Skip to main content
Erschienen in: Neurotherapeutics 4/2014

01.10.2014 | Review

Triadopathies: An Emerging Class of Skeletal Muscle Diseases

verfasst von: James J. Dowling, Michael W. Lawlor, Robert T. Dirksen

Erschienen in: Neurotherapeutics | Ausgabe 4/2014

Einloggen, um Zugang zu erhalten

Abstract

The triad is a skeletal muscle substructure responsible for the regulation of excitation–contraction coupling. It is formed by the close apposition of the T-tubule and the terminal sarcoplasmic reticulum. A rapidly growing list of skeletal myopathies, here referred to as triadopathies, are caused by gene mutations in components of the triad. These disorders, at their root, are caused by defects in excitation contraction coupling and intracellular calcium homeostasis. Secondary abnormalities in triad structure and/or function are also reported in several muscle diseases, most notably certain muscular dystrophies. This review highlights the current understanding of both primary and secondary triadopathies, and identifies important concepts yet to be fully addressed in the field. The emphasis of the review is both on the pathogenesis of triadopathies and their potential treatment.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Engel A, Franzini-Armstrong C. Myology: basic and clinical. 3rd ed. McGraw-Hill, New York, 2004. Engel A, Franzini-Armstrong C. Myology: basic and clinical. 3rd ed. McGraw-Hill, New York, 2004.
2.
Zurück zum Zitat Melzer W, Herrmann-Frank A, Luttgau HC. The role of Ca2+ ions in excitation-contraction coupling of skeletal muscle fibres. Biochim Biophys Acta 1995;1241:59-116.PubMed Melzer W, Herrmann-Frank A, Luttgau HC. The role of Ca2+ ions in excitation-contraction coupling of skeletal muscle fibres. Biochim Biophys Acta 1995;1241:59-116.PubMed
3.
Zurück zum Zitat Rossi AE, Dirksen RT. Sarcoplasmic reticulum: the dynamic calcium governor of muscle. Muscle Nerve 2006;33:715-731.PubMed Rossi AE, Dirksen RT. Sarcoplasmic reticulum: the dynamic calcium governor of muscle. Muscle Nerve 2006;33:715-731.PubMed
4.
Zurück zum Zitat Nance JR, Dowling JJ, Gibbs EM, Bonnemann CG. Congenital myopathies: an update. Curr Neurol Neurosci Rep 2012;12:165-174.PubMed Nance JR, Dowling JJ, Gibbs EM, Bonnemann CG. Congenital myopathies: an update. Curr Neurol Neurosci Rep 2012;12:165-174.PubMed
5.
6.
Zurück zum Zitat Rosenberg H, Sambuughin N, Riazi S, Dirksen R. Malignant hyperthermia susceptibility. In: Pagon RA, Adam MP, Bird TD, et al. (eds) GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2014; 2003 Dec 19 [updated 2013 Jan 31]. Rosenberg H, Sambuughin N, Riazi S, Dirksen R. Malignant hyperthermia susceptibility. In: Pagon RA, Adam MP, Bird TD, et al. (eds) GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2014; 2003 Dec 19 [updated 2013 Jan 31].
7.
Zurück zum Zitat Denborough M. Malignant hyperthermia. Lancet 1998;352:1131-1136.PubMed Denborough M. Malignant hyperthermia. Lancet 1998;352:1131-1136.PubMed
8.
Zurück zum Zitat McCarthy EJ. Malignant hyperthermia: pathophysiology, clinical presentation, and treatment. AACN Clin Issues 2004;15:231-237.PubMed McCarthy EJ. Malignant hyperthermia: pathophysiology, clinical presentation, and treatment. AACN Clin Issues 2004;15:231-237.PubMed
9.
Zurück zum Zitat Larach MG, Gronert GA, Allen GC, Brandom BW, Lehman EB. Clinical presentation, treatment, and complications of malignant hyperthermia in North America from 1987 to 2006. Anesth Analg 2010;110:498-507.PubMed Larach MG, Gronert GA, Allen GC, Brandom BW, Lehman EB. Clinical presentation, treatment, and complications of malignant hyperthermia in North America from 1987 to 2006. Anesth Analg 2010;110:498-507.PubMed
10.
Zurück zum Zitat Donnelly AJ. Malignant hyperthermia. Epidemiology, pathophysiology, treatment. AORN J 1994;59:393-395.PubMed Donnelly AJ. Malignant hyperthermia. Epidemiology, pathophysiology, treatment. AORN J 1994;59:393-395.PubMed
11.
Zurück zum Zitat Gonsalves SG, Ng D, Johnston JJ, et al. Using exome data to identify malignant hyperthermia susceptibility mutations. Anesthesiology 2013;119:1043-1053.PubMed Gonsalves SG, Ng D, Johnston JJ, et al. Using exome data to identify malignant hyperthermia susceptibility mutations. Anesthesiology 2013;119:1043-1053.PubMed
12.
Zurück zum Zitat Stowell KM. DNA testing for malignant hyperthermia: the reality and the dream. Anesth Analg 2014;118:397-406.PubMed Stowell KM. DNA testing for malignant hyperthermia: the reality and the dream. Anesth Analg 2014;118:397-406.PubMed
13.
Zurück zum Zitat Robinson R, Carpenter D, Shaw MA, Halsall J, Hopkins P. Mutations in RYR1 in malignant hyperthermia and central core disease. Hum Mutat 2006;27:977-989.PubMed Robinson R, Carpenter D, Shaw MA, Halsall J, Hopkins P. Mutations in RYR1 in malignant hyperthermia and central core disease. Hum Mutat 2006;27:977-989.PubMed
14.
Zurück zum Zitat Carpenter D, Ringrose C, Leo V, et al. The role of CACNA1S in predisposition to malignant hyperthermia. BMC Med Genet 2009;10:104.PubMedPubMedCentral Carpenter D, Ringrose C, Leo V, et al. The role of CACNA1S in predisposition to malignant hyperthermia. BMC Med Genet 2009;10:104.PubMedPubMedCentral
15.
