1RM
Mean velocity
TE: 0.13 m·s−1; CV: 14.6%
    
Peak velocity
TE: 0.22 m·s−1; CV: 13.4%
   
80%1RM
Mean velocity
TE: 0.14 m·s−1; CV: 16.3%
    
Peak velocity
TE: 0.25 m·s−1; CV: 15.6%
   
90%1RM
Mean velocity
TE: 0.15 m·s−1; CV: 18.1%
    
Peak velocity
TE: 0.31 m·s−1; CV: 22.2%
   
100%1RM
Mean velocity
TE: 0.10 m·s−1; CV: 13.3%
    
Peak velocity
TE: 0.23 m·s−1; CV: 17.5%
   
Full
Mean velocity
TE: 0.21 m·s−1; CV: 18.6%
    
Peak velocity
TE: 0.32 m·s−1; CV: 20.5%
Bar Sensei
Intra-device
F/W Back Squat
40%1RM
Mean velocity
TE: 0.08 m·s−1; CV: 9.1%
    
Peak velocity
TE: 0.14 m·s−1; CV: 9.4%
   
50%1RM
Mean velocity
TE: 0.09 m·s−1; CV: 13.5%
    
Peak velocity
TE: 0.10 m·s−1; CV: 7.6%
   
60%1RM
Mean velocity
TE: 0.07 m·s−1; CV: 8.8%
    
Peak velocity
TE: 0.08 m·s−1; CV: 8.0%
   
70%1RM
Mean velocity
TE: 0.07 m·s−1; CV: 10.7% TE: 0.07 m·s−1; CV: 10.7%
    
Peak velocity
TE: 0.09 m·s−1; CV: 10.2%
   
80%1RM
Mean velocity
TE: 0.08 m·s−1; CV: 18.3%
    
Peak velocity
TE: 0.24 m·s−1; CV: 35.8%
   
90%1RM
Mean velocity
TE: 0.08 m·s−1; CV: 19.1%
    
Peak velocity
TE: 0.12 m·s−1; CV: 18.0%
   
100%1RM
Mean velocity
TE: 0.13 m·s−1; CV: 60.5%
    
Peak velocity
TE: 0.12 m·s−1; CV: 28.5%
   
Full
Mean velocity
TE: 0.09 m·s−1; CV: 22.1%
    
Peak velocity
TE: 0.13 m·s−1; CV: 18.7%
  
Power Clean
40%1RM
Mean velocity
TE: 0.23 m·s−1; CV: 20.4%
    
Peak velocity
TE: 0.20 m·s−1; CV: 7.7%
   
50%1RM
Mean velocity
TE: 0.16 m·s−1; CV: 13.8%
    
Peak velocity
TE: 0.15 m·s−1; CV: 6.5%
   
60%1RM
Mean velocity
TE: 0.13 m·s−1; CV: 12.1%
    
Peak velocity
TE: 0.13 m·s−1; CV: 5.8%
   
70%1RM
Mean velocity
TE: 0.13 m·s−1; CV: 11.8%
    
Peak velocity
TE: 0.19 m·s−1; CV: 8.8% TE: 0.19 m·s−1; CV: 8.8%
   
80%1RM
Mean velocity
TE: 0.13 m·s−1; CV: 14.9%
    
Peak velocity
TE: 0.13 m·s−1; CV: 6.1%
   
90%1RM
Mean velocity
TE: 0.15 m·s−1; CV: 17.7%
    
Peak velocity
TE: 0.14 m·s−1; CV: 7.9%
   
100%1RM
Mean velocity
TE: 0.14 m·s−1; CV: 18.4%
    
Peak velocity
TE: 0.15 m·s−1; CV: 8.5%
   
Full
Mean velocity
TE: 0.16 m·s−1; CV: 15.9%
    
Peak velocity
TE: 0.17 m·s−1; CV: 8.7%
Beast Sensor
Intra-device
F/W Back Squat
40%1RM
Mean velocity
TE: 0.05 m·s−1; CV: 20.4%
    
Peak velocity
TE: 0.10 m·s−1; CV: 7.7%
   
50%1RM
Mean velocity
TE: 0.06 m·s−1; CV: 13.8%
    
Peak velocity
TE: 0.11 m·s−1; CV: 6.5%
   
60%1RM
Mean velocity
TE: 0.08 m·s−1; CV: 12.1%
    
Peak velocity
TE: 0.15 m·s−1; CV: 5.8%
   
70%1RM
Mean velocity
TE: 0.12 m·s−1; CV: 11.8%
    
Peak velocity
TE: 0.27 m·s−1; CV: 8.8%
   
80%1RM
Mean velocity
TE: 0.22 m·s−1; CV: 14.9%
    
Peak velocity
TE: 0.33 m·s−1; CV: 6.1%
   
90%1RM
Mean velocity
TE: 0.21 m·s−1; CV: 17.7%
    
Peak velocity
TE: 0.48 m·s−1; CV: 7.9%
   
100%1RM
Mean velocity
TE: 0.15 m·s−1; CV: 18.4%
    
Peak velocity
TE: 0.29 m·s−1; CV: 8.5%
   
Full
Mean velocity
TE: 0.14 m·s−1; CV: 15.9%
    
Peak velocity
TE: 0.30 m·s−1; CV: 8.7%
van den Tillaar and Ball [11]
PUSH Band (arm)
Intra-device
F/W Bench Press
50%1RM
Mean velocity
ICC: 0.95; CV: 12.8 ± 2.4%; r: 0.87
 
+10 kg
Peak velocity
ICC: 0.92; CV: 13.3 ± 2.3%; r: 0.81
 
+10 kg
  
 
+10 kg
  
F/W push-up
Body Weight, 10–20–30 kg Weight Vest
Mean velocity
ICC: 0.98; CV: 6.6 ± 1.3%; r: 0.95
  
