Skip to main content
Erschienen in: Cancer Cell International 1/2022

Open Access 01.12.2022 | Review

Tumor-promoting myeloid cells in the pathogenesis of human oncoviruses: potential targets for immunotherapy

verfasst von: Azin Aghamajidi, Pooya Farhangnia, Salar Pashangzadeh, Amirmasoud Rayati Damavandi, Reza Jafari

Erschienen in: Cancer Cell International | Ausgabe 1/2022

Abstract

Oncoviruses, known as cancer-causing viruses, are typically involved in cancer progression by inhibiting tumor suppressor pathways and uncontrolled cell division. Myeloid cells are the most frequent populations recruited to the tumor microenvironment (TME) and play a critical role in cancer development and metastasis of malignant tumors. Tumor-infiltrating myeloid cells, including tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), tumor-associated dendritic cells (TADCs), and tumor-associated neutrophils (TANs) exert different states from anti-tumorigenic to pro-tumorigenic phenotypes in TME. Although their role in the anti-tumorigenic state is well introduced, their opposing roles, pro-tumorigenic activities, such as anti-inflammatory cytokine and reactive oxygen species (ROS) production, should not be ignored since they result in inflammation, tumor progression, angiogenesis, and evasion. Since the blockade of these cells had promising results against cancer progression, their inhibition might be helpful in various cancer immunotherapies. This review highlights the promoting role of tumor-associated myeloid cells (TAMCs) in the pathophysiology of human virus tumorigenesis.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Background

Human oncogenic viruses, known as oncoviruses, potentially contribute to an estimated 12–20% of human cancers, accounting for a large fraction of the global cancer burden [1]. Recently, several oncoviruses with DNA or RNA genomes such as human papillomavirus (HPV), Epstein-Barr virus (EBV), hepatitis B virus (HBV), hepatitis C virus (HCV), human herpesvirus-8 (HHV-8), human T-cell lymphotropic virus-1 (HTLV-1), and Merkel cell polyomavirus (MCV) have been recognized as the primary contributors to cancer development [2]. Viral carcinogenesis is a complex process associated with viral factors and immune escape mechanisms. There is interesting crosstalk between different viral and host factors which mediate the signaling pathways and cellular process. In general, oncoviruses can inhibit the tumor suppressor pathway p53, which supports primary tumor growth and progression [3]. It has also been demonstrated that viral factors potentially activate PI3K-Akt-mTOR, Notch, and Wnt pathways leading to cell overgrowth, tumor invasion, and angiogenesis [4]. On the other hand, oncoviruses establish an infection-associated chronic inflammation that could mediate cancer development through different mechanisms including tissue remodeling, angiogenesis, and production of growth factors [5]. The tumor microenvironment (TME) consists of different immune cells which play a prominent role in the tumor progression. Myeloid cells are the heterogeneous population of the innate immune system, which is considered the first line of defense. These cells include tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), tumor-associated dendritic cells (TADCs), and tumor-associated neutrophils (TANs) that predominantly infiltrate the TME [6]. Despite the central role of myeloid cells in regulating anti-tumor immune responses, tumor-associated myeloid cells (TAMCs) can promote tumorigenesis mechanisms [7]. It is noteworthy that TAMCs exert crucial pro-tumorigenic functions in regulating cancer-related inflammation, expression of pro-angiogenic factors, tumor angiogenesis, tumor progression, and promotion of immune evasion [8]. The pro-tumorigenic functions of TAMCs, including anti-inflammatory cytokine secretion and chronic ROS production, have been considered significant obstacles to developing effective cancer treatments. Therefore, TAMCs are considered a double-edged sword of immune effectors in cancer progression. Given the dual role of TAMCs in cancer development and their therapeutic potential, this review highlights the role of tumor-promoting myeloid cells in the pathogenesis of human oncoviruses and provides new insights into cancer immunotherapy.

Anti- and pro-tumorigenic function of myeloid cells in cancer pathogenesis

Myeloid cells exert an immunosuppressive activity to combat the proliferating tumor cells; however, it has been demonstrated that they represent opposing functions from anti-tumorigenic to pro-tumorigenic phenotypes in the TME. Hence, we briefly describe the mechanism of the anti- and pro-tumorigenic function of TAMCs in the immune escape and cancer pathogenesis.

Tumor-associated regulatory dendritic cells (TAR-DCs)

Dendritic cells (DCs) are a double-edged sword population in the TME. Plasmacytoid (pDC), conventional (cDC1 or cDC2), and inflammatory DC (moDC) are three phenotypically and functionally distinct subsets of DCs [9]. These immune cells play a crucial role in various cancer types, including breast, lung, colorectal, ovarian, head and neck, bladder, gastric, and renal cancer [10]. Although, DCs mediate antigen trafficking and stimulation of CD8+ T-cell responses, however, TAR-DCs exhibited immunosuppressive properties by low expression of costimulatory molecules and high expression of regulatory molecules. Stromal-cell derived factor-1 (SDF-1) which is also known as CXCL12, in the TME of malignant tumors and high expression of CXCL4 ligand results in the accumulation of DCs in TME. Immunoglobulin-like transcript 7 (ILT7) recognizes bone marrow stromal cell antigen 2 (BST2), which is highly expressed on tumor cells, resulting in negative regulation of the interferon responses [11]. It has been demonstrated that IL-10 produced by TAMs potentially suppresses the secretion of IL-12, which mediates immune escape and metastatic progression. The inhibition of IL-10 could restore the functionality and cytokine production of DCs [12].

Tumor-associated macrophages (TAMs)

Tumor-associated macrophages (TAMs) are abundant myeloid cells in the TMEwith anti-tumorigenic or strongly pro-tumorigenic phenotypes. Macrophage colony-stimulating factor (M-CSF) is highly expressed in the TME, which recruits the macrophages from the bone marrow or spleen [13]. TAMs are classified as classically activated-M1 and alternatively activated-M2 macrophages which induce anti-tumorigenic Th1 immune responses and pro-tumorigenic functions such as tumor growth and invasion, immune suppression, and, angiogenesis which is mediated by cytokine and chemokine production respectively [14]. M1 macrophages exert anti-tumor activity by direct cytotoxic effects mediated by ROS production, and antibody-dependent cell-mediated cytotoxicity (ADCC) to eliminate tumor cells [15]. M2 macrophages are predominantly the vast majority of non-malignant TAMs associated with the production of immunosuppressive chemokines and factors including TGF-β and IL-10. Furthermore, TAMs are related to angiogenesis by producing pro-angiogenic factors, including vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), and matrix metalloproteinase (MMP) [13]. TAM can enhance tumor proliferation and invasion mediated by activation of NF-κB and STAT3 and expression of pro-inflammatory cytokines [16]. Elevated levels of TAMs are correlated with poor prognosis of diverse types of cancers [17, 18].

Myeloid-derived suppressor cells (MDSCs)

MDSCs are developmentally immature non-macrophage cells with an immunosuppressive function. These cells potentially prevent the activation of CD4+ and CD8+ T-cells. Also, it has been suggested that MDSCs suppress NK cells, which may disturb anti-tumor immunity [19]. Therefore, MDSCs are considered a serious hurdle against cancer immunotherapy. There are distinct subsets of MDSCs that express heterogeneous markers, including Siglec-3/CD33, CD14, CD15, and CD66b. However, CD11b is expressed by all types of human MDSCs. MDSCs exert immunosuppressive function through the production of IL-10, TGF-β, ARG1, IDO, and CD40 [12]. MDSCs inhibit T lymphocytes via the ROS or the depletion of L-arginine (L-arg) [20]. MDSCs suppress NK cells by expressing transforming growth factor β (TGF-β) and decreasing the expression of the NK-cell activating receptor NKp30 [21]. MDSCs also inhibit myeloid cell differentiation via a ROS-dependent mechanism [22].

Tumor-associated neutrophils (TANs)

As the first line of immune defense, neutrophils are a substantial population that infiltrates the TME. TANs have a dual function of anti- and pro-tumor activities, modulating anti-tumor immunity [23]. Interestingly, TANs are classified as two major types, N1 and N2, with anti-tumor and pro-tumor functions, respectively [23]. N1 mediates direct and indirect anti-tumor activity by ROS production and H2O2 and ADCC that could effectively kill tumor cells [24]. TANs actively contribute to tumor proliferation, angiogenesis, tumor progression, and metastasis through the high-level expression of neutrophil elastase and matrix metalloproteinase 9 (MMP9) [25]. Moreover, upregulation of TANs in the TME strongly predicts the poor survival rate in patients with cancer [26]. TANs could modulate innate and adaptive immune responses by different mechanisms. As an instance, they decrease the CTL response by upregulation of arginase-1. Furthermore, the production of neutrophil-secreted neutrophil elastase (NE) leads to tumor cellular proliferation. TANs mediate angiogenesis by secretion of VEGF and hepatocyte growth factor (HGF) [23].

Tumor-promoting myeloid cells and human oncoviral infection

Here we highlight the mechanistic strategies by oncoviral infection in immune disturbances (Table 1).
Table 1
Key mechanisms employed by oncoviruses
Virus
Oncogene/Oncoprotein
Signaling pathway
Downstream consequence
Epstein-Barr virus (EBV)
LMP1
Upregulation of IL-1, IL-6, and GM-CSF
MDSC proliferation
Increased M2 macrophages
Inhibition of NK cell and T-cell
Hepatitis B virus (HBV)
HBx
Increased M2 macrophages
Activation of NKG2D in NK cells
T cell senescence
Hepatitis C virus (HCV)
Core protein
Activation of TLR2/PI3K/AKT/STAT3 signaling cascade
Inhibition of CD4 + T cells
MDSC proliferation
Downregulation of IFN-γ
Human herpesvirus 8 (HHV-8)
vFLIP
Induction of CD11b + Gr1 + cells
MDSC proliferation
Human papillomavirus (HPV)
E6, E7
Inhibition of p53,
MDSC proliferation
Increased Treg cell
Downregulation of IFN-γ

Epstein-Barr virus (EBV)

Epstein-Barr virus (EBV), first identified in the tumor cells of Burkitt lymphoma, is now associated with a strikingly diverse variety of lymphoproliferative lesions and malignant lymphomas of B, T, and NK cell origin [27]. Here, we highlight the association between EBV and tumor-promoting myeloid cells such as MDSCs and TAMs.

MDSCs

The latent membrane protein-1 (LMP1) is the primary oncogene of EBV that plays a critical role in the MDSCs proliferation and tumor immunosuppression. A large fraction of MDSCs is found in patients with EBV-associated T/NK cell lymphoproliferative diseases, which may dampen the antiviral T-cell responses [28]. LMP1-mediated glycolysis enhances the production of IL-1β, IL-6, and GM-CSF, the proliferation of tumor-associated MDSCs, and the inhibition of T-cells and NK cells, which lead to tumor immunosuppression [29, 30]. The accumulation of PMN-MDSCs in nasopharyngeal cancer survivors with persistent hepatitis B may suppress the host immune response [31] to the Epstein-Barr virus and be linked to tumor recurrence via ER stress/ROS pathway.

TAMs

In gastric cancer, the EBV-encoded miR-BART11 targets FOXP1 to enhance the tumor-associated macrophage-induced epithelial-mesenchymal transition [32]. Zhang et al. revealed that in nasopharyngeal carcinoma (NPC) cells, EBV induced M2 phenotype in TAMs and elevated the p-ATR expression. These two inductions were highly connected and linked to higher tumor staging, lymph node metastases, and poor patient prognosis [33]. Activation of ATR triggered by EBV increased subcutaneous tumor development, elevated Ki67 production, and lung metastasis in nude mice through the M2-type TAMs recruitment [33]. CD68 as a TAMs marker was higher in EBV-positive NPC. However, between EBV-positive and EBV-negative NPC, there was no variation in M2 macrophage number [34]. The survival of EBV+ tumor cells is dependent on TAMs in the EBV-positive TME [35]. The EBV status of lymphoma cells affected TAMs by up-regulation of CXCR10 and VEGF, causing angiogenesis and tumor survival. The in vivo reduction of macrophages revealed that they are required to survive EBV-positive tumor cells [35].
EBV expression has been identified in lesional macrophages of different cancers, ranging from thyroid to uterine carcinoma and some types of lymphoma that possibly elicit EBV lytic infection of macrophages in many tumor-associated macrophages in EBV-related malignancies [36].
In classical Hodgkin’s lymphoma, tumor-infiltrating macrophages are linked to a poor prognosis and the presence of EBV [37]. Increasing the number of TAMs is related to a reduction in overall survival, while greater levels of markers are statistically substantially associated with the presence of EBV infection [38].

Hepatitis B virus (HBV)

The most frequent kind of liver cancer is hepatocellular carcinoma (HCC). HBV is a chronic infection that affects over 350million individuals worldwide. At least half of all HCC cases globally are caused by chronic hepatitis B virus (HBV) infection [39]. Here, we highlight evidence of the association between HBV and tumor-promoting myeloid cells.