Zurück zum Zitat Yarotskyy V, Dirksen RT. Cav1.1 in malignant hyperthermia. In: Weiss N, Koschak A (eds) Pathologies of calcium channels. Springer-Verlag, Berlin, 2014. Yarotskyy V, Dirksen RT. Cav1.1 in malignant hyperthermia. In: Weiss N, Koschak A (eds) Pathologies of calcium channels. Springer-Verlag, Berlin, 2014.
16.
Zurück zum Zitat Kim JH, Jarvik GP, Browning BL, et al. Exome sequencing reveals novel rare variants in the ryanodine receptor and calcium channel genes in malignant hyperthermia families. Anesthesiology 2013;119:1054-1065.PubMed Kim JH, Jarvik GP, Browning BL, et al. Exome sequencing reveals novel rare variants in the ryanodine receptor and calcium channel genes in malignant hyperthermia families. Anesthesiology 2013;119:1054-1065.PubMed
17.
Zurück zum Zitat Capacchione JF, Muldoon SM. The relationship between exertional heat illness, exertional rhabdomyolysis, and malignant hyperthermia. Anesth Analg 2009;109:1065-1069.PubMed Capacchione JF, Muldoon SM. The relationship between exertional heat illness, exertional rhabdomyolysis, and malignant hyperthermia. Anesth Analg 2009;109:1065-1069.PubMed
18.
Zurück zum Zitat Tobin JR, Jason DR, Challa VR, Nelson TE, Sambuughin N. Malignant hyperthermia and apparent heat stroke. JAMA 2001;286:168-169.PubMed Tobin JR, Jason DR, Challa VR, Nelson TE, Sambuughin N. Malignant hyperthermia and apparent heat stroke. JAMA 2001;286:168-169.PubMed
19.
Zurück zum Zitat Dlamini N, Voermans NC, Lillis S, et al. Mutations in RYR1 are a common cause of exertional myalgia and rhabdomyolysis. Neuromuscul Disord 2013;23:540-548.PubMed Dlamini N, Voermans NC, Lillis S, et al. Mutations in RYR1 are a common cause of exertional myalgia and rhabdomyolysis. Neuromuscul Disord 2013;23:540-548.PubMed
20.
Zurück zum Zitat Jungbluth H, Dowling JJ, Ferreiro A, Muntoni F. 182nd ENMC International Workshop: RYR1-related myopathies, 15–17th April 2011, Naarden, The Netherlands. Neuromuscul Disord 2012;22:453-462.PubMed Jungbluth H, Dowling JJ, Ferreiro A, Muntoni F. 182nd ENMC International Workshop: RYR1-related myopathies, 15–17th April 2011, Naarden, The Netherlands. Neuromuscul Disord 2012;22:453-462.PubMed
23.
Zurück zum Zitat Wilmshurst JM, Lillis S, Zhou H, et al. RYR1 mutations are a common cause of congenital myopathies with central nuclei. Ann Neurol 2010;68:717-726.PubMed Wilmshurst JM, Lillis S, Zhou H, et al. RYR1 mutations are a common cause of congenital myopathies with central nuclei. Ann Neurol 2010;68:717-726.PubMed
24.
Zurück zum Zitat Clarke NF, Waddell LB, Cooper ST, et al. Recessive mutations in RYR1 are a common cause of congenital fiber type disproportion. Hum Mutat 2010;31:E1544-E1550.PubMed Clarke NF, Waddell LB, Cooper ST, et al. Recessive mutations in RYR1 are a common cause of congenital fiber type disproportion. Hum Mutat 2010;31:E1544-E1550.PubMed
25.
Zurück zum Zitat Klein A, Lillis S, Munteanu I, et al. Clinical and genetic findings in a large cohort of patients with ryanodine receptor 1 gene-associated myopathies. Hum Mutat 2012;33:981-988.PubMed Klein A, Lillis S, Munteanu I, et al. Clinical and genetic findings in a large cohort of patients with ryanodine receptor 1 gene-associated myopathies. Hum Mutat 2012;33:981-988.PubMed
26.
Zurück zum Zitat Zhou H, Lillis S, Loy RE, et al. Multi-minicore disease and atypical periodic paralysis associated with novel mutations in the skeletal muscle ryanodine receptor (RYR1) gene. Neuromuscul Disord 2010;20:166-173.PubMedPubMedCentral Zhou H, Lillis S, Loy RE, et al. Multi-minicore disease and atypical periodic paralysis associated with novel mutations in the skeletal muscle ryanodine receptor (RYR1) gene. Neuromuscul Disord 2010;20:166-173.PubMedPubMedCentral
27.
Zurück zum Zitat Illingworth MA, Main M, Pitt M, et al. RYR1-related congenital myopathy with fatigable weakness, responding to pyridostigimine. Neuromuscul Disord 2014;24:707-712.PubMed Illingworth MA, Main M, Pitt M, et al. RYR1-related congenital myopathy with fatigable weakness, responding to pyridostigimine. Neuromuscul Disord 2014;24:707-712.PubMed
28.
Zurück zum Zitat Dowling JJ, Lillis S, Amburgey K, et al. King-Denborough syndrome with and without mutations in the skeletal muscle ryanodine receptor (RYR1) gene. Neuromuscul Disord 2011;21:420-427.PubMed Dowling JJ, Lillis S, Amburgey K, et al. King-Denborough syndrome with and without mutations in the skeletal muscle ryanodine receptor (RYR1) gene. Neuromuscul Disord 2011;21:420-427.PubMed
29.
Zurück zum Zitat Jungbluth H, Lillis S, Zhou H, et al. Late-onset axial myopathy with cores due to a novel heterozygous dominant mutation in the skeletal muscle ryanodine receptor (RYR1) gene. Neuromuscul Disord 2009;19:344-347.PubMed Jungbluth H, Lillis S, Zhou H, et al. Late-onset axial myopathy with cores due to a novel heterozygous dominant mutation in the skeletal muscle ryanodine receptor (RYR1) gene. Neuromuscul Disord 2009;19:344-347.PubMed
30.