Peak velocity
ICC: 0.98; CV: 6.6 ± 1.3%; r: 0.94
1RM one repetition maximum, MV mean concentric velocity, CV coefficient of variation, S/M Smith machine, r Pearson’s correlation coefficient, ICC intraclass correlation coefficient, SEM standard error of measurement, OHP overhead press, RMSE root-mean-square error
Table 10
Summary of studies that investigated the reliability of mobile phone and tablet applications used to measure kinetic and kinematic variables during resistance training
Study
Device
Reliability
Exercise
Intensity/load
Variable measured
Findings
Balsalobre-Fernández et al. [69]
PowerLift (v4.0)
Intra-device
F/W Back Squat
50–95%1RM
Mean velocity
ICC: 0.981
F/W Bench Press
50–95%1RM
Mean velocity
ICC: 0.974
F/W Hip Thrust
50–95%1RM
Mean velocity
ICC: 0.961
Balsalobre-Fernández et al. [70]
PowerLift (v2.8)
Intra-observer
F/W Bench Press
75–100%1RM
Mean velocity
MD: − 0.0007 ± 0.02 m·s−1
Courel-Ibanez et al. [36]
PowerLift App (v4.0)
Inter-device
S/M Bench Press
20–80 kg
Mean velocity
SEM: 0.08 m·s−1; CV: 10.4%; ICC: 0.973
S/M Back Squat
20–80 kg
Mean velocity
SEM: 0.05 m·s−1; CV: 6.0%; ICC: 0.974
 
PowerLift App (v4.0)
Intra-device
S/M Bench Press
20–80 kg
Mean velocity
SEM: 0.05 m·s−1; CV: 6.7%; ICC: 0.988
S/M Back Squat
20–80 kg
Mean velocity
SEM: 0.04 m·s−1; CV: 4.6%; ICC: 0.986
M artinez-Cava et al. [51]
My Lift (v8.1 iOS)
Inter-device
S/M Back Squat
25–95 kg
Peak velocity
SEM: 0.08 m·s−1; CV: 5.79%; ICC: 0.993
S/M Bench Press
25–95 kg
Peak velocity
SEM: 0.08 m·s−1; CV: 5.02%; ICC: 0.972
Perez-Castilla et al. [10]
PowerLift (v6.0.1)
Intra-device
S/M Bench Press
45%1RM
Mean velocity
CV: 2.85%; ICC: 0.84
55%1RM
Mean velocity
CV: 3.97%; ICC: 0.85
65%1RM
Mean velocity
CV: 4.91%; ICC: 0.74
75%1RM
Mean velocity
CV: 3.69%; ICC: 0.87
85%1RM
Mean velocity
CV: 4.97%; ICC: 0.85
Thompson et al. [24]
MyLift (PowerLift at time of data collection)
Intra-device
F/W Back Squat
40%1RM
Mean velocity
TE: 0.04 m·s−1; CV: 4.2%
50%1RM
Mean velocity
TE: 0.03 m·s−1; CV: 3.7%
60%1RM
Mean velocity
TE: 0.04 m·s−1; CV: 5.5%
70%1RM
Mean velocity
TE: 0.03 m·s−1; CV: 4.9%
80%1RM
Mean velocity
TE: 0.04 m·s−1; CV: 6.8%
90%1RM
Mean velocity
TE: 0.05 m·s−1; CV: 12.6%
100%1RM
Mean velocity
TE: 0.03 m·s−1; CV: 13.8%
Full
Mean velocity
TE: 0.05 m·s−1; CV: 9.7%
1RM one repetition maximum, CV coefficient of variation, S/M Smith machine, MD mean difference, ICC intraclass correlation coefficient, SEM standard error of measurement, TE typical error
Table 11
Summary of studies that investigated the reliability of optic devices used to measure kinetic and kinematic variables during resistance training
Study
Device
Reliability
Exercise
Intensity/load
Variable measured
Findings
Courel-Ibanez et al. [36]
Velowin
Inter-device
S/M Bench Press
20–80 kg
Mean velocity
SEM: 0.03 m·s−1; CV: 3.5%; ICC: 0.997
  
Mean propulsive velocity
SEM: 0.03 m·s−1; CV: 3.4%; ICC: 0.997
  
Peak velocity
SEM: 0.03 m·s−1; CV: 2.1%; ICC: 0.999
S/M Prone Bench Pull
20–80 kg
Mean velocity
SEM: 0.04 m·s−1; CV: 3.6%; ICC: 0.995
  
Mean propulsive velocity
SEM: 0.04 m·s−1; CV: 3.5%; ICC: 0.995
  
Peak velocity
SEM: 0.06 m·s−1; CV: 3.2%; ICC: 0.998
 
Velowin
Intra-device
S/M Bench Press
20–80 kg
Mean velocity
SEM: 0.04 m·s−1; CV: 4.0%; ICC: 0.997
  
Mean propulsive velocity
SEM: 0.03 m·s−1; CV: 3.2%; ICC: 0.998
  
Peak velocity
SEM: 0.04 m·s−1; CV: 2.6%; ICC: 0.998
S/M Back Squat
20–80 kg
Mean velocity
SEM: 0.04 m·s−1; CV: 3.7%; ICC: 0.988
  
Mean propulsive velocity
SEM: 0.06 m·s−1; CV: 4.6%; ICC: 0.987
  
Peak velocity
SEM: 0.07 m·s−1; CV: 3.5%; ICC: 0.983
S/M Prone Bench Pull
20–80 kg
Mean velocity
SEM: 0.06 m·s−1; CV: 3.9%; ICC: 0.994
  
Mean propulsive velocity
SEM: 0.06 m·s−1; CV: 3.9%; ICC: 0.994
  
Peak velocity
SEM: 0.06 m·s−1; CV: 2.6%; ICC: 0.998
Peña Garcia-Orea et al. [82]
Velowin (v.1.7.232)
Intra-device
S/M Squat
20 kg
Mean velocity
ICC: 0.95; CV: 3.35%; SEM: 0.225 m·s−1
 
Mean propulsive velocity
ICC: 0.96; CV: 3.29%; SEM: 0.287 m·s−1
 
Peak velocity
ICC: 0.95; CV: 2.89%; SEM: 0.399 m·s−1
30 kg
Mean velocity
ICC: 0.97; CV: 2.20%; SEM: 0.227 m·s−1
 