MDSCs

HCC patients had considerably greater percentages of MDSCs and PMN-MDSCs than chronic hepatitis B patients and healthy controls [40]. Pal et al. have demonstrated that the induction of regulatory T-cells (Tregs) by myeloid-derived suppressor cells in persistent HBV infections featuring high viral surface antigen is long-lasting and persists following antiviral treatment [41]. In the chronic liver failure posed by HBV, the proliferation of myeloid-derived suppressor cells was strongly associated with the severity and course of the disease [42].

Macrophages

Macrophages are monocytic phagocytes with antigen-presentation and cytokine-producing capabilities. The tissue-specific liver macrophages are Kupffer cells dominating other innate immune cells in the organ [43]. From the onset of HBV infection through the beginning and development of HCC, macrophages act as the key mediator of the pathogenic process. Kupffer cells have a role in inflammatory responses and tolerance generation in the early stages of infection [44]. In a specifically modified murine model of HBV infection, liver dysfunction was linked to an enormous frequency of human M2 macrophages [45]. Kupffer cells may impede the progression of HBV-associated HCC by inhibiting T-cell-mediated anti-tumor activity, limiting T-cell activation with PD-L1 expression on monocytes, and causing Tim3+/CD4+ and Tim3+/CD8+ cells to senescence [46, 47].

NK cells

The lymphocytes in the human liver tissue are predominantly natural killer cells (NK cells). Patients with persistent HBV and HCV infection have more NK cells in their liver [44]. A ligand of the NKG2D receptor, MICA, is upregulated in HBV infection, and soluble MICA levels have been linked to modulating responses directed by NK cells, which are essential in developing HCC in HBV-associated HCC patients [44, 48]. Several mechanisms have been shown to selectively impair NK cell function after chronic HBV infection. These include TGF-β and IL-10 stimulation of NK cells and their increased expression of Tim-3 triggered by HBV, hindering their activity [49, 50].

Hepatitis C virus (HCV)

HCV infection affects more than 270million individuals globally. HCV produces a chronic and lifelong infection in most infected individuals. This persistent inflammation in the liver leads to macronodular cirrhosis in 20% of people who contract it. A 4 to 7% yearly risk of progressing to HCC is associated with these individuals [51].
Through the TLR2/PI3K/AKT/STAT3 signaling cascade, HCV induced MDSC-like suppressive monocytes that activated CD4+Foxp3+ Tregs and inhibited the autologous CD4+ T-cell activation [52]. HCV stimulates the accumulation of CD33+ MDSCs, which reduces T-cell responsiveness via the production of ROS [53]. IFN-γ production by natural killer cells is suppressed by MDSCs induced by HCV, which alter cellular metabolism by inhibiting arginase-1 [54]. MDSCs triggered by HCV promote the development of Tregs while inhibiting the activity of effector T-cells [55]. Hepatitis C core protein polarizes granulocytic myeloid-derived suppressor cells via the IL-10/STAT3 signaling [56].
A long non-coding RNA (lncRNA) named HOXA transcript antisense RNA myeloid-specific 1 (HOTAIRM1) targets HOXA1 gene expression to regulate myeloid cell development. HOTAIRM1 enhances MDSCs growth and suppressive activities during HCV infection through the HOXA1-miR124 axis [57]. Exosomes associated with HCV suppress miR-124, which promotes the growth of myeloid-derived suppressor cells [58]. RUNX1 overlapping RNA (RUNXOR) is another lncRNA that targets runt-related transcription factor 1 (RUNX1) and is crucial for myeloid cell development. Exosomes associated with HCV through the STAT3-miR124 axis upregulate RUNXOR and RUNX1, increasing the MDSCs population and suppressive capabilities [59].

Human herpesvirus 8 (HHV-8)

The causative agent of Kaposi’s sarcoma (KS) is Kaposi’s sarcoma herpesvirus (KSHV; also known as human herpesvirus 8 (HHV-8)). KS is the most prevalent neoplasm among untreated HIV patients, although it may also happen in immunosuppressive conditions after organ transplantation [60]. KSHV vFLIP is a latent infection-associated viral oncoprotein. CD11b+Gr1+ cells with suppressor immune phenotype are induced by vFLIP, which remodels myeloid differentiation and causes their proliferation [61]. Based on the evidence, DC exerts decreased antiviral immune responses and altered cytokine production during the HHV-8 infection [62]. It has also been demonstrated that HHV-8 infection is associated with prostate cancer [63]. Moreover, the study on the Iranian population has indicated the high prevalent rate of the HHV-8 genome among patients with cervical cancer [64]. Therefore, it can be perceived that HHV-8 infection may be associated with an increased risk of cervical cancer.

Human papillomavirus (HPV)

Cervical cancer is caused by certain HPV (human papillomavirus) genotypes. Other anogenital cancers and a subset of head and neck cancers seem to be caused by the same genotypes. It is necessary to sustain the malignant development of cervical cancer cells by inducing the expression of particular viral oncoproteins, E6 and E7, which specifically inhibit the tumor suppressors p53 and RB [65]. In malignancies pertaining to HPV, MDSCs are related to both poor clinical outcomes and resistance to treatment. They inhibit the activity of CTLs, downregulate IFN-γ, and increase the frequency of Tregs, all of which contribute to carcinogenesis. Furthermore, compared to normal controls, their levels were elevated, indicating a clear relationship between pathological grade and their levels [6668]. Activating CD8+ effector memory T-cells and controlling MDSCs together allowed protection against cancers caused by the HPV-16 serotype [69].
The oncogenic mechanisms of tumor-promoting myeloid cells in reviewed human oncoviral infections have been depicted in Fig.1.

Tumor-promoting myeloid cells and potential targets for immunotherapy of human oncoviruses

Due to the immunosuppressive nature of MDSCs and TAMs, these cells have been considered two main potential targets for cancer immunotherapy. Although, different therapeutic approaches to target these immunosuppressive myeloid cells are being investigated. Here, we will provide the strategies for repolarization and revival of tumor-promoting myeloid cells (Table 2).
Table 2
The strategies of repolarization and revival of tumor-promoting myeloid cells
Mechanism
Molecular and/or Cellular Target
Agent(s)
Reference
Blocking recruitment
CXCR4/CXCL12 axis
AMD3100
[125]
PI3Kγ
IPI-549
[126]
mTORC
Rapalogs
[127]
BTK
Ibrutinib
[128]
CCR2/CCL2
Carlumab, C1142, Bindarit
[129132]
Inhibiting differentiation
CSF1R/CSF1 axis
Emactuzumab (RG7155), Cabiralizumab (FPA008), Pexidartinib, ARRY-382, SNFX-6352, BLZ945, AMG820, IMC-CS4, LY3022855
[93, [133140]
CD40 activation
CD40
Selicrelumab, APX005M, SEA-CD40, CP-870-893
[141–[144]
TLR activation
TLR1
Pam3
[145]
TLR2
Pam3-CSK4, SMU-Z1, LTA
[145147]
TLR3
Poly:IC
[148]
TLR4
GSK1795091
[149]
TLR6
LTA
[150]
TLR7/8
NKTR262, Resiquimod, Imiquimod, SM-052
[151153]
TLR9
IMO-2125, CMP-001, SD-101 CpG
[154156]
Immune checkpoint blockade
SIRPα/CD47 axis
CV1, TTI-621, Hu5F9-G4
[157159]
MARCO
mAbs (Unknown)
[160]
PI3K inhibition
PI3K
SF1126, SRX3207, Clotrimazole
[111113]
HDAC inhibition
HDAC
TMP195
[116]
Angiogenesis inhibition
VEGF/VEGFR axis
mAb
[161]
Apoptosis
TAM
Zoledronate, Trabectedin
[82], [84]
Inhibition of ATP synthesis
ATP synthase
Oligomycin, 2-Deoxyglucose
[162], [163]

Blocking recruitment

Blocking the recruitment of MDSCs and TAMs may be a beneficial strategy for reducing tumorigenesis and immunosuppression. CCR2+ TAMs and MDSCs in TME are recruited by the CCL2 chemokine [7072]. Blocking CCL2/CCR2 axis reverses MDSCs infiltration into the tumor, augmenting the effectiveness of the cancer immunotherapy [73]. In breast cancer models, removing CCR2 blockade induces tumor progression, migration, and angiogenesis [74]. Clinical studies are now underway for anti-CCR2 agents, including carlumab (CNTO 888), PF-04136309, MLN1202, BMS-813,160, and CCX872-B [75, 76].
The CXCL12/CXCR4 axis governs TAMs’ migration into hypoxic tumor areas through the endothelial barrier [77]. Targeting the CXCL12/CXCR4 axis in multiple cancer models, including prostate and breast cancer, reduces tumor burden and metastatic susceptibility by preventing TAM infiltration [78, 79].

Depleting macrophage populations in the TME

TAMs are among the most common and important non-neoplastic cell groups in the established TME. The differentiation of macrophages into tumor-suppressive M1 or tumor-promoting M2 types is an important stage in the formation of the TME. Implementing three strategies through this pivotal axis could pave for novel cancer treatment strategies. These strategies could alter M2 TAM survival and apoptotic mechanisms or disrupt their signaling pathways, suppress chemotactic potential toward the tumor, and reprogram M2 TAMs to produce M1 phenotype macrophages [80].
Bisphosphonates elicit myeloid cell cytotoxicity by preferentially targeting phagocytic cells, including TAMs [81]. Zoledronate, a third-generation bisphosphonate, is cytotoxic to TAMs that express matrix metalloproteinase-9 (MMP9) and improves macrophage anti-tumor activity by polarizing monocytes toward pro-inflammatory phenotype [76, 82]. Trabectedin, a drug mainly used for soft tissue malignancies, inhibits TAMs, enhancing anti-cancer adaptive immunity in response to anti-programmed cell death protein 1 (PD-1) treatment [83]. Trabectedin causes mononuclear phagocytes to undergo accelerated apoptosis. In animal tumor models, trabectedin reduced angiogenesis by selectively depleting monocytes/macrophages in the blood, spleens, and tumors [84].

Reprogramming metabolism

Several agents, including growth factors, could modify macrophages’ immune and metabolic responses in their residing microenvironment. This mechanism is reflected in the tricarboxylic acid (TCA) cycle disruption in M1 macrophages with the stimulation of inflammatory mediators resulting in IL-1 and Fatty acid synthesis and switching to pro-inflammatory phenotype [76, 8588]. M2 macrophages, on the other hand, have an intact TCA cycle by external anti-inflammatory stimulation, which promotes mitochondrial oxidative phosphorylation (OXPHOS), yielding a higher ATP production [76, 89]. Inhibiting ATP production in M2 macrophages with an ATP synthase or a hexokinase inhibitor decreases anti-inflammatory characteristics and suppresses pro-tumorigenic function [90, 91].