Zurück zum Zitat Amburgey K, Bailey A, Hwang JH, et al. Genotype-phenotype correlations in recessive RYR1-related myopathies. Orphanet J Rare Dis 2013;8:117.PubMedPubMedCentral Amburgey K, Bailey A, Hwang JH, et al. Genotype-phenotype correlations in recessive RYR1-related myopathies. Orphanet J Rare Dis 2013;8:117.PubMedPubMedCentral
31.
Zurück zum Zitat Treves S, Jungbluth H, Muntoni F, Zorzato F. Congenital muscle disorders with cores: the ryanodine receptor calcium channel paradigm. Curr Opin Pharmacol 2008;8:319-326.PubMed Treves S, Jungbluth H, Muntoni F, Zorzato F. Congenital muscle disorders with cores: the ryanodine receptor calcium channel paradigm. Curr Opin Pharmacol 2008;8:319-326.PubMed
32.
Zurück zum Zitat Messina S, Hartley L, Main M, et al. Pilot trial of salbutamol in central core and multi-minicore diseases. Neuropediatrics 2004;35:262-266.PubMed Messina S, Hartley L, Main M, et al. Pilot trial of salbutamol in central core and multi-minicore diseases. Neuropediatrics 2004;35:262-266.PubMed
33.
Zurück zum Zitat Dowling JJ, Arbogast S, Hur J, et al. Oxidative stress and successful antioxidant treatment in models of RYR1-related myopathy. Brain 2012;135:1115-1127.PubMedPubMedCentral Dowling JJ, Arbogast S, Hur J, et al. Oxidative stress and successful antioxidant treatment in models of RYR1-related myopathy. Brain 2012;135:1115-1127.PubMedPubMedCentral
34.
Zurück zum Zitat Andersson DC, Marks AR. Fixing ryanodine receptor Ca leak – a novel therapeutic strategy for contractile failure in heart and skeletal muscle. Drug Discov Today Dis Mechan 2010;7:e151-e157. Andersson DC, Marks AR. Fixing ryanodine receptor Ca leak – a novel therapeutic strategy for contractile failure in heart and skeletal muscle. Drug Discov Today Dis Mechan 2010;7:e151-e157.
35.
Zurück zum Zitat Loy RE, Lueck JD, Mostajo-Radji MA, Carrell EM, Dirksen RT. Allele-specific gene silencing in two mouse models of autosomal dominant skeletal myopathy. PloS One 2012;7:e49757.PubMedPubMedCentral Loy RE, Lueck JD, Mostajo-Radji MA, Carrell EM, Dirksen RT. Allele-specific gene silencing in two mouse models of autosomal dominant skeletal myopathy. PloS One 2012;7:e49757.PubMedPubMedCentral
36.
Zurück zum Zitat Amburgey K, McNamara N, Bennett LR, McCormick ME, Acsadi G, Dowling JJ. Prevalence of congenital myopathies in a representative pediatric united states population. Ann Neurol 2011;70:662-665.PubMed Amburgey K, McNamara N, Bennett LR, McCormick ME, Acsadi G, Dowling JJ. Prevalence of congenital myopathies in a representative pediatric united states population. Ann Neurol 2011;70:662-665.PubMed
37.
Zurück zum Zitat Maggi L, Scoto M, Cirak S, et al. Congenital myopathies–clinical features and frequency of individual subtypes diagnosed over a 5-year period in the United Kingdom. Neuromuscul Disord 2013;23:195-205.PubMed Maggi L, Scoto M, Cirak S, et al. Congenital myopathies–clinical features and frequency of individual subtypes diagnosed over a 5-year period in the United Kingdom. Neuromuscul Disord 2013;23:195-205.PubMed
38.
Zurück zum Zitat Takekura H, Nishi M, Noda T, Takeshima H, Franzini-Armstrong C. Abnormal junctions between surface membrane and sarcoplasmic reticulum in skeletal muscle with a mutation targeted to the ryanodine receptor. Proc Natl Acad Sci U S A 1995;92:3381-3385.PubMedPubMedCentral Takekura H, Nishi M, Noda T, Takeshima H, Franzini-Armstrong C. Abnormal junctions between surface membrane and sarcoplasmic reticulum in skeletal muscle with a mutation targeted to the ryanodine receptor. Proc Natl Acad Sci U S A 1995;92:3381-3385.PubMedPubMedCentral
39.
Zurück zum Zitat Hirata H, Watanabe T, Hatakeyama J, et al. Zebrafish relatively relaxed mutants have a ryanodine receptor defect, show slow swimming and provide a model of multi-minicore disease. Development 2007;134:2771-2781.PubMed Hirata H, Watanabe T, Hatakeyama J, et al. Zebrafish relatively relaxed mutants have a ryanodine receptor defect, show slow swimming and provide a model of multi-minicore disease. Development 2007;134:2771-2781.PubMed
40.
Zurück zum Zitat Kushnir A, Betzenhauser MJ, Marks AR. Ryanodine receptor studies using genetically engineered mice. FEBS Lett 2010;584:1956-1965.PubMedPubMedCentral Kushnir A, Betzenhauser MJ, Marks AR. Ryanodine receptor studies using genetically engineered mice. FEBS Lett 2010;584:1956-1965.PubMedPubMedCentral
41.
Zurück zum Zitat Jungbluth H, Wallgren-Pettersson C, Laporte J. Centronuclear (myotubular) myopathy. Orphanet J Rare Dis 2008;3:26.PubMedPubMedCentral Jungbluth H, Wallgren-Pettersson C, Laporte J. Centronuclear (myotubular) myopathy. Orphanet J Rare Dis 2008;3:26.PubMedPubMedCentral
42.
Zurück zum Zitat Biancalana V, Beggs AH, Das S, et al. Clinical utility gene card for: Centronuclear and myotubular myopathies. Eur J Hum Genet 2012;20. Biancalana V, Beggs AH, Das S, et al. Clinical utility gene card for: Centronuclear and myotubular myopathies. Eur J Hum Genet 2012;20.
43.
Zurück zum Zitat Laporte J, Hu LJ, Kretz C, et al. A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat Genet 1996;13:175-182.PubMed Laporte J, Hu LJ, Kretz C, et al. A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat Genet 1996;13:175-182.PubMed
44.