Mean propulsive velocity
ICC: 0.97; CV: 2.45%; SEM: 0.284 m·s−1
 
Peak velocity
ICC: 0.97; CV: 2.46%; SEM: 0.373 m·s−1
40 kg
Mean velocity
ICC: 0.99; CV: 2.13%; SEM: 0.248 m·s−1
 
Mean propulsive velocity
ICC: 0.99; CV: 2.30%; SEM: 0.306 m·s−1
 
Peak velocity
ICC: 0.98; CV: 2.29%; SEM: 0.363 m·s−1
50 kg
Mean velocity
ICC: 0.98; CV: 2.82%; SEM: 0.276 m·s−1
 
Mean propulsive velocity
ICC: 0.99; CV: 2.98%; SEM: 0.337 m·s−1
 
Peak velocity
ICC: 0.98; CV: 2.56%; SEM: 0.362 m·s−1
60 kg
Mean velocity
ICC: 0.99; CV: 2.46%; SEM: 0.272 m·s−1
 
Mean propulsive velocity
ICC: 0.99; CV: 2.62%; SEM: 0.316 m·s−1
 
Peak velocity
ICC: 0.98; CV: 2.39%; SEM: 0.313 m·s−1
70 kg
Mean velocity
ICC: 0.99; CV: 2.55%; SEM: 0.243 m·s−1
 
Mean propulsive velocity
ICC: 0.99; CV: 2.79%; SEM: 0.280 m·s−1
 
Peak velocity
ICC: 0.98; CV: 2.30%; SEM: 0.269 m·s−1
Peña Garcia-Orea et al. [72]
Velowin (v1.7.232)
Intra-device
S/M Loaded Countermovement Jump
3.5 kg
Mean velocity
ICC: 0.98; CV: 2.41%; SEM: 0.0025 m·s−1
 
Peak velocity
ICC: 0.98; CV: 1.77%; SEM: 0.0021 m·s−1
13.5 kg
Mean velocity
ICC: 0.97; CV: 1.70%; SEM: 0.0021 m·s−1
 
Peak velocity
ICC: 0.99; CV: 1.68%; SEM: 0.0014 m·s−1
23.5 kg
Mean velocity
ICC: 0.95; CV: 2.56%; SEM: 0.0033 m·s−1
 
Peak velocity
ICC: 0.97; CV: 2.38%; SEM: 0.0023 m·s−1
33.5 kg
Mean velocity
ICC: 0.98; CV: 1.87%; SEM: 0.0022 m·s−1
 
Peak velocity
ICC: 0.99; CV: 1.60%; SEM: 0.0018 m·s−1
43.5 kg
Mean velocity
ICC: 0.99; CV: 2.03%; SEM: 0.0040 m·s−1
 
Peak velocity
ICC: 0.99; CV: 1.57%; SEM: 0.0027 m·s−1
Garcia-Ramos et al. [71]
Velowin
Intra-device
F/W Back Squat
20 kg
Mean velocity
SEM: 0.045 m·s−1; CV: 4.29%; ICC: 0.91
  
Mean propulsive velocity
SEM: 0.054 m·s−1; CV: 4.61%; ICC: 0.90
  
Maximum velocity
SEM: 0.088 m·s−1; CV: 4.77%; ICC: 0.92
F/W Back Squat
40 kg
Mean velocity
SEM: 0.041 m·s−1; CV: 4.34%; ICC: 0.92
  
Mean propulsive velocity
SEM: 0.047 m·s−1; CV: 4.60%; ICC: 0.91
  
Maximum velocity
SEM: 0.085 m·s−1; CV: 5.01%; ICC: 0.91
F/W Back Squat
50 kg
Mean velocity
SEM: 0.033 m·s−1; CV: 3.74%; ICC: 0.90
  
Mean propulsive velocity
SEM: 0.043 m·s−1; CV: 4.50%; ICC: 0.88
  
Maximum velocity
SEM: 0.050 m·s−1; CV: 3.04%; ICC: 0.95
F/W Back Squat
60 kg
Mean velocity
SEM: 0.039 m·s−1; CV: 4.75%; ICC: 0.89
  
Mean propulsive velocity
SEM: 0.037 m·s−1; CV: 4.20%; ICC: 0.92
  
Maximum velocity
SEM: 0.069 m·s−1; CV: 4.44%; ICC: 0.91
F/W Back Squat
70 kg
Mean velocity
SEM: 0.031 m·s−1; CV: 4.12%; ICC: 0.93
  
Mean propulsive velocity
SEM: 0.041 m·s−1; CV: 5.15%; ICC: 0.90
  
Maximum velocity
SEM: 0.053 m·s−1; CV: 3.57%; ICC: 0.95
Perez-Castilla et al. [10]
Velowin
Intra-device
S/M Bench Press
45%1RM
Mean velocity
CV: 2.89%; ICC: 0.83
55%1RM
Mean velocity
CV: 3.27%; ICC: 0.79
65%1RM
Mean velocity
CV: 3.99%; ICC: 0.83
75%1RM
Mean velocity
CV: 6.01%; ICC: 0.68
85%1RM
Mean velocity
CV: 7.64%; ICC: 0.69
Weakley et al. [22]
FLEX (technological and biological error)
Inter-device
F/W Back Squat
20–100%1RM
Mean velocity
MD: 0.00 m·s−1; TE: 0.070 m·s−1; CV: 9.82%
FLEX (technological error)
 
F/W Bench Press
20–100%1RM
Mean velocity
MD: 0.01 m·s−1; TE: 0.064 m·s−1; CV: 9.83%
FLEX
Inter-device
Calibrated rig
0.53 ± 0.27 m·s−1
Mean velocity
MD: 0.00 m·s−1; TE: 0.017 m·s−1; CV: 3.96%
   