Reprogramming cellular signaling

To induce tumoricidal potential in MDSCs and TAMs, several factors could be used to reprogram their signaling pathways, including colony-stimulating factor 1/colony-stimulating factor 1 receptor (CSF1/CSF1R) blockade, TLR agonists, PI3K inhibitors, CD40 agonists [64], and Class IIa histone deacetylase inhibitors (HDACis) [76, 92, 93]. Promising targets are the macrophage surface receptors that aid antibody-dependent cellular cytotoxicity/phagocytosis (ADCC/ADCP). Macrophages harbor a membrane protein called signal regulatory protein alpha (SIRP-α) binding to CD47 molecules expressed on tumoral cells, which help them evade tumor immunosurveillance [94]. However, anti-SIRPα antibodies cause tumor cell phagocytosis while preserving T-cells [95].
TLRs agonists could induce pro-inflammatory and anti-tumor phenotypes in TAMs. Feng et al. developed a glucomannan polysaccharide with acetyl modification to the degree of 1.8 (acGM-1.8), which stimulates TLR2 signaling and promotes macrophages toward becoming anti-tumor [96]. TLR7/8 agonist-loaded nanoparticles augment cancer immunotherapy via polarizing TAMs [97]. TLR-3 stimulation via modulating IFN-αβ signaling restricts tumor progression by skewing M2 macrophages to the M1 phenotype [98]. TLR 7/8 agonists also stimulate human MDSCs to differentiate toward anti-tumor M1-like macrophages, which may reverse the suppressive action of MDSCs [99].
CSF1/CSF1R blockade in pancreatic cancer models could enhance immune checkpoint T-cell therapy outcomes while reprogramming TAMs [100]. Moreover, blocking the CSF1/CSF1R axis reduces mesothelioma growth and improves anti-PDL1 immunotherapy efficacy [101], and CSF1R inhibition minimizes the development of cervical and mammary tumors in mice by lowering TAMs turnover and increasing the CD8+ T-cell infiltration [102]. Inappropriate response to immunotherapy in indoleamine 2,3-dioxygenase-expressing malignancies may be overcome by targeting MDSCs with CSF1R inhibition [103]. Pro-tumorigenic TAMs are reduced, and pro-tumorigenic PMN-MDSCs are recruited when CSF1R is inhibited [104]. Indeed, CSF1R suppression enabled tumor-infiltrating PMN-MDSCs to be recruited by carcinoma-associated fibroblasts. Thus, CXCR2 inhibitors may augment the anti-cancer effects of CSF1R inhibition by preventing PMN-MDSCs recruitment [104].
TAMs are sensitive to profound and abrupt reprogramming in the presence of a CD40 agonist when CSF-1R signaling is inhibited. Despite the short window of macrophage hyperactivation, simultaneous CSF-1R inhibition plus CD40 stimulation is adequate to establish a pro-inflammatory TME that revives an efficient immune response for T-cell immune checkpoint therapy [105]. Likewise, CD40 agonist, combined with CSF-1R, blockades reconditions TAMs and promotes potent anti-tumor immunity [106]. Activated macrophages with CD40 agonist invaded tumors immediately, were tumoricidal, and aided tumor stroma elimination [107]. In a pancreatic cancer mouse model, dendritic cell vaccination and CD40-agonist combined treatment enable T-cell-dependent anti-tumor immunotherapy [108].
A first in vivo evidence revealed that pharmacological suppression of the PI3K p110δ subunit inhibits the growth of breast cancer by specifically targeting cancer cells and macrophages [109]. Li et al. indicated that TAM accumulation in the glioblastoma microenvironment is suppressed by PI3K inhibition, which results in an extraordinary temozolomide response [110]. A pan-PI3K inhibitor (SF1126) reduced VEGF and other pro-angiogenic factors released by macrophages, blocking tumor-induced angiogenesis [111]. Joshi et al. demonstrated anti-tumor immunity by macrophage Syk-PI3Kγ axis [112]. Additionally, tumor immunosuppression is relieved by SRX3207, a novel dual Syk-PI3K inhibitor [112]. Clotrimazole has anti-cancer characteristics in a mouse melanoma model, functioning as a PI3K inhibitor and causing TAMs to repolarize [113].
HDAC inhibition with trichostatin-A increases anti-PD-L1-mediated tumor suppression and potentiates macrophage anti-tumor activity [114]. TMP195, an HDAC Class IIa inhibitor, may transform tumor-infiltrating monocytes and macrophages into cells able to sustain a robust CD8+ T-cell-mediated anti-tumor immune response in breast cancer and reduce metastasis [115, 116].

Immune checkpoint blockade (ICB)

The PD-1 and cytotoxic T lymphocyte-associated protein 4 (CTLA-4) immune checkpoints are predominantly produced by effector immune cells, including T and NK cells. Targeting these molecules have exciting therapeutic potential by affecting myeloid biology [117, 118]. Because PD-L1 is expressed on MDSCs and TAMs, ICB using anti-PD-L1 may directly impact myeloid cell activities in TME [119]. There is a difference in response to PD-1 and PD-L1 inhibition in myeloid cells, with the latter leading to more potent immune responses by activating inflammasomes and expressing IL-18 [120]. The protective immune response to tumor cells requires inflammasome activation [121].
CD47SIRPα axis has been identified as a critical macrophage immune checkpoint. CD47 is a “don’t eat me” signal that is overexpressed in myeloid malignancies and causes tumors to evade macrophage phagocytosis. CD47 blockade causes leukemic cells to be engulfed and therapeutically eliminated [122]. CD47 blockade combined with trastuzumab eradicates HER2-positive breast cancer cells while also overcoming trastuzumab resistance [123]. Radioresistant breast cancer cells are eliminated when CD47 and HER2 are blocked [124].

Conclusion

According to the clinical and pre-clinical evidence, TAMCs play a dual role in cancer via anti-tumorigenic and pro-tumorigenic effects. TAMCs have pro-tumorigenic and immunosuppressive functions by different mechanisms including TGF-β and IL-10 anti-inflammatory cytokine secretion, ROS production, and mediation of angiogenesis through VEGF and HGF production. Hence, TAMCs could be actively involved in cancer progression, and immune escape results in poor prognosis, adverse clinical outcomes, and a low response rate to cancer treatment. Although diverse cancer-related immunotherapies such as ICBs have been investigated, targeting promoting pathways orchestrated by myeloid cells could shed a light on a new therapeutic approach and may improve cancer immunotherapy. Blocking myeloid cells’ recruitment, macrophage population depletion, reprogramming of metabolism, and cellular signaling might be considered helpful strategies for repolarization and revival of tumor-promoting myeloid cells.

Acknowledgements

Not applicable.