Zurück zum Zitat Das S, Dowling J, Pierson CR. X-linked centronuclear myopathy. In: Pagon RA, Adam MP, Ardinger HH, et al. (eds) GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2014. 2002 [updated 2011 Oct 6]. Das S, Dowling J, Pierson CR. X-linked centronuclear myopathy. In: Pagon RA, Adam MP, Ardinger HH, et al. (eds) GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2014. 2002 [updated 2011 Oct 6].
45.
Zurück zum Zitat Bitoun M, Maugenre S, Jeannet PY, et al. Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat Genet 2005;37:1207-1209.PubMed Bitoun M, Maugenre S, Jeannet PY, et al. Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat Genet 2005;37:1207-1209.PubMed
46.
Zurück zum Zitat Bohm J, Biancalana V, Dechene ET, et al. Mutation spectrum in the large GTPase dynamin 2, and genotype-phenotype correlation in autosomal dominant centronuclear myopathy. Hum Mutat 2012;33:949-959.PubMedPubMedCentral Bohm J, Biancalana V, Dechene ET, et al. Mutation spectrum in the large GTPase dynamin 2, and genotype-phenotype correlation in autosomal dominant centronuclear myopathy. Hum Mutat 2012;33:949-959.PubMedPubMedCentral
47.
Zurück zum Zitat Nicot AS, Toussaint A, Tosch V, et al. Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat Genet 2007;39:1134-1139.PubMed Nicot AS, Toussaint A, Tosch V, et al. Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat Genet 2007;39:1134-1139.PubMed
48.
Zurück zum Zitat Ceyhan-Birsoy O, Agrawal PB, Hidalgo C, et al. Recessive truncating titin gene, TTN, mutations presenting as centronuclear myopathy. Neurology 2013;81:1205-1214.PubMedPubMedCentral Ceyhan-Birsoy O, Agrawal PB, Hidalgo C, et al. Recessive truncating titin gene, TTN, mutations presenting as centronuclear myopathy. Neurology 2013;81:1205-1214.PubMedPubMedCentral
49.
Zurück zum Zitat Dowling JJ. Titin and centronuclear myopathy: The tip of the iceberg for TTN-ic mutations? Neurology 2013;81:1189-1190.PubMed Dowling JJ. Titin and centronuclear myopathy: The tip of the iceberg for TTN-ic mutations? Neurology 2013;81:1189-1190.PubMed
50.
Zurück zum Zitat Durieux AC, Prudhon B, Guicheney P, Bitoun M. Dynamin 2 and human diseases. J Mol Med 2010;88:339-350.PubMed Durieux AC, Prudhon B, Guicheney P, Bitoun M. Dynamin 2 and human diseases. J Mol Med 2010;88:339-350.PubMed
51.
Zurück zum Zitat Koutsopoulos OS, Kretz C, Weller CM, et al. Dynamin 2 homozygous mutation in humans with a lethal congenital syndrome. Eur J Hum Genet 2013;21:637-642.PubMedPubMedCentral Koutsopoulos OS, Kretz C, Weller CM, et al. Dynamin 2 homozygous mutation in humans with a lethal congenital syndrome. Eur J Hum Genet 2013;21:637-642.PubMedPubMedCentral
52.
Zurück zum Zitat Dowling JJ, Vreede AP, Low SE, et al. Loss of myotubularin function results in T-tubule disorganization in zebrafish and human myotubular myopathy. PLoS Genet 2009;5:e1000372.PubMedPubMedCentral Dowling JJ, Vreede AP, Low SE, et al. Loss of myotubularin function results in T-tubule disorganization in zebrafish and human myotubular myopathy. PLoS Genet 2009;5:e1000372.PubMedPubMedCentral
53.
Zurück zum Zitat Al-Qusairi L, Weiss N, Toussaint A, et al. T-tubule disorganization and defective excitation-contraction coupling in muscle fibers lacking myotubularin lipid phosphatase. Proc Natl Acad Sci U S A 2009;106:18763-18768.PubMedPubMedCentral Al-Qusairi L, Weiss N, Toussaint A, et al. T-tubule disorganization and defective excitation-contraction coupling in muscle fibers lacking myotubularin lipid phosphatase. Proc Natl Acad Sci U S A 2009;106:18763-18768.PubMedPubMedCentral
54.
Zurück zum Zitat Toussaint A, Cowling BS, Hnia K, et al. Defects in amphiphysin 2 (BIN1) and triads in several forms of centronuclear myopathies. Acta Neuropathol 2011;121:253-266.PubMed Toussaint A, Cowling BS, Hnia K, et al. Defects in amphiphysin 2 (BIN1) and triads in several forms of centronuclear myopathies. Acta Neuropathol 2011;121:253-266.PubMed
55.
Zurück zum Zitat Durieux AC, Vignaud A, Prudhon B, et al. A centronuclear myopathy-dynamin 2 mutation impairs skeletal muscle structure and function in mice. Hum Mol Genet 2010;19:4820-4836.PubMed Durieux AC, Vignaud A, Prudhon B, et al. A centronuclear myopathy-dynamin 2 mutation impairs skeletal muscle structure and function in mice. Hum Mol Genet 2010;19:4820-4836.PubMed
56.
Zurück zum Zitat Gibbs EM, Davidson AE, Telfer WR, Feldman EL, Dowling JJ. The myopathy-causing mutation DNM2-S619L leads to defective tubulation in vitro and in developing zebrafish. Dis Models Mechan 2014;7:157-161. Gibbs EM, Davidson AE, Telfer WR, Feldman EL, Dowling JJ. The myopathy-causing mutation DNM2-S619L leads to defective tubulation in vitro and in developing zebrafish. Dis Models Mechan 2014;7:157-161.
57.
Zurück zum Zitat Smith LL, Gupta VA, Beggs AH. Bridging integrator 1 (Bin1) deficiency in zebrafish results in centronuclear myopathy. Hum Mol Genet 2014;23:3566-3578.PubMed Smith LL, Gupta VA, Beggs AH. Bridging integrator 1 (Bin1) deficiency in zebrafish results in centronuclear myopathy. Hum Mol Genet 2014;23:3566-3578.PubMed
58.