0.99 ± 0.00 m·s−1
Mean velocity
MD: 0.01 m·s−1 m·s−1; TE: 0.041 m·s−1; CV: 4.17%
   
0.84 ± 0.00 m·s−1
Mean velocity
MD: − 0.01 m·s−1; TE: 0.06 m·s−1; CV: 7.10%
   
0.78 ± 0.00 m·s−1
Mean velocity
MD: 0.00 m·s−1; TE: 0.019 m·s−1; CV: 2.41%
   
0.71 ± 0.00 m·s−1
Mean velocity
MD: 0.00 m·s−1; TE: 0.016 m·s−1; CV: 2.28%
   
0.60 ± 0.00 m·s−1
Mean velocity
MD: − 0.01 m·s−1; TE: 0.02 m·s−1; CV: 3.37%
   
0.54 ± 0.00 m·s−1
Mean velocity
MD: 0.00 m·s−1; TE: 0.016 m·s−1; CV: 2.99%
   
0.47 ± 0.00 m·s−1
Mean velocity
MD: 0.00 m·s−1; TE: 0.013 m·s−1; CV: 2.71%
   
0.38 ± 0.00 m·s−1
Mean velocity
MD: 0.00 m·s−1; TE: 0.013 m·s−1; CV: 3.49%
   
0.28 ± 0.00 m·s−1
Mean velocity
MD: 0.00 m·s−1; TE: 0.016 m·s−1; CV: 5.73%
   
0.17 ± 0.00 m·s−1
Mean velocity
MD: 0.00 m·s−1; TE: 0.006 m·s−1; CV: 3.81%
   
0.09 ± 0.00 m·s−1
Mean velocity
MD: 0.00 m·s−1; TE: 0.002 m·s−1; CV: 2.43%
 
Intra-device
Calibrated rig
0.53 ± 0.27 m·s−1
Mean velocity
MD: 0.00 m·s−1; TE: 0.016 m·s−1; CV: 3.77%
   
0.99 ± 0.00 m·s−1
Mean velocity
MD: 0.00 m·s−1; TE: 0.032 m·s−1; CV: 3.28%
   
0.84 ± 0.00 m·s−1
Mean velocity
MD: 0.01 m·s−1; TE: 0.043 m·s−1; CV: 5.11%
   
0.78 ± 0.00 m·s−1
Mean velocity
MD: 0.00 m·s−1; TE: 0.021 m·s−1; CV: 2.71%
   
0.71 ± 0.00 m·s−1
Mean velocity
MD: − 0.01 m·s−1; TE: 0.020 m·s−1; CV: 2.81%
   
0.60 ± 0.00 m·s−1
Mean velocity
MD: 0.00 m·s−1; TE: 0.023 m·s−1; CV: 3.82%
   
0.54 ± 0.00 m·s−1
Mean velocity
MD: 0.00 m·s−1; TE: 0.017 m·s−1; CV: 3.19%
   
0.47 ± 0.00 m·s−1
Mean velocity
MD: 0.00 m·s−1; TE: 0.014 m·s−1; CV: 3.01%
   
0.38 ± 0.00 m·s−1
Mean velocity
MD: 0.00 m·s−1; TE: 0.013 m·s−1; CV: 3.42%
   
0.28 ± 0.00 m·s−1
Mean velocity
MD: 0.00 m·s−1; TE: 0.016 m·s−1; CV: 5.93%
   
0.17 ± 0.00 m·s−1
Mean velocity
MD: 0.00 m·s−1; TE: 0.006 m·s−1; CV: 3.64%
   
0.09 ± 0.00 m·s−1
Mean velocity
MD: 0.00 m·s−1; TE: 0.003 m·s−1; CV: 2.89%
1RM one repetition maximum, CV coefficient of variation, TE typical error, S/M Smith machine, MD mean difference, ICC intraclass correlation coefficient, SEM standard error of measurement
Of the 19 studies that assessed the validity of linear transducer devices, 11 used free-weight equipment, six used a Smith machine, and one used both free-weight and Smith machine exercises. Relative loads from 20 to 100% of 1RM were used, while absolute loads were used within seven studies (refer to Table 4). Of the 23 studies that assessed the validity of accelerometer devices, 14 used free-weight equipment, eight used a Smith machine, and one used both free-weight and Smith machine exercises. Relative loads from 10 to 100% of 1RM were assessed, while absolute loads were used within six studies (refer to Table 5). In the 10 studies that assessed the validity of mobile phone and tablet applications, three used free-weight equipment and seven used a Smith machine. Relative loads ranging from 40 to 100% of 1RM were used, while six studies used either repetitions above or below a given speed (i.e., 0.80 m·s−1), absolute, or maximal (i.e., 10RM) prescriptive methods (refer to Table 6). Finally, in the eight studies that quantified the validity of optic devices, four used free-weight equipment and four used a Smith machine. Relative loads from 20 to 100% of 1RM were assessed, and one study prescribed loads at or above a given speed, while absolute loads were used within five studies (refer to Table 7).
Of the 19 studies that quantified the reliability of linear transducer devices, 10 used free-weight equipment, eight used a Smith machine, and one used both free-weight and Smith machine exercises. Relative loads from 0 to 100% of 1RM were assessed, while absolute loads were used within seven studies (refer to Table 8). Of the 14 studies that quantified the reliability of accelerometer devices, eight used free-weight equipment, five used a Smith machine, and one used both free-weight and Smith machine exercises. Relative loads from 10 to 100% of 1RM were assessed, while absolute loads were used within five studies (refer to Table 9). In the six studies that quantified the reliability of mobile phone and tablet applications, three used free-weight equipment and three used a Smith machine. Relative loads ranging from 45 to 95% of 1RM were assessed, one study used repetitions above or below a given speed, while absolute loads were used within one study (refer to Table 10). Finally, in the six studies that quantified the reliability of optic devices, two used free-weight equipment and four used a Smith machine. Relative loads from 20 to 100% of 1RM were assessed, while absolute loads were used within four studies (refer to Table 11).