Declarations

Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Mui UN, Haley CT, Tyring SK. Viral Oncology: Molecular Biology and Pathogenesis. J Clin Med. 2017;6(12). Mui UN, Haley CT, Tyring SK. Viral Oncology: Molecular Biology and Pathogenesis. J Clin Med. 2017;6(12).
2.
Zurück zum Zitat Guven-Maiorov E, Tsai C-J, Nussinov R. Oncoviruses Can Drive Cancer by Rewiring Signaling Pathways Through Interface Mimicry. Frontiers in Oncology. 2019;9. Guven-Maiorov E, Tsai C-J, Nussinov R. Oncoviruses Can Drive Cancer by Rewiring Signaling Pathways Through Interface Mimicry. Frontiers in Oncology. 2019;9.
3.
Zurück zum Zitat Tornesello ML, Annunziata C, Tornesello AL, Buonaguro L, Buonaguro FM. Human Oncoviruses and p53 Tumor Suppressor Pathway Deregulation at the Origin of Human Cancers. Cancers (Basel). 2018;10(7). Tornesello ML, Annunziata C, Tornesello AL, Buonaguro L, Buonaguro FM. Human Oncoviruses and p53 Tumor Suppressor Pathway Deregulation at the Origin of Human Cancers. Cancers (Basel). 2018;10(7).
4.
Zurück zum Zitat Dzobo K. The Role of Viruses in Carcinogenesis and Molecular Targeting: From Infection to Being a Component of the Tumor Microenvironment. OMICS. 2021;25(6):358–71.PubMedCrossRef Dzobo K. The Role of Viruses in Carcinogenesis and Molecular Targeting: From Infection to Being a Component of the Tumor Microenvironment. OMICS. 2021;25(6):358–71.PubMedCrossRef
5.
Zurück zum Zitat Goldszmid RS, Dzutsev A, Trinchieri G. Host immune response to infection and cancer: unexpected commonalities. Cell Host Microbe. 2014;15(3):295–305.PubMedPubMedCentralCrossRef Goldszmid RS, Dzutsev A, Trinchieri G. Host immune response to infection and cancer: unexpected commonalities. Cell Host Microbe. 2014;15(3):295–305.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Schouppe E, De Baetselier P, Van Ginderachter JA, Sarukhan A. Instruction of myeloid cells by the tumor microenvironment: Open questions on the dynamics and plasticity of different tumor-associated myeloid cell populations. Oncoimmunology. 2012;1(7):1135–45.PubMedPubMedCentralCrossRef Schouppe E, De Baetselier P, Van Ginderachter JA, Sarukhan A. Instruction of myeloid cells by the tumor microenvironment: Open questions on the dynamics and plasticity of different tumor-associated myeloid cell populations. Oncoimmunology. 2012;1(7):1135–45.PubMedPubMedCentralCrossRef
7.
8.
Zurück zum Zitat Sica A, Porta C, Morlacchi S, Banfi S, Strauss L, Rimoldi M, et al. Origin and Functions of Tumor-Associated Myeloid Cells (TAMCs). Cancer Microenviron. 2012;5(2):133–49.PubMedCrossRef Sica A, Porta C, Morlacchi S, Banfi S, Strauss L, Rimoldi M, et al. Origin and Functions of Tumor-Associated Myeloid Cells (TAMCs). Cancer Microenviron. 2012;5(2):133–49.PubMedCrossRef
10.
Zurück zum Zitat Tran Janco JM, Lamichhane P, Karyampudi L, Knutson KL. Tumor-Infiltrating Dendritic Cells in Cancer Pathogenesis. J Immunol. 2015;194(7):2985–91.PubMedCrossRef Tran Janco JM, Lamichhane P, Karyampudi L, Knutson KL. Tumor-Infiltrating Dendritic Cells in Cancer Pathogenesis. J Immunol. 2015;194(7):2985–91.PubMedCrossRef
12.
Zurück zum Zitat Qiu Y, Chen T, Hu R, Zhu R, Li C, Ruan Y, et al. Next frontier in tumor immunotherapy: macrophage-mediated immune evasion. Biomark Res. 2021;9(1):72.PubMedPubMedCentralCrossRef Qiu Y, Chen T, Hu R, Zhu R, Li C, Ruan Y, et al. Next frontier in tumor immunotherapy: macrophage-mediated immune evasion. Biomark Res. 2021;9(1):72.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Zhu S, Luo Z, Li X, Han X, Shi S, Zhang T. Tumor-associated macrophages: role in tumorigenesis and immunotherapy implications. J Cancer. 2021;12(1):54–64.PubMedPubMedCentralCrossRef Zhu S, Luo Z, Li X, Han X, Shi S, Zhang T. Tumor-associated macrophages: role in tumorigenesis and immunotherapy implications. J Cancer. 2021;12(1):54–64.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Hourani T, Holden JA, Li W, Lenzo JC, Hadjigol S, O’Brien-Simpson NM. Tumor Associated Macrophages: Origin, Recruitment, Phenotypic Diversity, and Targeting. Frontiers in Oncology. 2021;11. Hourani T, Holden JA, Li W, Lenzo JC, Hadjigol S, O’Brien-Simpson NM. Tumor Associated Macrophages: Origin, Recruitment, Phenotypic Diversity, and Targeting. Frontiers in Oncology. 2021;11.
17.
Zurück zum Zitat Zhang BC, Gao J, Wang J, Rao ZG, Wang BC, Gao JF. Tumor-associated macrophages infiltration is associated with peritumoral lymphangiogenesis and poor prognosis in lung adenocarcinoma. Med Oncol. 2011;28(4):1447–52.PubMedCrossRef Zhang BC, Gao J, Wang J, Rao ZG, Wang BC, Gao JF. Tumor-associated macrophages infiltration is associated with peritumoral lymphangiogenesis and poor prognosis in lung adenocarcinoma. Med Oncol. 2011;28(4):1447–52.PubMedCrossRef
18.
Zurück zum Zitat Hu Y, He M-Y, Zhu L-F, Yang C-C, Zhou M-L, Wang Q, et al. Tumor-associated macrophages correlate with the clinicopathological features and poor outcomes via inducing epithelial to mesenchymal transition in oral squamous cell carcinoma. J Experimental Clin Cancer Res. 2016;35(1):12.CrossRef Hu Y, He M-Y, Zhu L-F, Yang C-C, Zhou M-L, Wang Q, et al. Tumor-associated macrophages correlate with the clinicopathological features and poor outcomes via inducing epithelial to mesenchymal transition in oral squamous cell carcinoma. J Experimental Clin Cancer Res. 2016;35(1):12.CrossRef
19.
Zurück zum Zitat Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat Rev Immunol. 2021;21(8):485–98.PubMedPubMedCentralCrossRef Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat Rev Immunol. 2021;21(8):485–98.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Groth C, Hu X, Weber R, Fleming V, Altevogt P, Utikal J, et al. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br J Cancer. 2019;120(1):16–25.PubMedCrossRef Groth C, Hu X, Weber R, Fleming V, Altevogt P, Utikal J, et al. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br J Cancer. 2019;120(1):16–25.PubMedCrossRef
21.
Zurück zum Zitat Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H, et al. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology. 2009;50(3):799–807.PubMedCrossRef Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H, et al. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology. 2009;50(3):799–807.PubMedCrossRef
23.
Zurück zum Zitat Masucci MT, Minopoli M, Carriero MV. Tumor Associated Neutrophils. Their Role in Tumorigenesis, Metastasis, Prognosis and Therapy. Front Oncol. 2019;9:1146.PubMedPubMedCentralCrossRef Masucci MT, Minopoli M, Carriero MV. Tumor Associated Neutrophils. Their Role in Tumorigenesis, Metastasis, Prognosis and Therapy. Front Oncol. 2019;9:1146.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Furumaya C, Martinez-Sanz P, Bouti P, Kuijpers TW, Matlung HL. Plasticity in Pro- and Anti-tumor Activity of Neutrophils: Shifting the Balance. Front Immunol. 2020;11:2100.PubMedPubMedCentralCrossRef Furumaya C, Martinez-Sanz P, Bouti P, Kuijpers TW, Matlung HL. Plasticity in Pro- and Anti-tumor Activity of Neutrophils: Shifting the Balance. Front Immunol. 2020;11:2100.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Shen M, Hu P, Donskov F, Wang G, Liu Q, Du J. Tumor-associated neutrophils as a new prognostic factor in cancer: a systematic review and meta-analysis. PLoS ONE. 2014;9(6):e98259.PubMedPubMedCentralCrossRef Shen M, Hu P, Donskov F, Wang G, Liu Q, Du J. Tumor-associated neutrophils as a new prognostic factor in cancer: a systematic review and meta-analysis. PLoS ONE. 2014;9(6):e98259.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Shannon-Lowe C, Rickinson AB, Bell AI. Epstein-Barr virus-associated lymphomas. Philos Trans R Soc Lond B Biol Sci. 2017;372(1732). Shannon-Lowe C, Rickinson AB, Bell AI. Epstein-Barr virus-associated lymphomas. Philos Trans R Soc Lond B Biol Sci. 2017;372(1732).
28.
Zurück zum Zitat Collins PJ, Fox CP, George L, Pearce H, Ryan G, De Santo C, et al. Characterizing EBV-associated lymphoproliferative diseases and the role of myeloid-derived suppressor cells. Blood. 2021;137(2):203–15.PubMedCrossRef Collins PJ, Fox CP, George L, Pearce H, Ryan G, De Santo C, et al. Characterizing EBV-associated lymphoproliferative diseases and the role of myeloid-derived suppressor cells. Blood. 2021;137(2):203–15.PubMedCrossRef
29.
Zurück zum Zitat Cai TT, Ye SB, Liu YN, He J, Chen QY, Mai HQ, et al. LMP1-mediated glycolysis induces myeloid-derived suppressor cell expansion in nasopharyngeal carcinoma. PLoS Pathog. 2017;13(7):e1006503.PubMedPubMedCentralCrossRef Cai TT, Ye SB, Liu YN, He J, Chen QY, Mai HQ, et al. LMP1-mediated glycolysis induces myeloid-derived suppressor cell expansion in nasopharyngeal carcinoma. PLoS Pathog. 2017;13(7):e1006503.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Katahira Y, Higuchi H, Matsushita H, Yahata T, Yamamoto Y, Koike R, et al. Increased Granulopoiesis in the Bone Marrow following Epstein-Barr Virus Infection. Sci Rep. 2019;9(1):13445.PubMedPubMedCentralCrossRef Katahira Y, Higuchi H, Matsushita H, Yahata T, Yamamoto Y, Koike R, et al. Increased Granulopoiesis in the Bone Marrow following Epstein-Barr Virus Infection. Sci Rep. 2019;9(1):13445.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Li X, Li JL, Jiang N, Chen J, Liang ZM, Zhao ZL, et al. Accumulation of LOX-1(+) PMN-MDSCs in nasopharyngeal carcinoma survivors with chronic hepatitis B might permit immune tolerance to epstein-barr virus and relate to tumor recurrence. Aging. 2020;13(1):437–49.PubMedPubMedCentralCrossRef Li X, Li JL, Jiang N, Chen J, Liang ZM, Zhao ZL, et al. Accumulation of LOX-1(+) PMN-MDSCs in nasopharyngeal carcinoma survivors with chronic hepatitis B might permit immune tolerance to epstein-barr virus and relate to tumor recurrence. Aging. 2020;13(1):437–49.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Song Y, Li Q, Liao S, Zhong K, Jin Y, Zeng T. Epstein-Barr virus-encoded miR-BART11 promotes tumor-associated macrophage-induced epithelial-mesenchymal transition via targeting FOXP1 in gastric cancer. Virology. 2020;548:6–16.PubMedCrossRef Song Y, Li Q, Liao S, Zhong K, Jin Y, Zeng T. Epstein-Barr virus-encoded miR-BART11 promotes tumor-associated macrophage-induced epithelial-mesenchymal transition via targeting FOXP1 in gastric cancer. Virology. 2020;548:6–16.PubMedCrossRef
33.
Zurück zum Zitat Zhang B, Miao T, Shen X, Bao L, Zhang C, Yan C, et al. EB virus-induced ATR activation accelerates nasopharyngeal carcinoma growth via M2-type macrophages polarization. Cell Death Dis. 2020;11(9):742.PubMedPubMedCentralCrossRef Zhang B, Miao T, Shen X, Bao L, Zhang C, Yan C, et al. EB virus-induced ATR activation accelerates nasopharyngeal carcinoma growth via M2-type macrophages polarization. Cell Death Dis. 2020;11(9):742.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Ooft ML, van Ipenburg JA, Sanders ME, Kranendonk M, Hofland I, de Bree R, et al. Prognostic role of tumour-associated macrophages and regulatory T cells in EBV-positive and EBV-negative nasopharyngeal carcinoma. J Clin Pathol. 2018;71(3):267–74.PubMedCrossRef Ooft ML, van Ipenburg JA, Sanders ME, Kranendonk M, Hofland I, de Bree R, et al. Prognostic role of tumour-associated macrophages and regulatory T cells in EBV-positive and EBV-negative nasopharyngeal carcinoma. J Clin Pathol. 2018;71(3):267–74.PubMedCrossRef
35.
Zurück zum Zitat Sato A, Yamakawa N, Okuyama K, Kotani A, Nakamura N, Ando K. The Critical Interaction Between Epstein-Barr Virus (EBV) Positive B-Cells and Tumor Associated Macrophages (TAMs). Blood. 2014;124(21):2989.CrossRef Sato A, Yamakawa N, Okuyama K, Kotani A, Nakamura N, Ando K. The Critical Interaction Between Epstein-Barr Virus (EBV) Positive B-Cells and Tumor Associated Macrophages (TAMs). Blood. 2014;124(21):2989.CrossRef
37.
Zurück zum Zitat Kamper P, Bendix K, Hamilton-Dutoit S, Honoré B, Nyengaard JR, d’Amore F. Tumor-infiltrating macrophages correlate with adverse prognosis and Epstein-Barr virus status in classical Hodgkin’s lymphoma. Haematologica. 2011;96(2):269–76.PubMedCrossRef Kamper P, Bendix K, Hamilton-Dutoit S, Honoré B, Nyengaard JR, d’Amore F. Tumor-infiltrating macrophages correlate with adverse prognosis and Epstein-Barr virus status in classical Hodgkin’s lymphoma. Haematologica. 2011;96(2):269–76.PubMedCrossRef
38.