Zurück zum Zitat Lee E, Marcucci M, Daniell L, et al. Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle. Science 2002;297:1193-1196.PubMed Lee E, Marcucci M, Daniell L, et al. Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle. Science 2002;297:1193-1196.PubMed
59.
Zurück zum Zitat Al-Qusairi L, Prokic I, Amoasii L, et al. Lack of myotubularin (MTM1) leads to muscle hypotrophy through unbalanced regulation of the autophagy and ubiquitin-proteasome pathways. FASEB J 2013;27:3384-3394.PubMed Al-Qusairi L, Prokic I, Amoasii L, et al. Lack of myotubularin (MTM1) leads to muscle hypotrophy through unbalanced regulation of the autophagy and ubiquitin-proteasome pathways. FASEB J 2013;27:3384-3394.PubMed
60.
Zurück zum Zitat Fetalvero KM, Yu Y, Goetschkes M, et al. Defective autophagy and mTORC1 signaling in myotubularin null mice. Mol Cell Biol 2013;33:98-110.PubMedPubMedCentral Fetalvero KM, Yu Y, Goetschkes M, et al. Defective autophagy and mTORC1 signaling in myotubularin null mice. Mol Cell Biol 2013;33:98-110.PubMedPubMedCentral
61.
Zurück zum Zitat Hnia K, Tronchere H, Tomczak KK, et al. Myotubularin controls desmin intermediate filament architecture and mitochondrial dynamics in human and mouse skeletal muscle. J Clin Invest 2011;121:70-85.PubMedPubMedCentral Hnia K, Tronchere H, Tomczak KK, et al. Myotubularin controls desmin intermediate filament architecture and mitochondrial dynamics in human and mouse skeletal muscle. J Clin Invest 2011;121:70-85.PubMedPubMedCentral
62.
Zurück zum Zitat Dowling JJ, Joubert R, Low SE, et al. Myotubular myopathy and the neuromuscular junction: a novel therapeutic approach from mouse models. Dis Models Mechan 2012;5:852-859. Dowling JJ, Joubert R, Low SE, et al. Myotubular myopathy and the neuromuscular junction: a novel therapeutic approach from mouse models. Dis Models Mechan 2012;5:852-859.
63.
Zurück zum Zitat Robb SA, Sewry CA, Dowling JJ, et al. Impaired neuromuscular transmission and response to acetylcholinesterase inhibitors in centronuclear myopathies. Neuromuscul Disord 2011;21:379-386.PubMed Robb SA, Sewry CA, Dowling JJ, et al. Impaired neuromuscular transmission and response to acetylcholinesterase inhibitors in centronuclear myopathies. Neuromuscul Disord 2011;21:379-386.PubMed
64.
Zurück zum Zitat Childers MK, Joubert R, Poulard K, et al. Gene therapy prolongs survival and restores function in murine and canine models of myotubular myopathy. Sci Transl Med 2014;6:220–10. Childers MK, Joubert R, Poulard K, et al. Gene therapy prolongs survival and restores function in murine and canine models of myotubular myopathy. Sci Transl Med 2014;6:220–10.
65.
Zurück zum Zitat Lawlor MW, Armstrong D, Viola MG, et al. Enzyme replacement therapy rescues weakness and improves muscle pathology in mice with X-linked myotubular myopathy. Hum Mol Genet 2013;22:1525-1538.PubMedPubMedCentral Lawlor MW, Armstrong D, Viola MG, et al. Enzyme replacement therapy rescues weakness and improves muscle pathology in mice with X-linked myotubular myopathy. Hum Mol Genet 2013;22:1525-1538.PubMedPubMedCentral
66.
Zurück zum Zitat Gibbs EM, Clarke NF, Rose K, et al. Neuromuscular junction abnormalities in DNM2-related centronuclear myopathy. J Mol Med 2013;91:727-737.PubMed Gibbs EM, Clarke NF, Rose K, et al. Neuromuscular junction abnormalities in DNM2-related centronuclear myopathy. J Mol Med 2013;91:727-737.PubMed
67.
Zurück zum Zitat Stamm DS, Aylsworth AS, Stajich JM, et al. Native American myopathy: congenital myopathy with cleft palate, skeletal anomalies, and susceptibility to malignant hyperthermia. Am J Med Genet A 2008;146A:1832-1841.PubMed Stamm DS, Aylsworth AS, Stajich JM, et al. Native American myopathy: congenital myopathy with cleft palate, skeletal anomalies, and susceptibility to malignant hyperthermia. Am J Med Genet A 2008;146A:1832-1841.PubMed
68.
Zurück zum Zitat Horstick EJ, Linsley JW, Dowling JJ, et al. Stac3 is a component of the excitation-contraction coupling machinery and mutated in Native American myopathy. Nat Commun 2013;4:1952.PubMedPubMedCentral Horstick EJ, Linsley JW, Dowling JJ, et al. Stac3 is a component of the excitation-contraction coupling machinery and mutated in Native American myopathy. Nat Commun 2013;4:1952.PubMedPubMedCentral
69.
Zurück zum Zitat Nelson BR, Wu F, Liu Y, et al. Skeletal muscle-specific T-tubule protein STAC3 mediates voltage-induced Ca2+ release and contractility. Proc Natl Acad Sci U S A 2013;110:11881-11886.PubMedPubMedCentral Nelson BR, Wu F, Liu Y, et al. Skeletal muscle-specific T-tubule protein STAC3 mediates voltage-induced Ca2+ release and contractility. Proc Natl Acad Sci U S A 2013;110:11881-11886.PubMedPubMedCentral
70.
Zurück zum Zitat Jain D, Sharma MC, Sarkar C, et al. Tubular aggregate myopathy: a rare form of myopathy. J Clin Neurosci 2008;15:1222-1226.PubMed Jain D, Sharma MC, Sarkar C, et al. Tubular aggregate myopathy: a rare form of myopathy. J Clin Neurosci 2008;15:1222-1226.PubMed
71.