4 Discussion

The aims of this review were to (1) establish the level of evidence for the validity of all commercially available portable resistance training devices that monitor force, velocity, and power outputs; and, (2) determine the intra-device and inter-device reliability of these devices. Velocity was the most investigated output, with all but two studies investigating this outcome measure [49, 50]. Furthermore, it was found that most studies within this review did not utilise a gold-standard criterion measure (e.g., high-speed motion-capture set-up for measuring velocity) when assessing the validity of devices. This has likely led to under or overreporting of error for certain devices and may explain (at least in part) the inconsistent findings presented in different studies that have assessed the same device. However, when compared to a gold-standard criterion, it appears that linear transducers demonstrate greater accuracy and precision over other devices when measuring kinetic and kinematic outputs. In stating this, future research must consider utilising a broader range of exercises (e.g., Olympic weightlifting exercises and their derivatives) and loads to be confident of the reliability and validity of devices. For the assessment of reliability, only three studies have assessed the agreement between two different devices of the same brand (i.e., inter-device) [22, 36, 51]. In contrast, there has been a substantial amount of research concerning intra-device reliability [28, 48, 52]; however, it must be noted that all but one of these studies [22] failed to differentiate technological variation from biological variation to establish their respective influence on the unit’s reliability. Therefore, future research must attempt to separate these different forms of error to provide a fair reflection of the intra-device reliability and the variation that can be expected.

4.1 Validity

Of the 19 studies that have assessed the validity of linear transducers, 10 utilised a gold-standard criterion of high-speed 3D motion capture when assessing velocity [10, 2427, 51, 53, 54] or force plate when assessing force [8, 25, 26, 50] (Table 4). From the evidence provided, these types of devices tend to demonstrate greater accuracy when compared to accelerometers [8, 9, 26]. Of all linear transducer devices, the GymAware PowerTool [8, 9, 2427, 50, 54, 55] and Tendo Fitrodyne [36, 53, 54, 5658] have been the most investigated, with nine and six independent validity studies, respectively. Additionally, the Fitrodyne (Fitronic) [9, 55] and Open Barbell System [53, 57] have both had two studies assessing their validity. However, when comparing the agreement of these devices [55], it appears that there are slight discrepancies. Mitter et al. [9] demonstrated greater accuracy of the GymAware PowerTool compared to the Fitrodyne (Fitronic), while Fernandes et al. [55] warned practitioners against interchanging these devices due to systematic differences (refer to Table 4). This is particularly pertinent when utilising peak velocity [55]. Differences between devices may be due to different sampling methods (e.g., through displacement or variable rate sampling), and/or the way in which the raw data signals are treated within the software (e.g., manufacturer-defined filtering routines). Thus, while linear transducers consistently demonstrate superior accuracy compared to other forms of velocity measuring devices [810, 53, 54], practitioners should avoid the interchangeable use of different devices during the long-term monitoring of athletes.
Ten studies have directly compared accelerometer-based devices (i.e., Push Band versions 1.0 and 2.0, Beast sensor, BarSensei, and Myotest) to gold-standard 3D motion capture [9, 10, 24, 29, 37, 54, 58, 59] or force plate (when assessing force variables) [8, 49], with the power clean [24], bench press [9, 10, 29, 58], back squat [9, 24, 59], deadlift [9], ballistic squat [54], shoulder press [37], and the biceps curl exercise [37] being assessed (Table 5). Across these studies, all outputs, except peak velocity at 60 and 90% of 1RM in the bench press for the Push Band 2.0 [29], have demonstrated questionable validity. Furthermore, there have been additional 13 studies that have assessed accelerometer-based devices against other devices, predominantly the GymAware PowerTool [28, 47, 52, 60] or the T-Force [36, 38, 61, 62] linear transducers. From this, mean and peak velocity are the most investigated outputs. The CV from these accelerometer devices tends to range from 10 to 20% across exercises, with lighter relative loads (i.e., faster velocities) tending to have less error [8, 47]. Furthermore, monitoring mean velocity with heavy loads (i.e., > 90% of 1RM) may be extremely inaccurate (i.e., CV = 27–35%) which may be related to the detection of different phases of each movement [8, 47, 60, 63]. This may be an issue for practitioners as mean concentric velocity is often advised for monitoring resistance training adaptations in non-ballistic exercises (e.g., squats, bench press) [6466]. Considering these findings, accelerometers may best be used for the provision of feedback to enhance motivation and competitiveness during ballistic, high-velocity exercises [67]. However, accelerometers should not be used to track changes in performance (e.g., assessment of velocity against a fixed absolute load) nor to prescribe the loads or the volume of training sets when using velocity loss thresholds.
Of the studies that involved devices that were not accelerometer or linear transducers and assessed validity (Tables 6, 7), only three utilised a true gold-standard criterion [22, 24, 68]. When compared against a high-speed 3D motion-capture set-up, the Velowin opto-electronic device has demonstrated acceptable validity for both mean and peak velocity (CV = 6.5–7.5%); however, proportional bias in peak velocity may be present [68]. The optic laser Flex device has demonstrated acceptable validity for mean velocity during both free-weight squat and bench-press exercises across a range of loads (i.e., 20–100% 1RM) [22]. While there are small increases in variability at the lightest loads (i.e., 20% 1RM), between 40 and 100% of 1RM the typical error is approximately 0.02 m·s−1. It should be noted, though, that currently only mean velocity has been validated for the Flex, and other variables (e.g., peak velocity) still need to be compared against a gold-standard measure as these outputs may be most relevant to the lightest loads (e.g., 20% 1RM). Finally, with the increasing interest in monitoring resistance training performance, mobile phone apps have also become available [10, 24, 36, 69, 70]. While there is conflicting evidence [24, 36, 51, 70], it appears that substantial bias and error can be introduced when different devices and/or users implement these measuring tools [23]. Thus, practitioners should ensure thorough familiarisation and standardised protocols when using these applications.