Zurück zum Zitat Mavili HS, Isisag A, Tan A, Miskioglu M, Baraz LS, Nese N. Relationship of Tumor-Associated Macrophage Population Detected by CD68 PG-M1, CD68 KP1, and CD163 with Latent EBV Infection and Prognosis in Classical Hodgkin Lymphoma. Turk Patoloji Derg. 2021;37(2):130–8.PubMed Mavili HS, Isisag A, Tan A, Miskioglu M, Baraz LS, Nese N. Relationship of Tumor-Associated Macrophage Population Detected by CD68 PG-M1, CD68 KP1, and CD163 with Latent EBV Infection and Prognosis in Classical Hodgkin Lymphoma. Turk Patoloji Derg. 2021;37(2):130–8.PubMed
39.
Zurück zum Zitat Xie Y. Hepatitis B, Virus-Associated. Hepatocellular Carcinoma. Adv Exp Med Biol. 2017;1018:11–21.PubMedCrossRef Xie Y. Hepatitis B, Virus-Associated. Hepatocellular Carcinoma. Adv Exp Med Biol. 2017;1018:11–21.PubMedCrossRef
40.
Zurück zum Zitat Li T, Zhang X, Lv Z, Gao L, Yan H. Increased Expression of Myeloid-Derived Suppressor Cells in Patients with HBV-Related Hepatocellular Carcinoma. Biomed Res Int. 2020;2020:6527192.PubMedPubMedCentral Li T, Zhang X, Lv Z, Gao L, Yan H. Increased Expression of Myeloid-Derived Suppressor Cells in Patients with HBV-Related Hepatocellular Carcinoma. Biomed Res Int. 2020;2020:6527192.PubMedPubMedCentral
41.
Zurück zum Zitat Pal S, Nandi M, Dey D, Chakraborty BC, Shil A, Ghosh S, et al. Myeloid-derived suppressor cells induce regulatory T cells in chronically HBV infected patients with high levels of hepatitis B surface antigen and persist after antiviral therapy. Aliment Pharmacol Ther. 2019;49(10):1346–59.PubMedCrossRef Pal S, Nandi M, Dey D, Chakraborty BC, Shil A, Ghosh S, et al. Myeloid-derived suppressor cells induce regulatory T cells in chronically HBV infected patients with high levels of hepatitis B surface antigen and persist after antiviral therapy. Aliment Pharmacol Ther. 2019;49(10):1346–59.PubMedCrossRef
42.
Zurück zum Zitat Zeng Y, Li Y, Xu Z, Gan W, Lu L, Huang X, et al. Myeloid-derived suppressor cells expansion is closely associated with disease severity and progression in HBV-related acute-on-chronic liver failure. J Med Virol. 2019;91(8):1510–8.PubMedCrossRef Zeng Y, Li Y, Xu Z, Gan W, Lu L, Huang X, et al. Myeloid-derived suppressor cells expansion is closely associated with disease severity and progression in HBV-related acute-on-chronic liver failure. J Med Virol. 2019;91(8):1510–8.PubMedCrossRef
43.
44.
Zurück zum Zitat Yang P, Markowitz GJ, Wang XF. The hepatitis B virus-associated tumor microenvironment in hepatocellular carcinoma. Natl Sci Rev. 2014;1(3):396–412.PubMedCrossRef Yang P, Markowitz GJ, Wang XF. The hepatitis B virus-associated tumor microenvironment in hepatocellular carcinoma. Natl Sci Rev. 2014;1(3):396–412.PubMedCrossRef
45.
Zurück zum Zitat Bility MT, Cheng L, Zhang Z, Luan Y, Li F, Chi L, et al. Hepatitis B virus infection and immunopathogenesis in a humanized mouse model: induction of human-specific liver fibrosis and M2-like macrophages. PLoS Pathog. 2014;10(3):e1004032.PubMedPubMedCentralCrossRef Bility MT, Cheng L, Zhang Z, Luan Y, Li F, Chi L, et al. Hepatitis B virus infection and immunopathogenesis in a humanized mouse model: induction of human-specific liver fibrosis and M2-like macrophages. PLoS Pathog. 2014;10(3):e1004032.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Kuang DM, Zhao Q, Peng C, Xu J, Zhang JP, Wu C, et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med. 2009;206(6):1327–37.PubMedPubMedCentralCrossRef Kuang DM, Zhao Q, Peng C, Xu J, Zhang JP, Wu C, et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med. 2009;206(6):1327–37.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Li H, Wu K, Tao K, Chen L, Zheng Q, Lu X, et al. Tim-3/galectin-9 signaling pathway mediates T-cell dysfunction and predicts poor prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma. Hepatology. 2012;56(4):1342–51.PubMedCrossRef Li H, Wu K, Tao K, Chen L, Zheng Q, Lu X, et al. Tim-3/galectin-9 signaling pathway mediates T-cell dysfunction and predicts poor prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma. Hepatology. 2012;56(4):1342–51.PubMedCrossRef
48.
Zurück zum Zitat Tong HV, Toan NL, Song LH, Bock CT, Kremsner PG, Velavan TP. Hepatitis B virus-induced hepatocellular carcinoma: functional roles of MICA variants. J Viral Hepat. 2013;20(10):687–98.PubMedCrossRef Tong HV, Toan NL, Song LH, Bock CT, Kremsner PG, Velavan TP. Hepatitis B virus-induced hepatocellular carcinoma: functional roles of MICA variants. J Viral Hepat. 2013;20(10):687–98.PubMedCrossRef
49.
Zurück zum Zitat Ju Y, Hou N, Meng J, Wang X, Zhang X, Zhao D, et al. T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) mediates natural killer cell suppression in chronic hepatitis B. J Hepatol. 2010;52(3):322–9.PubMedCrossRef Ju Y, Hou N, Meng J, Wang X, Zhang X, Zhao D, et al. T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) mediates natural killer cell suppression in chronic hepatitis B. J Hepatol. 2010;52(3):322–9.PubMedCrossRef
50.
Zurück zum Zitat Peppa D, Micco L, Javaid A, Kennedy PT, Schurich A, Dunn C, et al. Blockade of immunosuppressive cytokines restores NK cell antiviral function in chronic hepatitis B virus infection. PLoS Pathog. 2010;6(12):e1001227.PubMedPubMedCentralCrossRef Peppa D, Micco L, Javaid A, Kennedy PT, Schurich A, Dunn C, et al. Blockade of immunosuppressive cytokines restores NK cell antiviral function in chronic hepatitis B virus infection. PLoS Pathog. 2010;6(12):e1001227.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Tashiro H, Brenner MK. Immunotherapy against cancer-related viruses. Cell Res. 2017;27(1):59–73.PubMedCrossRef Tashiro H, Brenner MK. Immunotherapy against cancer-related viruses. Cell Res. 2017;27(1):59–73.PubMedCrossRef
52.
Zurück zum Zitat Zhai N, Li H, Song H, Yang Y, Cui A, Li T, et al. Hepatitis C Virus Induces MDSCs-Like Monocytes through TLR2/PI3K/AKT/STAT3 Signaling. PLoS ONE. 2017;12(1):e0170516.PubMedPubMedCentralCrossRef Zhai N, Li H, Song H, Yang Y, Cui A, Li T, et al. Hepatitis C Virus Induces MDSCs-Like Monocytes through TLR2/PI3K/AKT/STAT3 Signaling. PLoS ONE. 2017;12(1):e0170516.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Tacke RS, Lee HC, Goh C, Courtney J, Polyak SJ, Rosen HR, et al. Myeloid suppressor cells induced by hepatitis C virus suppress T-cell responses through the production of reactive oxygen species. Hepatology. 2012;55(2):343–53.PubMedCrossRef Tacke RS, Lee HC, Goh C, Courtney J, Polyak SJ, Rosen HR, et al. Myeloid suppressor cells induced by hepatitis C virus suppress T-cell responses through the production of reactive oxygen species. Hepatology. 2012;55(2):343–53.PubMedCrossRef
54.
Zurück zum Zitat Goh CC, Roggerson KM, Lee HC, Golden-Mason L, Rosen HR, Hahn YS. Hepatitis C Virus-Induced Myeloid-Derived Suppressor Cells Suppress NK Cell IFN-γ Production by Altering Cellular Metabolism via Arginase-1. J Immunol. 2016;196(5):2283–92.PubMedCrossRef Goh CC, Roggerson KM, Lee HC, Golden-Mason L, Rosen HR, Hahn YS. Hepatitis C Virus-Induced Myeloid-Derived Suppressor Cells Suppress NK Cell IFN-γ Production by Altering Cellular Metabolism via Arginase-1. J Immunol. 2016;196(5):2283–92.PubMedCrossRef
55.
Zurück zum Zitat Ren JP, Zhao J, Dai J, Griffin JW, Wang L, Wu XY, et al. Hepatitis C virus-induced myeloid-derived suppressor cells regulate T-cell differentiation and function via the signal transducer and activator of transcription 3 pathway. Immunology. 2016;148(4):377–86.PubMedPubMedCentralCrossRef Ren JP, Zhao J, Dai J, Griffin JW, Wang L, Wu XY, et al. Hepatitis C virus-induced myeloid-derived suppressor cells regulate T-cell differentiation and function via the signal transducer and activator of transcription 3 pathway. Immunology. 2016;148(4):377–86.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Wang M, Ping Y, Li Z, Li J, Zhang Z, Yue D, et al. Polarization of granulocytic myeloid-derived suppressor cells by hepatitis C core protein is mediated via IL-10/STAT3 signalling. J Viral Hepat. 2019;26(2):246–57.PubMedCrossRef Wang M, Ping Y, Li Z, Li J, Zhang Z, Yue D, et al. Polarization of granulocytic myeloid-derived suppressor cells by hepatitis C core protein is mediated via IL-10/STAT3 signalling. J Viral Hepat. 2019;26(2):246–57.PubMedCrossRef
57.
Zurück zum Zitat Thakuri BKC, Zhang J, Zhao J, Nguyen LN, Nguyen LNT, Khanal S, et al. LncRNA HOTAIRM1 promotes MDSC expansion and suppressive functions through the HOXA1-miR124 axis during HCV infection. Sci Rep. 2020;10(1):22033.PubMedPubMedCentralCrossRef Thakuri BKC, Zhang J, Zhao J, Nguyen LN, Nguyen LNT, Khanal S, et al. LncRNA HOTAIRM1 promotes MDSC expansion and suppressive functions through the HOXA1-miR124 axis during HCV infection. Sci Rep. 2020;10(1):22033.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Wang L, Cao D, Wang L, Zhao J, Nguyen LN, Dang X, et al. HCV-associated exosomes promote myeloid-derived suppressor cell expansion via inhibiting miR-124 to regulate T follicular cell differentiation and function. Cell Discov. 2018;4:51.PubMedPubMedCentralCrossRef Wang L, Cao D, Wang L, Zhao J, Nguyen LN, Dang X, et al. HCV-associated exosomes promote myeloid-derived suppressor cell expansion via inhibiting miR-124 to regulate T follicular cell differentiation and function. Cell Discov. 2018;4:51.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Thakuri BKC, Zhang J, Zhao J, Nguyen LN, Nguyen LNT, Schank M, et al. HCV-Associated Exosomes Upregulate RUNXOR and RUNX1 Expressions to Promote MDSC Expansion and Suppressive Functions through STAT3-miR124 Axis. Cells. 2020;9(12). Thakuri BKC, Zhang J, Zhao J, Nguyen LN, Nguyen LNT, Schank M, et al. HCV-Associated Exosomes Upregulate RUNXOR and RUNX1 Expressions to Promote MDSC Expansion and Suppressive Functions through STAT3-miR124 Axis. Cells. 2020;9(12).
61.
Zurück zum Zitat Ballon G, Akar G, Cesarman E. Systemic expression of Kaposi sarcoma herpesvirus (KSHV) Vflip in endothelial cells leads to a profound proinflammatory phenotype and myeloid lineage remodeling in vivo. PLoS Pathog. 2015;11(1):e1004581.PubMedPubMedCentralCrossRef Ballon G, Akar G, Cesarman E. Systemic expression of Kaposi sarcoma herpesvirus (KSHV) Vflip in endothelial cells leads to a profound proinflammatory phenotype and myeloid lineage remodeling in vivo. PLoS Pathog. 2015;11(1):e1004581.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Campbell DM, Rappocciolo G, Jenkins FJ, Rinaldo CR. Dendritic cells: key players in human herpesvirus 8 infection and pathogenesis. Front Microbiol. 2014;5:452.PubMedPubMedCentralCrossRef Campbell DM, Rappocciolo G, Jenkins FJ, Rinaldo CR. Dendritic cells: key players in human herpesvirus 8 infection and pathogenesis. Front Microbiol. 2014;5:452.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Jenkins FJ, Minas TZ, Tang W, Dorsey TH, Ambs S. Human herpesvirus 8 infection is associated with prostate cancer among IFNL4-∆G carriers. Prostate Cancer and Prostatic Diseases. 2022. Jenkins FJ, Minas TZ, Tang W, Dorsey TH, Ambs S. Human herpesvirus 8 infection is associated with prostate cancer among IFNL4-∆G carriers. Prostate Cancer and Prostatic Diseases. 2022.
64.
Zurück zum Zitat Chavoshpour-Mamaghani S, Shoja Z, Mollaei-Kandelous Y, Sharifian K, Jalilvand S. The prevalence of human herpesvirus 8 in normal, premalignant, and malignant cervical samples of Iranian women. Virol J. 2021;18(1):144.PubMedPubMedCentralCrossRef Chavoshpour-Mamaghani S, Shoja Z, Mollaei-Kandelous Y, Sharifian K, Jalilvand S. The prevalence of human herpesvirus 8 in normal, premalignant, and malignant cervical samples of Iranian women. Virol J. 2021;18(1):144.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer. 2002;2(5):342–50.PubMedCrossRef zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer. 2002;2(5):342–50.PubMedCrossRef
66.
Zurück zum Zitat Barros MR Jr, de Melo CML, Barros M, de Cássia Pereira de Lima R, de Freitas AC, Venuti A. Activities of stromal and immune cells in HPV-related cancers. J Exp Clin Cancer Res. 2018;37(1):137. Barros MR Jr, de Melo CML, Barros M, de Cássia Pereira de Lima R, de Freitas AC, Venuti A. Activities of stromal and immune cells in HPV-related cancers. J Exp Clin Cancer Res. 2018;37(1):137.
67.