Zurück zum Zitat Misceo D, Holmgren A, Louch WE, et al. A dominant STIM1 mutation causes Stormorken syndrome. Hum Mutat 2014;35:556-564.PubMed Misceo D, Holmgren A, Louch WE, et al. A dominant STIM1 mutation causes Stormorken syndrome. Hum Mutat 2014;35:556-564.PubMed
72.
Zurück zum Zitat Nesin V, Wiley G, Kousi M, et al. Activating mutations in STIM1 and ORAI1 cause overlapping syndromes of tubular myopathy and congenital miosis. Proc Natl Acad Sci U S A 2014;111:4197-4202.PubMedPubMedCentral Nesin V, Wiley G, Kousi M, et al. Activating mutations in STIM1 and ORAI1 cause overlapping syndromes of tubular myopathy and congenital miosis. Proc Natl Acad Sci U S A 2014;111:4197-4202.PubMedPubMedCentral
73.
Zurück zum Zitat Bohm J, Chevessier F, Maues De Paula A, et al. Constitutive activation of the calcium sensor STIM1 causes tubular-aggregate myopathy. Am J Hum Genet 2013;92:271-278.PubMedPubMedCentral Bohm J, Chevessier F, Maues De Paula A, et al. Constitutive activation of the calcium sensor STIM1 causes tubular-aggregate myopathy. Am J Hum Genet 2013;92:271-278.PubMedPubMedCentral
74.
Zurück zum Zitat Feske S. ORAI1 and STIM1 deficiency in human and mice: roles of store-operated Ca2+ entry in the immune system and beyond. Immunol Rev 2009;231:189-209.PubMed Feske S. ORAI1 and STIM1 deficiency in human and mice: roles of store-operated Ca2+ entry in the immune system and beyond. Immunol Rev 2009;231:189-209.PubMed
75.
Zurück zum Zitat Dirksen RT. Checking your SOCCs and feet: the molecular mechanisms of Ca2+ entry in skeletal muscle. J Physiol 2009;587:3139-3147.PubMedPubMedCentral Dirksen RT. Checking your SOCCs and feet: the molecular mechanisms of Ca2+ entry in skeletal muscle. J Physiol 2009;587:3139-3147.PubMedPubMedCentral
76.
Zurück zum Zitat Stathopulos PB, Schindl R, Fahrner M, et al. STIM1/Orai1 coiled-coil interplay in the regulation of store-operated calcium entry. Nat Commun 2013;4:2963.PubMedPubMedCentral Stathopulos PB, Schindl R, Fahrner M, et al. STIM1/Orai1 coiled-coil interplay in the regulation of store-operated calcium entry. Nat Commun 2013;4:2963.PubMedPubMedCentral
77.
Zurück zum Zitat Wei-Lapierre L, Carrell EM, Boncompagni S, Protasi F, Dirksen RT. Orai1-dependent calcium entry promotes skeletal muscle growth and limits fatigue. Nat Commun 2013;4:2805.PubMed Wei-Lapierre L, Carrell EM, Boncompagni S, Protasi F, Dirksen RT. Orai1-dependent calcium entry promotes skeletal muscle growth and limits fatigue. Nat Commun 2013;4:2805.PubMed
78.
Zurück zum Zitat Yarotskyy V, Protasi F, Dirksen RT. Accelerated activation of SOCE current in myotubes from two mouse models of anesthetic- and heat-induced sudden death. PloS One 2013;8:e77633.PubMedPubMedCentral Yarotskyy V, Protasi F, Dirksen RT. Accelerated activation of SOCE current in myotubes from two mouse models of anesthetic- and heat-induced sudden death. PloS One 2013;8:e77633.PubMedPubMedCentral
79.
Zurück zum Zitat Duke AM, Hopkins PM, Calaghan SC, Halsall JP, Steele DS. Store-operated Ca2+ entry in malignant hyperthermia-susceptible human skeletal muscle. J Biol Chem 2010;285:25645-25653.PubMedPubMedCentral Duke AM, Hopkins PM, Calaghan SC, Halsall JP, Steele DS. Store-operated Ca2+ entry in malignant hyperthermia-susceptible human skeletal muscle. J Biol Chem 2010;285:25645-25653.PubMedPubMedCentral
80.
Zurück zum Zitat Morgan-Hughes JA. Tubular aggregates in skeletal muscle: their functional significance and mechanisms of pathogenesis. Curr Opin Neurol 1998;11:439-442.PubMed Morgan-Hughes JA. Tubular aggregates in skeletal muscle: their functional significance and mechanisms of pathogenesis. Curr Opin Neurol 1998;11:439-442.PubMed
81.
Zurück zum Zitat Boncompagni S, Protasi F, Franzini-Armstrong C. Sequential stages in the age-dependent gradual formation and accumulation of tubular aggregates in fast twitch muscle fibers: SERCA and calsequestrin involvement. Age 2012;34:27-41.PubMedPubMedCentral Boncompagni S, Protasi F, Franzini-Armstrong C. Sequential stages in the age-dependent gradual formation and accumulation of tubular aggregates in fast twitch muscle fibers: SERCA and calsequestrin involvement. Age 2012;34:27-41.PubMedPubMedCentral
82.
Zurück zum Zitat Udd B, Krahe R. The myotonic dystrophies: molecular, clinical, and therapeutic challenges. Lancet Neurol 2012;11:891-905.PubMed Udd B, Krahe R. The myotonic dystrophies: molecular, clinical, and therapeutic challenges. Lancet Neurol 2012;11:891-905.PubMed
83.
84.
Zurück zum Zitat Kimura T, Lueck JD, Harvey PJ, et al. Alternative splicing of RyR1 alters the efficacy of skeletal EC coupling. Cell Calcium 2009;45:264-274.PubMedPubMedCentral Kimura T, Lueck JD, Harvey PJ, et al. Alternative splicing of RyR1 alters the efficacy of skeletal EC coupling. Cell Calcium 2009;45:264-274.PubMedPubMedCentral
85.