4.2 Reliability

A number of studies have investigated the reliability of linear transducers [10, 26, 36, 52] (Table 8). To date, the T-Force has had six separate studies investigate some aspect of reliability [10, 36, 54, 61, 71, 72]. Specifically, Courel-Ibañez et al. [36] have recently demonstrated the inter-device (i.e., two devices of the same manufacturer) reliability of mean, mean propulsive, and peak velocity, and shown the extremely low error (e.g., mean velocity CV = 1.0–2.1%) when completing the Smith machine bench press, squat, and the prone row. With respect to the intra-device (i.e., the same unit assessed across multiple repetitions), the study by Courel-Ibañez [36] demonstrated a slightly greater, but still relatively small, level of variability (i.e., mean velocity CV = 1.9–3.0%) within the same exercises. Furthermore, the authors presented findings to suggest that the Chronojump LPT exhibited slightly increased inter-device and intra-device error than the T-Force, with mean velocity variability ranging from 3.3 to 4.7% and 3.9 to 5.2%, respectively [36]. It should be acknowledged that the slightly greater intra-device variability values reported in this review may be due to the introduction of biological variation across repetitions (i.e., the ability of a human to perfectly replicate two repetitions with the exact same physical output). Furthermore, it is reasonable to suggest that these reliability outcomes may be negatively impacted when exercises are taken outside of a 2D plane (i.e., a Smith machine). During free-weight exercises, the within-device reliability of the GymAware PowerTool has been shown to be of a high standard [48, 52]. During the free-weight back squat, typical errors of 0.03–0.05 m·s−1 across loads of 20–90% of 1RM have been shown. However, this variability may be artificially inflated due to the time between testing occasions (i.e., 7 days) and the normal fluctuations in human performance [48]. Future research is still required to assess the inter-device reliability of this device.
While the accuracy of accelerometers during resistance training appears to be questionable, some accelerometer devices may have greater intra-device reproducibility [29] (Table 9). When placed on the bar, Push 2.0 has demonstrated acceptable reliability of both mean and peak velocity within the bench press at 60% and 90% of 1RM [29]. Furthermore, Hughes et al. [52] have shown conflicting reliability for this device during the Smith machine and free-weight squat, bench press, overhead press, and prone row when placed on either the bar or arm. Contrasting this, Beckham et al. [28] demonstrated that the Bar Sensei achieved both poor accuracy and poor reliability for mean and peak velocity measures during the free-weight barbell back squat. However, these values may have been inflated due to the period of time between testing occasions (i.e., 3–7 days) and the potential for biological variation to influence reliability outcomes [22]. Finally, the Beast Sensor has demonstrated extremely large variability (CV 24–55%) and systematic error at intensities of 45–85% of 1RM in a Smith machine back squat [10]. While a previous study has suggested that it demonstrates satisfactory reliability [69], the statistical approach has recently been questioned due to the pooling of repeated measures from a range of different intensities and consequently violating the assumption of independence [28]. Naturally, this may help to explain the contrasting results for this device and the high reliability correlation values previously reported [69].
Recent work by Perez-Castilla et al. [10] has compared seven commercially available devices in the Smith machine bench press across a range of loads (i.e., 45–85% of 1RM). Of these, the Speed4Lifts linear position transducer was found to demonstrate the greatest intra-device reliability (CV = 2.39–3.92%). This was closely followed by the Velowin, PowerLift, T-Force, and Chronojump that all demonstrated similar levels of reliability (CV =  ~ 3–6%) [10]. The authors reported that, outside of Speed4Lifts linear position transducer, all other devices demonstrated substantial heteroscedasticity when compared to a high-speed 3D motion-capture system. However, caution is required when interpreting these outcomes as the influence of between-day biological variation was not separated from the true technological error of the devices. Nevertheless, it should be noted that similar (CV =  ~ 4–8%) within-device reproducibility was observed for the Velowin and Powerlift when procedures were completed within-day [36] (Tables 10, 11). To the authors’ knowledge, the only study to separate these forms of variation when assessing within-device reliability is the recent work by Weakley et al. [22] on the optic laser FLEX device. This study investigated the reliability across a prolonged time (i.e., 21 days between testing occasions) with the use of a purposely designed calibrated rig. Mean velocity demonstrated an overall within-device typical error of ~ 4% with velocities ranging from 0.09 to 0.99 m·s−1. Additionally, this study demonstrated inter-device variance with both technological and biological variation accounted for. The authors concluded that the optic laser FLEX device exhibited acceptable inter-device reliability, suggesting that these devices can be used interchangeably (e.g., within a team environment where multiple barbells are set up). However, it should be noted that additional metrics (e.g., peak velocity) have recently been released by the manufacturers, and future research should be completed to assess these outputs.
While this review has considered a range of commercially available devices for the monitoring of resistance training, there are still several aspects that need further investigation. First, it should be acknowledged that the accuracy of these devices has been tested within a limited number of exercises (e.g., squat, bench press). Furthermore, a number of these studies have been done within a Smith machine which is expected to increase the reliability of the outputs. However, strength and conditioning practitioners often utilise a wide range of exercises and these are often done with free weights [7376]. Additionally, some exercises that have greater horizontal displacement (e.g., Olympic weightlifting movements) have had minimal investigation. Therefore, future research is required for the validation of current technology using a wider range of exercises that include weightlifting movements and their derivates. Second, future research must consider the influence of biological variation when assessing the reliability of measurement devices. To date, all but one reliability study [22] have disregarded this consideration during within-device analysis, despite it being widely acknowledged that human performances fluctuate within-session and between-days. Thus, most of the within-device reliability research may mistakenly report reproducibility errors that are unrelated to the device. Finally, it is important to acknowledge the wide range of statistical approaches that have been used within the literature and that erroneous conclusions of validity and reliability may be drawn from an individual statistical value. For example, alone, correlations characterise the relationship between two outcomes, but they are incapable of describing any systematic bias that may exist. This has implications for concluding whether a device is truly accurate or reliable. Additionally, when interpreting error of individual devices, this should be put into context in relation to practical criteria or acceptable levels of disagreement. Thus, when quantifying the validity and reliability of these technologies, researchers are strongly advised to consider using a number of analyses that provide information about the level of agreement and the magnitude of errors that are associated with each device and compare these to appropriate criteria.