Zurück zum Zitat Stone SC, Rossetti RA, Lima AM, Lepique AP. HPV associated tumor cells control tumor microenvironment and leukocytosis in experimental models. Immun Inflamm Dis. 2014;2(2):63–75.PubMedPubMedCentralCrossRef Stone SC, Rossetti RA, Lima AM, Lepique AP. HPV associated tumor cells control tumor microenvironment and leukocytosis in experimental models. Immun Inflamm Dis. 2014;2(2):63–75.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Ma X, Sheng S, Wu J, Jiang Y, Gao X, Cen X, et al. LncRNAs as an intermediate in HPV16 promoting myeloid-derived suppressor cell recruitment of head and neck squamous cell carcinoma. Oncotarget. 2017;8(26):42061–75.PubMedPubMedCentralCrossRef Ma X, Sheng S, Wu J, Jiang Y, Gao X, Cen X, et al. LncRNAs as an intermediate in HPV16 promoting myeloid-derived suppressor cell recruitment of head and neck squamous cell carcinoma. Oncotarget. 2017;8(26):42061–75.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Diniz MO, Sales NS, Silva JR, Ferreira LC. Protection against HPV-16-Associated Tumors Requires the Activation of CD8 + Effector Memory T Cells and the Control of Myeloid-Derived Suppressor Cells. Mol Cancer Ther. 2016;15(8):1920–30.PubMedCrossRef Diniz MO, Sales NS, Silva JR, Ferreira LC. Protection against HPV-16-Associated Tumors Requires the Activation of CD8 + Effector Memory T Cells and the Control of Myeloid-Derived Suppressor Cells. Mol Cancer Ther. 2016;15(8):1920–30.PubMedCrossRef
70.
Zurück zum Zitat Qian B-Z, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011;475(7355):222–5.PubMedPubMedCentralCrossRef Qian B-Z, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011;475(7355):222–5.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Ren G, Zhao X, Wang Y, Zhang X, Chen X, Xu C, et al. CCR2-dependent recruitment of macrophages by tumor-educated mesenchymal stromal cells promotes tumor development and is mimicked by TNFα. Cell Stem Cell. 2012;11(6):812–24.PubMedPubMedCentralCrossRef Ren G, Zhao X, Wang Y, Zhang X, Chen X, Xu C, et al. CCR2-dependent recruitment of macrophages by tumor-educated mesenchymal stromal cells promotes tumor development and is mimicked by TNFα. Cell Stem Cell. 2012;11(6):812–24.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Chun E, Lavoie S, Michaud M, Gallini CA, Kim J, Soucy G, et al. CCL2 Promotes Colorectal Carcinogenesis by Enhancing Polymorphonuclear Myeloid-Derived Suppressor Cell Population and Function. Cell Rep. 2015;12(2):244–57.PubMedPubMedCentralCrossRef Chun E, Lavoie S, Michaud M, Gallini CA, Kim J, Soucy G, et al. CCL2 Promotes Colorectal Carcinogenesis by Enhancing Polymorphonuclear Myeloid-Derived Suppressor Cell Population and Function. Cell Rep. 2015;12(2):244–57.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Fridlender ZG, Buchlis G, Kapoor V, Cheng G, Sun J, Singhal S, et al. CCL2 blockade augments cancer immunotherapy. Cancer Res. 2010;70(1):109–18.PubMedCrossRef Fridlender ZG, Buchlis G, Kapoor V, Cheng G, Sun J, Singhal S, et al. CCL2 blockade augments cancer immunotherapy. Cancer Res. 2010;70(1):109–18.PubMedCrossRef
74.
Zurück zum Zitat Bonapace L, Coissieux MM, Wyckoff J, Mertz KD, Varga Z, Junt T, et al. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature. 2014;515(7525):130–3.PubMedCrossRef Bonapace L, Coissieux MM, Wyckoff J, Mertz KD, Varga Z, Junt T, et al. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature. 2014;515(7525):130–3.PubMedCrossRef
75.
Zurück zum Zitat Pathria P, Louis TL, Varner JA. Targeting Tumor-Associated Macrophages in Cancer. Trends Immunol. 2019;40(4):310–27.PubMedCrossRef Pathria P, Louis TL, Varner JA. Targeting Tumor-Associated Macrophages in Cancer. Trends Immunol. 2019;40(4):310–27.PubMedCrossRef
76.
Zurück zum Zitat Kumar V, Giacomantonio MA, Gujar S. Role of Myeloid Cells in Oncolytic Reovirus-Based Cancer Therapy. Viruses. 2021;13(4). Kumar V, Giacomantonio MA, Gujar S. Role of Myeloid Cells in Oncolytic Reovirus-Based Cancer Therapy. Viruses. 2021;13(4).
77.
Zurück zum Zitat Hughes R, Qian BZ, Rowan C, Muthana M, Keklikoglou I, Olson OC, et al. Perivascular M2 Macrophages Stimulate Tumor Relapse after Chemotherapy. Cancer Res. 2015;75(17):3479–91.PubMedPubMedCentralCrossRef Hughes R, Qian BZ, Rowan C, Muthana M, Keklikoglou I, Olson OC, et al. Perivascular M2 Macrophages Stimulate Tumor Relapse after Chemotherapy. Cancer Res. 2015;75(17):3479–91.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Scala S. Molecular Pathways: Targeting the CXCR4-CXCL12 Axis–Untapped Potential in the Tumor Microenvironment. Clin Cancer Res. 2015;21(19):4278–85.PubMedCrossRef Scala S. Molecular Pathways: Targeting the CXCR4-CXCL12 Axis–Untapped Potential in the Tumor Microenvironment. Clin Cancer Res. 2015;21(19):4278–85.PubMedCrossRef
79.
Zurück zum Zitat Teicher BA, Fricker SP. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res. 2010;16(11):2927–31.PubMedCrossRef Teicher BA, Fricker SP. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res. 2010;16(11):2927–31.PubMedCrossRef
80.
Zurück zum Zitat Zheng X, Turkowski K, Mora J, Brüne B, Seeger W, Weigert A, et al. Redirecting tumor-associated macrophages to become tumoricidal effectors as a novel strategy for cancer therapy. Oncotarget. 2017;8(29):48436–52.PubMedPubMedCentralCrossRef Zheng X, Turkowski K, Mora J, Brüne B, Seeger W, Weigert A, et al. Redirecting tumor-associated macrophages to become tumoricidal effectors as a novel strategy for cancer therapy. Oncotarget. 2017;8(29):48436–52.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Giraudo E, Inoue M, Hanahan D. An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest. 2004;114(5):623–33.PubMedPubMedCentralCrossRef Giraudo E, Inoue M, Hanahan D. An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest. 2004;114(5):623–33.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Belgiovine C, Frapolli R, Liguori M, Digifico E, Colombo FS, Meroni M, et al. Inhibition of tumor-associated macrophages by trabectedin improves the antitumor adaptive immunity in response to anti-PD-1 therapy. Eur J Immunol. 2021;51(11):2677–86.PubMedPubMedCentralCrossRef Belgiovine C, Frapolli R, Liguori M, Digifico E, Colombo FS, Meroni M, et al. Inhibition of tumor-associated macrophages by trabectedin improves the antitumor adaptive immunity in response to anti-PD-1 therapy. Eur J Immunol. 2021;51(11):2677–86.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Germano G, Frapolli R, Belgiovine C, Anselmo A, Pesce S, Liguori M, et al. Role of Macrophage Targeting in the Antitumor Activity of Trabectedin. Cancer Cell. 2013;23(2):249–62.PubMedCrossRef Germano G, Frapolli R, Belgiovine C, Anselmo A, Pesce S, Liguori M, et al. Role of Macrophage Targeting in the Antitumor Activity of Trabectedin. Cancer Cell. 2013;23(2):249–62.PubMedCrossRef
85.
86.
Zurück zum Zitat Van den Bossche J, O’Neill LA, Menon D. Macrophage Immunometabolism: Where Are We (Going)? Trends Immunol. 2017;38(6):395–406.PubMedCrossRef Van den Bossche J, O’Neill LA, Menon D. Macrophage Immunometabolism: Where Are We (Going)? Trends Immunol. 2017;38(6):395–406.PubMedCrossRef
88.
Zurück zum Zitat Jha AK, Huang SC, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity. 2015;42(3):419–30.PubMedCrossRef Jha AK, Huang SC, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity. 2015;42(3):419–30.PubMedCrossRef
89.
Zurück zum Zitat Viola A, Munari F, Sánchez-Rodríguez R, Scolaro T, Castegna A. The Metabolic Signature of Macrophage Responses. Frontiers in Immunology. 2019;10. Viola A, Munari F, Sánchez-Rodríguez R, Scolaro T, Castegna A. The Metabolic Signature of Macrophage Responses. Frontiers in Immunology. 2019;10.
90.
Zurück zum Zitat Van den Bossche J, Baardman J, Otto NA, van der Velden S, Neele AE, van den Berg SM, et al. Mitochondrial Dysfunction Prevents Repolarization of Inflammatory Macrophages. Cell Rep. 2016;17(3):684–96.PubMedCrossRef Van den Bossche J, Baardman J, Otto NA, van der Velden S, Neele AE, van den Berg SM, et al. Mitochondrial Dysfunction Prevents Repolarization of Inflammatory Macrophages. Cell Rep. 2016;17(3):684–96.PubMedCrossRef
91.
Zurück zum Zitat Huang SC, Smith AM, Everts B, Colonna M, Pearce EL, Schilling JD, et al. Metabolic Reprogramming Mediated by the mTORC2-IRF4 Signaling Axis Is Essential for Macrophage Alternative Activation. Immunity. 2016;45(4):817–30.PubMedPubMedCentralCrossRef Huang SC, Smith AM, Everts B, Colonna M, Pearce EL, Schilling JD, et al. Metabolic Reprogramming Mediated by the mTORC2-IRF4 Signaling Axis Is Essential for Macrophage Alternative Activation. Immunity. 2016;45(4):817–30.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Kowal J, Kornete M, Joyce JA. Re-education of macrophages as a therapeutic strategy in cancer. Immunotherapy. 2019;11(8):677–89.PubMedCrossRef Kowal J, Kornete M, Joyce JA. Re-education of macrophages as a therapeutic strategy in cancer. Immunotherapy. 2019;11(8):677–89.PubMedCrossRef
93.
Zurück zum Zitat Li X, Liu R, Su X, Pan Y, Han X, Shao C, et al. Harnessing tumor-associated macrophages as aids for cancer immunotherapy. Mol Cancer. 2019;18(1):177.PubMedPubMedCentralCrossRef Li X, Liu R, Su X, Pan Y, Han X, Shao C, et al. Harnessing tumor-associated macrophages as aids for cancer immunotherapy. Mol Cancer. 2019;18(1):177.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Barclay AN, Berg TKvd. The Interaction Between Signal Regulatory Protein Alpha (SIRPα) and CD47: Structure, Function, and Therapeutic Target. Annu Rev Immunol. 2014;32(1):25–50.PubMedCrossRef Barclay AN, Berg TKvd. The Interaction Between Signal Regulatory Protein Alpha (SIRPα) and CD47: Structure, Function, and Therapeutic Target. Annu Rev Immunol. 2014;32(1):25–50.PubMedCrossRef
95.
Zurück zum Zitat Andrejeva G, Capoccia BJ, Hiebsch RR, Donio MJ, Darwech IM, Puro RJ, et al. Novel SIRPα Antibodies That Induce Single-Agent Phagocytosis of Tumor Cells while Preserving T Cells. J Immunol. 2021;206(4):712–21.PubMedPubMedCentralCrossRef Andrejeva G, Capoccia BJ, Hiebsch RR, Donio MJ, Darwech IM, Puro RJ, et al. Novel SIRPα Antibodies That Induce Single-Agent Phagocytosis of Tumor Cells while Preserving T Cells. J Immunol. 2021;206(4):712–21.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Feng Y, Mu R, Wang Z, Xing P, Zhang J, Dong L, et al. A toll-like receptor agonist mimicking microbial signal to generate tumor-suppressive macrophages. Nat Commun. 2019;10(1):2272.PubMedPubMedCentralCrossRef Feng Y, Mu R, Wang Z, Xing P, Zhang J, Dong L, et al. A toll-like receptor agonist mimicking microbial signal to generate tumor-suppressive macrophages. Nat Commun. 2019;10(1):2272.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Rodell CB, Arlauckas SP, Cuccarese MF, Garris CS, Li R, Ahmed MS, et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat Biomedical Eng. 2018;2(8):578–88.CrossRef Rodell CB, Arlauckas SP, Cuccarese MF, Garris CS, Li R, Ahmed MS, et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat Biomedical Eng. 2018;2(8):578–88.CrossRef
98.
Zurück zum Zitat Vidyarthi A, Khan N, Agnihotri T, Negi S, Das DK, Aqdas M, et al. TLR-3 Stimulation Skews M2 Macrophages to M1 Through IFN-αβ Signaling and Restricts Tumor Progression. Front Immunol. 2018;9:1650.PubMedPubMedCentralCrossRef Vidyarthi A, Khan N, Agnihotri T, Negi S, Das DK, Aqdas M, et al. TLR-3 Stimulation Skews M2 Macrophages to M1 Through IFN-αβ Signaling and Restricts Tumor Progression. Front Immunol. 2018;9:1650.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Wang J, Shirota Y, Bayik D, Shirota H, Tross D, Gulley JL, et al. Effect of TLR agonists on the differentiation and function of human monocytic myeloid-derived suppressor cells. J Immunol. 2015;194(9):4215–21.PubMedCrossRef Wang J, Shirota Y, Bayik D, Shirota H, Tross D, Gulley JL, et al. Effect of TLR agonists on the differentiation and function of human monocytic myeloid-derived suppressor cells. J Immunol. 2015;194(9):4215–21.PubMedCrossRef
100.
Zurück zum Zitat Zhu Y, Knolhoff BL, Meyer MA, Nywening TM, West BL, Luo J, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74(18):5057–69.PubMedPubMedCentralCrossRef Zhu Y, Knolhoff BL, Meyer MA, Nywening TM, West BL, Luo J, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74(18):5057–69.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Magkouta SF, Vaitsi PC, Pappas AG, Iliopoulou M, Kosti CN, Psarra K, et al. CSF1/CSF1R Axis Blockade Limits Mesothelioma and Enhances Efficiency of Anti-PDL1 Immunotherapy. Cancers (Basel). 2021;13(11). Magkouta SF, Vaitsi PC, Pappas AG, Iliopoulou M, Kosti CN, Psarra K, et al. CSF1/CSF1R Axis Blockade Limits Mesothelioma and Enhances Efficiency of Anti-PDL1 Immunotherapy. Cancers (Basel). 2021;13(11).