Zurück zum Zitat Kimura T, Nakamori M, Lueck JD, et al. Altered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2 + -ATPase in myotonic dystrophy type 1. Hum Mol Genet 2005;14:2189-2200.PubMed Kimura T, Nakamori M, Lueck JD, et al. Altered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2 + -ATPase in myotonic dystrophy type 1. Hum Mol Genet 2005;14:2189-2200.PubMed
86.
Zurück zum Zitat Tang ZZ, Yarotskyy V, Wei L, et al. Muscle weakness in myotonic dystrophy associated with misregulated splicing and altered gating of Ca(V)1.1 calcium channel. Hum Mol Genet 2012;21:1312-1324.PubMedPubMedCentral Tang ZZ, Yarotskyy V, Wei L, et al. Muscle weakness in myotonic dystrophy associated with misregulated splicing and altered gating of Ca(V)1.1 calcium channel. Hum Mol Genet 2012;21:1312-1324.PubMedPubMedCentral
87.
Zurück zum Zitat Fugier C, Klein AF, Hammer C, et al. Misregulated alternative splicing of BIN1 is associated with T tubule alterations and muscle weakness in myotonic dystrophy. Nat Med 2011;17:720-725.PubMed Fugier C, Klein AF, Hammer C, et al. Misregulated alternative splicing of BIN1 is associated with T tubule alterations and muscle weakness in myotonic dystrophy. Nat Med 2011;17:720-725.PubMed
88.
Zurück zum Zitat Morrison LA. Dystrophinopathies. Handb Clin Neurol 2011;101:11-39.PubMed Morrison LA. Dystrophinopathies. Handb Clin Neurol 2011;101:11-39.PubMed
89.
Zurück zum Zitat Rahimov F, Kunkel LM. The cell biology of disease: cellular and molecular mechanisms underlying muscular dystrophy. J Cell Biol 2013;201:499-510.PubMedPubMedCentral Rahimov F, Kunkel LM. The cell biology of disease: cellular and molecular mechanisms underlying muscular dystrophy. J Cell Biol 2013;201:499-510.PubMedPubMedCentral
90.
Zurück zum Zitat Watkins SC, Hoffman EP, Slayter HS, Kunkel LM. Immunoelectron microscopic localization of dystrophin in myofibres. Nature 1988;333:863-866.PubMed Watkins SC, Hoffman EP, Slayter HS, Kunkel LM. Immunoelectron microscopic localization of dystrophin in myofibres. Nature 1988;333:863-866.PubMed
91.
Zurück zum Zitat Capote J, DiFranco M, Vergara JL. Excitation-contraction coupling alterations in mdx and utrophin/dystrophin double knockout mice: a comparative study. Am J Physiol Cell Physiol 2010;298:C1077-C1086.PubMedPubMedCentral Capote J, DiFranco M, Vergara JL. Excitation-contraction coupling alterations in mdx and utrophin/dystrophin double knockout mice: a comparative study. Am J Physiol Cell Physiol 2010;298:C1077-C1086.PubMedPubMedCentral
92.
Zurück zum Zitat Bellinger AM, Reiken S, Carlson C, et al. Hypernitrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle. Nat Med 2009;15:325-330.PubMedPubMedCentral Bellinger AM, Reiken S, Carlson C, et al. Hypernitrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle. Nat Med 2009;15:325-330.PubMedPubMedCentral
93.
Zurück zum Zitat Fauconnier J, Thireau J, Reiken S, et al. Leaky RyR2 trigger ventricular arrhythmias in Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 2010;107:1559-1564.PubMedPubMedCentral Fauconnier J, Thireau J, Reiken S, et al. Leaky RyR2 trigger ventricular arrhythmias in Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 2010;107:1559-1564.PubMedPubMedCentral
94.
Zurück zum Zitat Goonasekera SA, Lam CK, Millay DP, et al. Mitigation of muscular dystrophy in mice by SERCA overexpression in skeletal muscle. J Clin Invest 2011;121:1044-1052.PubMedPubMedCentral Goonasekera SA, Lam CK, Millay DP, et al. Mitigation of muscular dystrophy in mice by SERCA overexpression in skeletal muscle. J Clin Invest 2011;121:1044-1052.PubMedPubMedCentral
95.
Zurück zum Zitat Kirschner J, Lochmuller H. Sarcoglycanopathies. Handb Clin Neurol 2011;101:41-46.PubMed Kirschner J, Lochmuller H. Sarcoglycanopathies. Handb Clin Neurol 2011;101:41-46.PubMed
96.
Zurück zum Zitat Andersson DC, Meli AC, Reiken S, et al. Leaky ryanodine receptors in beta-sarcoglycan deficient mice: a potential common defect in muscular dystrophy. Skelet Muscle 2012;2:9.PubMedPubMedCentral Andersson DC, Meli AC, Reiken S, et al. Leaky ryanodine receptors in beta-sarcoglycan deficient mice: a potential common defect in muscular dystrophy. Skelet Muscle 2012;2:9.PubMedPubMedCentral
97.
Zurück zum Zitat Amato AA, Brown RH, Jr. Dysferlinopathies. Handb Clin Neurol 2011;101:111-118.PubMed Amato AA, Brown RH, Jr. Dysferlinopathies. Handb Clin Neurol 2011;101:111-118.PubMed
98.
Zurück zum Zitat Kerr JP, Ward CW, Bloch RJ. Dysferlin at transverse tubules regulates Ca homeostasis in skeletal muscle. Front Physiol 2014;5:89.PubMedPubMedCentral Kerr JP, Ward CW, Bloch RJ. Dysferlin at transverse tubules regulates Ca homeostasis in skeletal muscle. Front Physiol 2014;5:89.PubMedPubMedCentral
99.
Zurück zum Zitat Kerr JP, Ziman AP, Mueller AL, et al. Dysferlin stabilizes stress-induced Ca2+ signaling in the transverse tubule membrane. Proc Natl Acad Sci U S A 2013;110:20831-20836.PubMedPubMedCentral Kerr JP, Ziman AP, Mueller AL, et al. Dysferlin stabilizes stress-induced Ca2+ signaling in the transverse tubule membrane. Proc Natl Acad Sci U S A 2013;110:20831-20836.PubMedPubMedCentral
100.