5 Conclusions

The current review provides the reliability and validity of a range of different devices which are commercially available for the monitoring and prescription of resistance training. Generally, linear transducers have shown the greatest accuracy with mean concentric velocity the most assessed outcome. However, to date, only the GymAware [9, 25, 26, 54], T-Force [54], Open Barbell System [53], Tendo Fitrodyne [53, 54, 58], and Fitrodyne (Fitronic) [9] have been directly compared to a ‘true’ gold-standard 3D high-speed motion-capture system set-up during free-weight resistance training. When these devices have been directly compared to each other during free-weight exercises [9, 53, 54], it appears that the GymAware provides the greatest accuracy. This accuracy may be due to the device’s ability to account for horizontal displacement and variable rate sampling which is distinct to this device. Additionally, the T-Force demonstrates acceptable accuracy when exercise is performed within the Smith machine.
Accelerometer devices have shown promise, but the accuracy of these devices is still questionable [29, 37, 69]. Additionally, these devices are often validated against linear transducers which may introduce additional error that impacts the assessment of accuracy for the device [36, 38, 52, 61, 70]. Of the accelerometer devices, only the Push versions 1.0 and 2.0 [29, 37] and Beast Sensor [9] have been directly compared to a gold-standard criterion during free-weight exercises. Of these three devices, the Push 2.0 may have the greatest accuracy. However, it should be acknowledged that mean velocity from this device has been questioned [29], which limits its application to resistance training as this metric is widely recommended for use during non-ballistic exercises [12, 64, 65]. Finally, of the non-linear transducer and accelerometer devices, it appears that smart phone and tablet apps may be an alternative for a quick ‘snap-shot’ of training intensity, but substantial inter-device error may exist. Therefore, unless monitoring is done by a single individual with the same device, accurate tracking of performance may be limited [23, 36]. Nevertheless, the use of optic laser devices is a promising alternative that can provide accurate, real-time feedback [22]. While further research is still warranted on additional variables (e.g., peak velocity), this provides an additional cost-effective method for monitoring resistance training.

Declarations

Funding

At no point was funding received by any of the authors for the writing of this manuscript. The publishing of this article open access has been made possible by the UK Read and Publish (Springer Compact) agreement.

Conflict of interest

Jonathon Weakley, Matthew Morrison, Amador García-Ramos, Rich Johnston, Lachlan James, and Michael Cole declare that they have no conflicts of interest relevant to the content of this review.

Availability of data and materials

All data and materials reported in this systematic review are from peer-reviewed publications. All of the extracted data are included in the manuscript and supplementary files.

Author's contributions

JW, MC, and MM conceptualized the review and criteria. JW, MM, and RJ completed the screening and data extraction of all data within this manuscript. AGR, LJ, and MM created the tables. JW, MC, AGR, LJ, and RJ completed the writing of the manuscript. All authors reviewed and refined the manuscript.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Orthopädie & Unfallchirurgie

Kombi-Abonnement

Mit e.Med Orthopädie & Unfallchirurgie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