102.
Zurück zum Zitat Strachan DC, Ruffell B, Oei Y, Bissell MJ, Coussens LM, Pryer N, et al. CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8(+) T cells. Oncoimmunology. 2013;2(12):e26968.PubMedPubMedCentralCrossRef Strachan DC, Ruffell B, Oei Y, Bissell MJ, Coussens LM, Pryer N, et al. CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8(+) T cells. Oncoimmunology. 2013;2(12):e26968.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Holmgaard RB, Zamarin D, Lesokhin A, Merghoub T, Wolchok JD. Targeting myeloid-derived suppressor cells with colony stimulating factor-1 receptor blockade can reverse immune resistance to immunotherapy in indoleamine 2,3-dioxygenase-expressing tumors. EBioMedicine. 2016;6:50–8.PubMedPubMedCentralCrossRef Holmgaard RB, Zamarin D, Lesokhin A, Merghoub T, Wolchok JD. Targeting myeloid-derived suppressor cells with colony stimulating factor-1 receptor blockade can reverse immune resistance to immunotherapy in indoleamine 2,3-dioxygenase-expressing tumors. EBioMedicine. 2016;6:50–8.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Kumar V, Donthireddy L, Marvel D, Condamine T, Wang F, Lavilla-Alonso S, et al. Cancer-Associated Fibroblasts Neutralize the Anti-tumor Effect of CSF1 Receptor Blockade by Inducing PMN-MDSC Infiltration of Tumors. Cancer Cell. 2017;32(5):654 – 68.e5.PubMedPubMedCentralCrossRef Kumar V, Donthireddy L, Marvel D, Condamine T, Wang F, Lavilla-Alonso S, et al. Cancer-Associated Fibroblasts Neutralize the Anti-tumor Effect of CSF1 Receptor Blockade by Inducing PMN-MDSC Infiltration of Tumors. Cancer Cell. 2017;32(5):654 – 68.e5.PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Hoves S, Ooi CH, Wolter C, Sade H, Bissinger S, Schmittnaegel M, et al. Rapid activation of tumor-associated macrophages boosts preexisting tumor immunity. J Exp Med. 2018;215(3):859–76.PubMedPubMedCentralCrossRef Hoves S, Ooi CH, Wolter C, Sade H, Bissinger S, Schmittnaegel M, et al. Rapid activation of tumor-associated macrophages boosts preexisting tumor immunity. J Exp Med. 2018;215(3):859–76.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Wiehagen KR, Girgis NM, Yamada DH, Smith AA, Chan SR, Grewal IS, et al. Combination of CD40 Agonism and CSF-1R Blockade Reconditions Tumor-Associated Macrophages and Drives Potent Antitumor Immunity. Cancer Immunol Res. 2017;5(12):1109–21.PubMedCrossRef Wiehagen KR, Girgis NM, Yamada DH, Smith AA, Chan SR, Grewal IS, et al. Combination of CD40 Agonism and CSF-1R Blockade Reconditions Tumor-Associated Macrophages and Drives Potent Antitumor Immunity. Cancer Immunol Res. 2017;5(12):1109–21.PubMedCrossRef
107.
Zurück zum Zitat Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science. 2011;331(6024):1612–6.PubMedPubMedCentralCrossRef Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science. 2011;331(6024):1612–6.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Lau SP, van Montfoort N, Kinderman P, Lukkes M, Klaase L, van Nimwegen M, et al. Dendritic cell vaccination and CD40-agonist combination therapy licenses T cell-dependent antitumor immunity in a pancreatic carcinoma murine model. J Immunother Cancer. 2020;8(2). Lau SP, van Montfoort N, Kinderman P, Lukkes M, Klaase L, van Nimwegen M, et al. Dendritic cell vaccination and CD40-agonist combination therapy licenses T cell-dependent antitumor immunity in a pancreatic carcinoma murine model. J Immunother Cancer. 2020;8(2).
109.
Zurück zum Zitat Goulielmaki E, Bermudez-Brito M, Andreou M, Tzenaki N, Tzardi M, de Bree E, et al. Pharmacological inactivation of the PI3K p110δ prevents breast tumour progression by targeting cancer cells and macrophages. Cell Death Dis. 2018;9(6):678.PubMedPubMedCentralCrossRef Goulielmaki E, Bermudez-Brito M, Andreou M, Tzenaki N, Tzardi M, de Bree E, et al. Pharmacological inactivation of the PI3K p110δ prevents breast tumour progression by targeting cancer cells and macrophages. Cell Death Dis. 2018;9(6):678.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Li J, Kaneda MM, Ma J, Li M, Shepard RM, Patel K, et al. PI3Kγ inhibition suppresses microglia/TAM accumulation in glioblastoma microenvironment to promote exceptional temozolomide response. Proceedings of the National Academy of Sciences. 2021;118(16):e2009290118. Li J, Kaneda MM, Ma J, Li M, Shepard RM, Patel K, et al. PI3Kγ inhibition suppresses microglia/TAM accumulation in glioblastoma microenvironment to promote exceptional temozolomide response. Proceedings of the National Academy of Sciences. 2021;118(16):e2009290118.
111.
Zurück zum Zitat Joshi S, Singh AR, Zulcic M, Durden DL. A macrophage-dominant PI3K isoform controls hypoxia-induced HIF1α and HIF2α stability and tumor growth, angiogenesis, and metastasis. Mol Cancer Res. 2014;12(10):1520–31.PubMedCrossRef Joshi S, Singh AR, Zulcic M, Durden DL. A macrophage-dominant PI3K isoform controls hypoxia-induced HIF1α and HIF2α stability and tumor growth, angiogenesis, and metastasis. Mol Cancer Res. 2014;12(10):1520–31.PubMedCrossRef
112.
Zurück zum Zitat Joshi S, Liu KX, Zulcic M, Singh AR, Skola D, Glass CK, et al. Macrophage Syk-PI3Kγ Inhibits Antitumor Immunity: SRX3207, a Novel Dual Syk-PI3K Inhibitory Chemotype Relieves Tumor Immunosuppression. Mol Cancer Ther. 2020;19(3):755–64.PubMedPubMedCentralCrossRef Joshi S, Liu KX, Zulcic M, Singh AR, Skola D, Glass CK, et al. Macrophage Syk-PI3Kγ Inhibits Antitumor Immunity: SRX3207, a Novel Dual Syk-PI3K Inhibitory Chemotype Relieves Tumor Immunosuppression. Mol Cancer Ther. 2020;19(3):755–64.PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Ochioni AC, Imbroisi Filho R, Esteves AM, Leandro JGB, Demaria TM, do Nascimento Júnior JX, et al. Clotrimazole presents anticancer properties against a mouse melanoma model acting as a PI3K inhibitor and inducing repolarization of tumor-associated macrophages. Biochim Biophys Acta Mol Basis Dis. 2021;1867(12):166263. Ochioni AC, Imbroisi Filho R, Esteves AM, Leandro JGB, Demaria TM, do Nascimento Júnior JX, et al. Clotrimazole presents anticancer properties against a mouse melanoma model acting as a PI3K inhibitor and inducing repolarization of tumor-associated macrophages. Biochim Biophys Acta Mol Basis Dis. 2021;1867(12):166263.
114.
Zurück zum Zitat Li X, Su X, Liu R, Pan Y, Fang J, Cao L, et al. HDAC inhibition potentiates anti-tumor activity of macrophages and enhances anti-PD-L1-mediated tumor suppression. Oncogene. 2021;40(10):1836–50.PubMedPubMedCentralCrossRef Li X, Su X, Liu R, Pan Y, Fang J, Cao L, et al. HDAC inhibition potentiates anti-tumor activity of macrophages and enhances anti-PD-L1-mediated tumor suppression. Oncogene. 2021;40(10):1836–50.PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Guerriero JL, Sotayo A, Ponichtera HE, Castrillon JA, Pourzia AL, Schad S, et al. Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages. Nature. 2017;543(7645):428–32.PubMedPubMedCentralCrossRef Guerriero JL, Sotayo A, Ponichtera HE, Castrillon JA, Pourzia AL, Schad S, et al. Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages. Nature. 2017;543(7645):428–32.PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Chen J, Sun HW, Yang YY, Chen HT, Yu XJ, Wu WC, et al. Reprogramming immunosuppressive myeloid cells by activated T cells promotes the response to anti-PD-1 therapy in colorectal cancer. Signal Transduct Target Ther. 2021;6(1):4.PubMedPubMedCentralCrossRef Chen J, Sun HW, Yang YY, Chen HT, Yu XJ, Wu WC, et al. Reprogramming immunosuppressive myeloid cells by activated T cells promotes the response to anti-PD-1 therapy in colorectal cancer. Signal Transduct Target Ther. 2021;6(1):4.PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Pico de Coaña Y, Masucci G, Hansson J, Kiessling R. Myeloid-derived suppressor cells and their role in CTLA-4 blockade therapy. Cancer Immunol Immunother. 2014;63(9):977–83.PubMedCrossRef Pico de Coaña Y, Masucci G, Hansson J, Kiessling R. Myeloid-derived suppressor cells and their role in CTLA-4 blockade therapy. Cancer Immunol Immunother. 2014;63(9):977–83.PubMedCrossRef
119.
Zurück zum Zitat Liu M, Zhou J, Liu X, Feng Y, Yang W, Wu F, et al. Targeting monocyte-intrinsic enhancer reprogramming improves immunotherapy efficacy in hepatocellular carcinoma. Gut. 2020;69(2):365–79.PubMedCrossRef Liu M, Zhou J, Liu X, Feng Y, Yang W, Wu F, et al. Targeting monocyte-intrinsic enhancer reprogramming improves immunotherapy efficacy in hepatocellular carcinoma. Gut. 2020;69(2):365–79.PubMedCrossRef
120.
Zurück zum Zitat Bar N, Costa F, Das R, Duffy A, Samur M, McCachren S, et al. Differential effects of PD-L1 versus PD-1 blockade on myeloid inflammation in human cancer. JCI Insight. 2020;5(12). Bar N, Costa F, Das R, Duffy A, Samur M, McCachren S, et al. Differential effects of PD-L1 versus PD-1 blockade on myeloid inflammation in human cancer. JCI Insight. 2020;5(12).
121.
Zurück zum Zitat Gasparoto TH, de Oliveira CE, de Freitas LT, Pinheiro CR, Hori JI, Garlet GP, et al. Inflammasome activation is critical to the protective immune response during chemically induced squamous cell carcinoma. PLoS ONE. 2014;9(9):e107170.PubMedPubMedCentralCrossRef Gasparoto TH, de Oliveira CE, de Freitas LT, Pinheiro CR, Hori JI, Garlet GP, et al. Inflammasome activation is critical to the protective immune response during chemically induced squamous cell carcinoma. PLoS ONE. 2014;9(9):e107170.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Chao MP, Takimoto CH, Feng DD, McKenna K, Gip P, Liu J, et al. Therapeutic Targeting of the Macrophage Immune Checkpoint CD47 in Myeloid Malignancies. Front Oncol. 2019;9:1380.PubMedCrossRef Chao MP, Takimoto CH, Feng DD, McKenna K, Gip P, Liu J, et al. Therapeutic Targeting of the Macrophage Immune Checkpoint CD47 in Myeloid Malignancies. Front Oncol. 2019;9:1380.PubMedCrossRef
123.
Zurück zum Zitat Upton R, Banuelos A, Feng D, Biswas T, Kao K, McKenna K, et al. Combining CD47 blockade with trastuzumab eliminates HER2-positive breast cancer cells and overcomes trastuzumab tolerance. Proceedings of the National Academy of Sciences. 2021;118(29):e2026849118. Upton R, Banuelos A, Feng D, Biswas T, Kao K, McKenna K, et al. Combining CD47 blockade with trastuzumab eliminates HER2-positive breast cancer cells and overcomes trastuzumab tolerance. Proceedings of the National Academy of Sciences. 2021;118(29):e2026849118.
124.
Zurück zum Zitat Candas-Green D, Xie B, Huang J, Fan M, Wang A, Menaa C, et al. Dual blockade of CD47 and HER2 eliminates radioresistant breast cancer cells. Nat Commun. 2020;11(1):4591.PubMedPubMedCentralCrossRef Candas-Green D, Xie B, Huang J, Fan M, Wang A, Menaa C, et al. Dual blockade of CD47 and HER2 eliminates radioresistant breast cancer cells. Nat Commun. 2020;11(1):4591.PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Liao YX, Fu ZZ, Zhou CH, Shan LC, Wang ZY, Yin F, et al. AMD3100 reduces CXCR4-mediated survival and metastasis of osteosarcoma by inhibiting JNK and Akt, but not p38 or Erk1/2, pathways in in vitro and mouse experiments. Oncol Rep. 2015;34(1):33–42.PubMedPubMedCentralCrossRef Liao YX, Fu ZZ, Zhou CH, Shan LC, Wang ZY, Yin F, et al. AMD3100 reduces CXCR4-mediated survival and metastasis of osteosarcoma by inhibiting JNK and Akt, but not p38 or Erk1/2, pathways in in vitro and mouse experiments. Oncol Rep. 2015;34(1):33–42.PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Evans CA, Liu T, Lescarbeau A, Nair SJ, Grenier L, Pradeilles JA, et al. Discovery of a Selective Phosphoinositide-3-Kinase (PI3K)-γ Inhibitor (IPI-549) as an Immuno-Oncology Clinical Candidate. ACS Med Chem Lett. 2016;7(9):862–7.PubMedPubMedCentralCrossRef Evans CA, Liu T, Lescarbeau A, Nair SJ, Grenier L, Pradeilles JA, et al. Discovery of a Selective Phosphoinositide-3-Kinase (PI3K)-γ Inhibitor (IPI-549) as an Immuno-Oncology Clinical Candidate. ACS Med Chem Lett. 2016;7(9):862–7.PubMedPubMedCentralCrossRef
127.
128.