Zurück zum Zitat Gallardo E, Saenz A, Illa I. Limb-girdle muscular dystrophy 2A. Handb Clin Neurol 2011;101:97-110.PubMed Gallardo E, Saenz A, Illa I. Limb-girdle muscular dystrophy 2A. Handb Clin Neurol 2011;101:97-110.PubMed
101.
Zurück zum Zitat Kramerova I, Kudryashova E, Wu B, Ottenheijm C, Granzier H, Spencer MJ. Novel role of calpain-3 in the triad-associated protein complex regulating calcium release in skeletal muscle. Hum Mol Genet 2008;17:3271-3280.PubMedPubMedCentral Kramerova I, Kudryashova E, Wu B, Ottenheijm C, Granzier H, Spencer MJ. Novel role of calpain-3 in the triad-associated protein complex regulating calcium release in skeletal muscle. Hum Mol Genet 2008;17:3271-3280.PubMedPubMedCentral
102.
Zurück zum Zitat Castets P, Lescure A, Guicheney P, Allamand V. Selenoprotein N in skeletal muscle: from diseases to function. J Mol Med 2012;90:1095-1107.PubMed Castets P, Lescure A, Guicheney P, Allamand V. Selenoprotein N in skeletal muscle: from diseases to function. J Mol Med 2012;90:1095-1107.PubMed
103.
Zurück zum Zitat Arbogast S, Ferreiro A. Selenoproteins and protection against oxidative stress: selenoprotein N as a novel player at the crossroads of redox signaling and calcium homeostasis. Antioxid Redox Signal 2010;12:893-904.PubMed Arbogast S, Ferreiro A. Selenoproteins and protection against oxidative stress: selenoprotein N as a novel player at the crossroads of redox signaling and calcium homeostasis. Antioxid Redox Signal 2010;12:893-904.PubMed
104.
Zurück zum Zitat Rederstorff M, Castets P, Arbogast S, et al. Increased muscle stress-sensitivity induced by selenoprotein N inactivation in mouse: a mammalian model for SEPN1-related myopathy. PloS One 2011;6:e23094.PubMedPubMedCentral Rederstorff M, Castets P, Arbogast S, et al. Increased muscle stress-sensitivity induced by selenoprotein N inactivation in mouse: a mammalian model for SEPN1-related myopathy. PloS One 2011;6:e23094.PubMedPubMedCentral
105.
Zurück zum Zitat Castets P, Bertrand AT, Beuvin M, et al. Satellite cell loss and impaired muscle regeneration in selenoprotein N deficiency. Hum Mol Genet 2011;20:694-704.PubMed Castets P, Bertrand AT, Beuvin M, et al. Satellite cell loss and impaired muscle regeneration in selenoprotein N deficiency. Hum Mol Genet 2011;20:694-704.PubMed
106.
Zurück zum Zitat Jungbluth H, Sewry CA, Muntoni F. Core myopathies. Semin Pediatr Neurol 2011;18:239-249.PubMed Jungbluth H, Sewry CA, Muntoni F. Core myopathies. Semin Pediatr Neurol 2011;18:239-249.PubMed
107.
Zurück zum Zitat Jurynec MJ, Xia R, Mackrill JJ, et al. Selenoprotein N is required for ryanodine receptor calcium release channel activity in human and zebrafish muscle. Proc Natl Acad Sci U S A 2008;105:12485-12490.PubMedPubMedCentral Jurynec MJ, Xia R, Mackrill JJ, et al. Selenoprotein N is required for ryanodine receptor calcium release channel activity in human and zebrafish muscle. Proc Natl Acad Sci U S A 2008;105:12485-12490.PubMedPubMedCentral
108.
Zurück zum Zitat Arbogast S, Beuvin M, Fraysse B, Zhou H, Muntoni F, Ferreiro A. Oxidative stress in SEPN1-related myopathy: from pathophysiology to treatment. Ann Neurol 2009;65:677-686.PubMed Arbogast S, Beuvin M, Fraysse B, Zhou H, Muntoni F, Ferreiro A. Oxidative stress in SEPN1-related myopathy: from pathophysiology to treatment. Ann Neurol 2009;65:677-686.PubMed
109.
Zurück zum Zitat Castets P, Maugenre S, Gartioux C, et al. Selenoprotein N is dynamically expressed during mouse development and detected early in muscle precursors. BMC Develop Biol 2009;9:46. Castets P, Maugenre S, Gartioux C, et al. Selenoprotein N is dynamically expressed during mouse development and detected early in muscle precursors. BMC Develop Biol 2009;9:46.
110.
Zurück zum Zitat Majczenko K, Davidson AE, Camelo-Piragua S, et al. Dominant mutation of CCDC78 in a unique congenital myopathy with prominent internal nuclei and atypical cores. Am J Hum Genet 2012;91:365-371.PubMedPubMedCentral Majczenko K, Davidson AE, Camelo-Piragua S, et al. Dominant mutation of CCDC78 in a unique congenital myopathy with prominent internal nuclei and atypical cores. Am J Hum Genet 2012;91:365-371.PubMedPubMedCentral
111.
Zurück zum Zitat Klos Dehring DA, Vladar EK, Werner ME, Mitchell JW, Hwang P, Mitchell BJ. Deuterosome-mediated centriole biogenesis. Develop Cell 2013;27:103-112. Klos Dehring DA, Vladar EK, Werner ME, Mitchell JW, Hwang P, Mitchell BJ. Deuterosome-mediated centriole biogenesis. Develop Cell 2013;27:103-112.
Metadaten
Titel
Triadopathies: An Emerging Class of Skeletal Muscle Diseases
verfasst von
James J. Dowling
Michael W. Lawlor
Robert T. Dirksen
Publikationsdatum
01.10.2014
Verlag
Springer US
Erschienen in
Neurotherapeutics / Ausgabe 4/2014
Print ISSN: 1933-7213
Elektronische ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-014-0300-3

Weitere Artikel der Ausgabe 4/2014

Neurotherapeutics 4/2014 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.