Anhänge

Electronic supplementary material

Below is the link to the electronic supplementary material.
Literatur
13.
Zurück zum Zitat Weakley J, McLaren S, Ramirez-Lopez C, García-Ramos A, Dalton-Barron N, Banyard H, et al. Application of velocity loss thresholds during free-weight resistance training: responses and reproducibility of perceptual, metabolic, and neuromuscular outcomes. J Sports Sci. 2020;38(5):477–85. https://doi.org/10.1080/02640414.2019.1706831.CrossRef Weakley J, McLaren S, Ramirez-Lopez C, García-Ramos A, Dalton-Barron N, Banyard H, et al. Application of velocity loss thresholds during free-weight resistance training: responses and reproducibility of perceptual, metabolic, and neuromuscular outcomes. J Sports Sci. 2020;38(5):477–85. https://​doi.​org/​10.​1080/​02640414.​2019.​1706831.CrossRef
14.
18.
21.
Zurück zum Zitat Pareja-Blanco F, Rodriguez-Rosell D, Sanchez-Medina L, Sanchis-Moysi J, Dorado C, Mora-Custodio R, et al. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand J Med Sci Sports. 2017;27(7):724–35. https://doi.org/10.1111/sms.12678.CrossRefPubMed Pareja-Blanco F, Rodriguez-Rosell D, Sanchez-Medina L, Sanchis-Moysi J, Dorado C, Mora-Custodio R, et al. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand J Med Sci Sports. 2017;27(7):724–35. https://​doi.​org/​10.​1111/​sms.​12678.CrossRefPubMed
27.
Zurück zum Zitat Drinkwater EJ, Galna B, McKenna MJ, Hunt PH, Pyne DB. Validation of an optical encoder during free weight resistance movements and analysis of bench press sticking point power during fatigue. J Strength Cond Res. 2007;21(2):510–7.PubMed Drinkwater EJ, Galna B, McKenna MJ, Hunt PH, Pyne DB. Validation of an optical encoder during free weight resistance movements and analysis of bench press sticking point power during fatigue. J Strength Cond Res. 2007;21(2):510–7.PubMed
31.
Zurück zum Zitat Weakley J, Ramirez-Lopez C, McLaren S, Dalton-Barron N, Weaving D, Jones B, et al. The effects of 10%, 20%, and 30% velocity loss thresholds on kinetic, kinematic, and repetition characteristics during the barbell back squat. Int J Sports Phys Perform. 2020;15(2):180–8. https://doi.org/10.1123/ijspp.2018-1008.CrossRef Weakley J, Ramirez-Lopez C, McLaren S, Dalton-Barron N, Weaving D, Jones B, et al. The effects of 10%, 20%, and 30% velocity loss thresholds on kinetic, kinematic, and repetition characteristics during the barbell back squat. Int J Sports Phys Perform. 2020;15(2):180–8. https://​doi.​org/​10.​1123/​ijspp.​2018-1008.CrossRef
39.
Zurück zum Zitat García-Ramos A, Ulloa-Díaz D, Barboza-González P, Rodríguez-Perea Á, Martínez-García D, Quidel-Catrilelbún M, et al. Assessment of the load-velocity profile in the free-weight prone bench pull exercise through different velocity variables and regression models. PLoS ONE. 2019;14(2):e0212085-e. https://doi.org/10.1371/journal.pone.0212085.CrossRef García-Ramos A, Ulloa-Díaz D, Barboza-González P, Rodríguez-Perea Á, Martínez-García D, Quidel-Catrilelbún M, et al. Assessment of the load-velocity profile in the free-weight prone bench pull exercise through different velocity variables and regression models. PLoS ONE. 2019;14(2):e0212085-e. https://​doi.​org/​10.​1371/​journal.​pone.​0212085.CrossRef
40.
Zurück zum Zitat Wilson KM, de Joux NR, Head JR, Helton WS, Dang JS, Weakley JJS. Presenting objective visual performance feedback over multiple sets of resistance exercise improves motivation, competitiveness, and performance. Proc Hum Factors Ergon Soc Annu Meet. 2018;62(1):1306–10. https://doi.org/10.1177/1541931218621299.CrossRef Wilson KM, de Joux NR, Head JR, Helton WS, Dang JS, Weakley JJS. Presenting objective visual performance feedback over multiple sets of resistance exercise improves motivation, competitiveness, and performance. Proc Hum Factors Ergon Soc Annu Meet. 2018;62(1):1306–10. https://​doi.​org/​10.​1177/​1541931218621299​.CrossRef
42.
Zurück zum Zitat Rohatgi A. WebPlotDigitizer. 4.2 edn. 2019. Rohatgi A. WebPlotDigitizer. 4.2 edn. 2019.
53.
Zurück zum Zitat Goldsmith JA, Trepeck C, Halle JL, Mendez KM, Klemp A, Cooke DM, et al. Validity of the Open Barbell and Tendo weightlifting analyzer systems versus the Optotrak Certus 3d motion-capture system for barbell velocity. Int J Sports Phys Perform. 2019;14(4):540–3. https://doi.org/10.1123/ijspp.2018-0684.CrossRef Goldsmith JA, Trepeck C, Halle JL, Mendez KM, Klemp A, Cooke DM, et al. Validity of the Open Barbell and Tendo weightlifting analyzer systems versus the Optotrak Certus 3d motion-capture system for barbell velocity. Int J Sports Phys Perform. 2019;14(4):540–3. https://​doi.​org/​10.​1123/​ijspp.​2018-0684.CrossRef
56.
Zurück zum Zitat Garnacho-Castaño MV, López-Lastra S, Maté-Muñoz JL. Reliability and validity assessment of a linear position transducer. J Sports Sci Med. 2015;14(1):128–36.PubMedPubMedCentral Garnacho-Castaño MV, López-Lastra S, Maté-Muñoz JL. Reliability and validity assessment of a linear position transducer. J Sports Sci Med. 2015;14(1):128–36.PubMedPubMedCentral
58.
Zurück zum Zitat McGrath G, Flanagan E, O’Donovan P, Collins D, Kenny I. Velocity based training: validity of monitoring devices to assess mean concentric velocity in the bench press exercise. J Aust Strength Cond. 2018;26(1):23–30. McGrath G, Flanagan E, O’Donovan P, Collins D, Kenny I. Velocity based training: validity of monitoring devices to assess mean concentric velocity in the bench press exercise. J Aust Strength Cond. 2018;26(1):23–30.
61.
69.
Zurück zum Zitat Balsalobre-Fernández C, Marchante D, Baz-Valle E, Alonso-Molero I, Jiménez SL, Muñóz-López M. Analysis of wearable and smartphone-based technologies for the measurement of barbell velocity in different resistance training exercises. Front Physiol. 2017;28(8):649–58. https://doi.org/10.3389/fphys.2017.00649.CrossRef Balsalobre-Fernández C, Marchante D, Baz-Valle E, Alonso-Molero I, Jiménez SL, Muñóz-López M. Analysis of wearable and smartphone-based technologies for the measurement of barbell velocity in different resistance training exercises. Front Physiol. 2017;28(8):649–58. https://​doi.​org/​10.​3389/​fphys.​2017.​00649.CrossRef
Metadaten
Titel
The Validity and Reliability of Commercially Available Resistance Training Monitoring Devices: A Systematic Review
verfasst von
Jonathon Weakley
Matthew Morrison
Amador García-Ramos
Rich Johnston
Lachlan James
Michael H. Cole
Publikationsdatum
21.01.2021
Verlag
Springer International Publishing
Erschienen in
Sports Medicine / Ausgabe 3/2021
Print ISSN: 0112-1642
Elektronische ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-020-01382-w

Weitere Artikel der Ausgabe 3/2021

Sports Medicine 3/2021 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Mehr Frauen im OP – weniger postoperative Komplikationen

21.05.2024 Allgemeine Chirurgie Nachrichten

Ein Frauenanteil von mindestens einem Drittel im ärztlichen Op.-Team war in einer großen retrospektiven Studie aus Kanada mit einer signifikanten Reduktion der postoperativen Morbidität assoziiert.

TEP mit Roboterhilfe führt nicht zu größerer Zufriedenheit

15.05.2024 Knie-TEP Nachrichten

Der Einsatz von Operationsrobotern für den Einbau von Totalendoprothesen des Kniegelenks hat die Präzision der Eingriffe erhöht. Für die postoperative Zufriedenheit der Patienten scheint das aber unerheblich zu sein, wie eine Studie zeigt.

Lever-Sign-Test hilft beim Verdacht auf Kreuzbandriss

15.05.2024 Vordere Kreuzbandruptur Nachrichten

Mit dem Hebelzeichen-Test lässt sich offenbar recht zuverlässig feststellen, ob ein vorderes Kreuzband gerissen ist. In einer Metaanalyse war die Vorhersagekraft vor allem bei positivem Testergebnis hoch.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.