Zurück zum Zitat Zhu S, Jung J, Victor E, Arceo J, Gokhale S, Xie P. Clinical Trials of the BTK Inhibitors Ibrutinib and Acalabrutinib in Human Diseases Beyond B Cell Malignancies. Front Oncol. 2021;11:737943.PubMedPubMedCentralCrossRef Zhu S, Jung J, Victor E, Arceo J, Gokhale S, Xie P. Clinical Trials of the BTK Inhibitors Ibrutinib and Acalabrutinib in Human Diseases Beyond B Cell Malignancies. Front Oncol. 2021;11:737943.PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Brana I, Calles A, LoRusso PM, Yee LK, Puchalski TA, Seetharam S, et al. Carlumab, an anti-C-C chemokine ligand 2 monoclonal antibody, in combination with four chemotherapy regimens for the treatment of patients with solid tumors: an open-label, multicenter phase 1b study. Target Oncol. 2015;10(1):111–23.PubMedCrossRef Brana I, Calles A, LoRusso PM, Yee LK, Puchalski TA, Seetharam S, et al. Carlumab, an anti-C-C chemokine ligand 2 monoclonal antibody, in combination with four chemotherapy regimens for the treatment of patients with solid tumors: an open-label, multicenter phase 1b study. Target Oncol. 2015;10(1):111–23.PubMedCrossRef
131.
Zurück zum Zitat Loberg RD, Ying C, Craig M, Yan L, Snyder LA, Pienta KJ. CCL2 as an important mediator of prostate cancer growth in vivo through the regulation of macrophage infiltration. Neoplasia. 2007;9(7):556–62.PubMedPubMedCentralCrossRef Loberg RD, Ying C, Craig M, Yan L, Snyder LA, Pienta KJ. CCL2 as an important mediator of prostate cancer growth in vivo through the regulation of macrophage infiltration. Neoplasia. 2007;9(7):556–62.PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Zollo M, Di Dato V, Spano D, De Martino D, Liguori L, Marino N, et al. Targeting monocyte chemotactic protein-1 synthesis with bindarit induces tumor regression in prostate and breast cancer animal models. Clin Exp Metastasis. 2012;29(6):585–601.PubMedCrossRef Zollo M, Di Dato V, Spano D, De Martino D, Liguori L, Marino N, et al. Targeting monocyte chemotactic protein-1 synthesis with bindarit induces tumor regression in prostate and breast cancer animal models. Clin Exp Metastasis. 2012;29(6):585–601.PubMedCrossRef
133.
Zurück zum Zitat Pradel LP, Ooi CH, Romagnoli S, Cannarile MA, Sade H, Rüttinger D, et al. Macrophage Susceptibility to Emactuzumab (RG7155) Treatment. Mol Cancer Ther. 2016;15(12):3077–86.PubMedCrossRef Pradel LP, Ooi CH, Romagnoli S, Cannarile MA, Sade H, Rüttinger D, et al. Macrophage Susceptibility to Emactuzumab (RG7155) Treatment. Mol Cancer Ther. 2016;15(12):3077–86.PubMedCrossRef
134.
Zurück zum Zitat Gambardella V, Castillo J, Tarazona N, Gimeno-Valiente F, Martínez-Ciarpaglini C, Cabeza-Segura M, et al. The role of tumor-associated macrophages in gastric cancer development and their potential as a therapeutic target. Cancer Treat Rev. 2020;86:102015.PubMedCrossRef Gambardella V, Castillo J, Tarazona N, Gimeno-Valiente F, Martínez-Ciarpaglini C, Cabeza-Segura M, et al. The role of tumor-associated macrophages in gastric cancer development and their potential as a therapeutic target. Cancer Treat Rev. 2020;86:102015.PubMedCrossRef
135.
Zurück zum Zitat Manji GA, Van Tine BA, Lee SM, Raufi AG, Pellicciotta I, Hirbe AC, et al. A Phase I Study of the Combination of Pexidartinib and Sirolimus to Target Tumor-Associated Macrophages in Unresectable Sarcoma and Malignant Peripheral Nerve Sheath Tumors. Clin Cancer Res. 2021;27(20):5519–27.PubMedPubMedCentralCrossRef Manji GA, Van Tine BA, Lee SM, Raufi AG, Pellicciotta I, Hirbe AC, et al. A Phase I Study of the Combination of Pexidartinib and Sirolimus to Target Tumor-Associated Macrophages in Unresectable Sarcoma and Malignant Peripheral Nerve Sheath Tumors. Clin Cancer Res. 2021;27(20):5519–27.PubMedPubMedCentralCrossRef
136.
Zurück zum Zitat Harb WA, Johnson ML, Goldman JW, Weise AM, Call JA, Dudek AZ, et al. A phase 1b/2 study of ARRY-382, an oral inhibitor of colony stimulating factor 1 receptor (CSF1R), in combination with pembrolizumab (Pembro) for the treatment of patients (Pts) with advanced solid tumors. J Clin Oncol. 2017;35(15_suppl):TPS3110-TPS.CrossRef Harb WA, Johnson ML, Goldman JW, Weise AM, Call JA, Dudek AZ, et al. A phase 1b/2 study of ARRY-382, an oral inhibitor of colony stimulating factor 1 receptor (CSF1R), in combination with pembrolizumab (Pembro) for the treatment of patients (Pts) with advanced solid tumors. J Clin Oncol. 2017;35(15_suppl):TPS3110-TPS.CrossRef
137.
Zurück zum Zitat Lu X, Meng T. Depletion of tumor-associated macrophages enhances the anti-tumor effect of docetaxel in a murine epithelial ovarian cancer. Immunobiology. 2019;224(3):355–61.PubMedCrossRef Lu X, Meng T. Depletion of tumor-associated macrophages enhances the anti-tumor effect of docetaxel in a murine epithelial ovarian cancer. Immunobiology. 2019;224(3):355–61.PubMedCrossRef
138.
Zurück zum Zitat Papadopoulos KP, Gluck L, Martin LP, Olszanski AJ, Tolcher AW, Ngarmchamnanrith G, et al. First-in-Human Study of AMG 820, a Monoclonal Anti-Colony-Stimulating Factor 1 Receptor Antibody, in Patients with Advanced Solid Tumors. Clin Cancer Res. 2017;23(19):5703–10.PubMedCrossRef Papadopoulos KP, Gluck L, Martin LP, Olszanski AJ, Tolcher AW, Ngarmchamnanrith G, et al. First-in-Human Study of AMG 820, a Monoclonal Anti-Colony-Stimulating Factor 1 Receptor Antibody, in Patients with Advanced Solid Tumors. Clin Cancer Res. 2017;23(19):5703–10.PubMedCrossRef
139.
Zurück zum Zitat Laoui D, Van Overmeire E, De Baetselier P, Van Ginderachter JA, Raes G. Functional Relationship between Tumor-Associated Macrophages and Macrophage Colony-Stimulating Factor as Contributors to Cancer Progression. Front Immunol. 2014;5:489.PubMedPubMedCentralCrossRef Laoui D, Van Overmeire E, De Baetselier P, Van Ginderachter JA, Raes G. Functional Relationship between Tumor-Associated Macrophages and Macrophage Colony-Stimulating Factor as Contributors to Cancer Progression. Front Immunol. 2014;5:489.PubMedPubMedCentralCrossRef
140.
Zurück zum Zitat Dowlati A, Harvey RD, Carvajal RD, Hamid O, Klempner SJ, Kauh JSW, et al. LY3022855, an anti-colony stimulating factor-1 receptor (CSF-1R) monoclonal antibody, in patients with advanced solid tumors refractory to standard therapy: phase 1 dose-escalation trial. Invest New Drugs. 2021;39(4):1057–71.PubMedCrossRef Dowlati A, Harvey RD, Carvajal RD, Hamid O, Klempner SJ, Kauh JSW, et al. LY3022855, an anti-colony stimulating factor-1 receptor (CSF-1R) monoclonal antibody, in patients with advanced solid tumors refractory to standard therapy: phase 1 dose-escalation trial. Invest New Drugs. 2021;39(4):1057–71.PubMedCrossRef
141.
Zurück zum Zitat Vonderheide RH. CD40 Agonist Antibodies in Cancer Immunotherapy. Annu Rev Med. 2020;71:47–58.PubMedCrossRef Vonderheide RH. CD40 Agonist Antibodies in Cancer Immunotherapy. Annu Rev Med. 2020;71:47–58.PubMedCrossRef
142.
Zurück zum Zitat Byrne KT, Betts CB, Mick R, Sivagnanam S, Bajor DL, Laheru DA, et al. Neoadjuvant Selicrelumab, an Agonist CD40 Antibody, Induces Changes in the Tumor Microenvironment in Patients with Resectable Pancreatic Cancer. Clin Cancer Res. 2021;27(16):4574–86.PubMedPubMedCentralCrossRef Byrne KT, Betts CB, Mick R, Sivagnanam S, Bajor DL, Laheru DA, et al. Neoadjuvant Selicrelumab, an Agonist CD40 Antibody, Induces Changes in the Tumor Microenvironment in Patients with Resectable Pancreatic Cancer. Clin Cancer Res. 2021;27(16):4574–86.PubMedPubMedCentralCrossRef
143.
Zurück zum Zitat O’Hara MH, O’Reilly EM, Varadhachary G, Wolff RA, Wainberg ZA, Ko AH, et al. CD40 agonistic monoclonal antibody APX005M (sotigalimab) and chemotherapy, with or without nivolumab, for the treatment of metastatic pancreatic adenocarcinoma: an open-label, multicentre, phase 1b study. Lancet Oncol. 2021;22(1):118–31.PubMedCrossRef O’Hara MH, O’Reilly EM, Varadhachary G, Wolff RA, Wainberg ZA, Ko AH, et al. CD40 agonistic monoclonal antibody APX005M (sotigalimab) and chemotherapy, with or without nivolumab, for the treatment of metastatic pancreatic adenocarcinoma: an open-label, multicentre, phase 1b study. Lancet Oncol. 2021;22(1):118–31.PubMedCrossRef
144.
Zurück zum Zitat Vonderheide RH, Flaherty KT, Khalil M, Stumacher MS, Bajor DL, Hutnick NA, et al. Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J Clin Oncol. 2007;25(7):876–83.PubMedCrossRef Vonderheide RH, Flaherty KT, Khalil M, Stumacher MS, Bajor DL, Hutnick NA, et al. Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J Clin Oncol. 2007;25(7):876–83.PubMedCrossRef
145.
Zurück zum Zitat Cen X, Zhu G, Yang J, Yang J, Guo J, Jin J, et al. TLR1/2 Specific Small-Molecule Agonist Suppresses Leukemia Cancer Cell Growth by Stimulating Cytotoxic T Lymphocytes. Adv Sci (Weinh). 2019;6(10):1802042.CrossRef Cen X, Zhu G, Yang J, Yang J, Guo J, Jin J, et al. TLR1/2 Specific Small-Molecule Agonist Suppresses Leukemia Cancer Cell Growth by Stimulating Cytotoxic T Lymphocytes. Adv Sci (Weinh). 2019;6(10):1802042.CrossRef
146.
Zurück zum Zitat Megías J, Martínez A, San-Miguel T, Gil-Benso R, Muñoz-Hidalgo L, Albert-Bellver D, et al. Pam(3)CSK(4), a TLR2 ligand, induces differentiation of glioblastoma stem cells and confers susceptibility to temozolomide. Invest New Drugs. 2020;38(2):299–310.PubMedCrossRef Megías J, Martínez A, San-Miguel T, Gil-Benso R, Muñoz-Hidalgo L, Albert-Bellver D, et al. Pam(3)CSK(4), a TLR2 ligand, induces differentiation of glioblastoma stem cells and confers susceptibility to temozolomide. Invest New Drugs. 2020;38(2):299–310.PubMedCrossRef
147.
Zurück zum Zitat Long EM, Millen B, Kubes P, Robbins SM. Lipoteichoic acid induces unique inflammatory responses when compared to other toll-like receptor 2 ligands. PLoS ONE. 2009;4(5):e5601.PubMedPubMedCentralCrossRef Long EM, Millen B, Kubes P, Robbins SM. Lipoteichoic acid induces unique inflammatory responses when compared to other toll-like receptor 2 ligands. PLoS ONE. 2009;4(5):e5601.PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Sultan H, Wu J, Fesenkova VI, Fan AE, Addis D, Salazar AM, et al. Poly-IC enhances the effectiveness of cancer immunotherapy by promoting T cell tumor infiltration. J Immunother Cancer. 2020;8(2). Sultan H, Wu J, Fesenkova VI, Fan AE, Addis D, Salazar AM, et al. Poly-IC enhances the effectiveness of cancer immunotherapy by promoting T cell tumor infiltration. J Immunother Cancer. 2020;8(2).
149.
Zurück zum Zitat Gao H-X, Bhattacharya S, Matheny CJ, Yanamandra N, Zhang S-Y, Emerich H, et al. Synergy of TLR4 agonist GSK1795091, an innate immune activator, with agonistic antibody against co-stimulatory immune checkpoint molecule OX40 in cancer immunotherapy. J Clin Oncol. 2018;36(15_suppl):12055-.CrossRef Gao H-X, Bhattacharya S, Matheny CJ, Yanamandra N, Zhang S-Y, Emerich H, et al. Synergy of TLR4 agonist GSK1795091, an innate immune activator, with agonistic antibody against co-stimulatory immune checkpoint molecule OX40 in cancer immunotherapy. J Clin Oncol. 2018;36(15_suppl):12055-.CrossRef
150.
Zurück zum Zitat Nilsen NJ, Deininger S, Nonstad U, Skjeldal F, Husebye H, Rodionov D, et al. Cellular trafficking of lipoteichoic acid and Toll-like receptor 2 in relation to signaling: role of CD14 and CD36. J Leukoc Biol. 2008;84(1):280–91.PubMedPubMedCentralCrossRef Nilsen NJ, Deininger S, Nonstad U, Skjeldal F, Husebye H, Rodionov D, et al. Cellular trafficking of lipoteichoic acid and Toll-like receptor 2 in relation to signaling: role of CD14 and CD36. J Leukoc Biol. 2008;84(1):280–91.PubMedPubMedCentralCrossRef
151.
Zurück zum Zitat Diab A, Marcondes M, Kotzin B, Tagliaferri MA, Hoch U, Li Y, et al. Phase Ib: Preliminary clinical activity and immune activation for NKTR-262 [TLR 7/8 agonist] plus NKTR-214 [CD122-biased agonist] in patients (pts) with locally advanced or metastatic solid tumors (REVEAL Phase Ib/II Trial). J Clin Oncol. 2019;37(8_suppl):26-.CrossRef Diab A, Marcondes M, Kotzin B, Tagliaferri MA, Hoch U, Li Y, et al. Phase Ib: Preliminary clinical activity and immune activation for NKTR-262 [TLR 7/8 agonist] plus NKTR-214 [CD122-biased agonist] in patients (pts) with locally advanced or metastatic solid tumors (REVEAL Phase Ib/II Trial). J Clin Oncol. 2019;37(8_suppl):26-.CrossRef
152.
153.
Zurück zum Zitat Zanker DJ, Spurling AJ, Brockwell NK, Owen KL, Zakhour JM, Robinson T, et al. Intratumoral administration of the Toll-like receptor 7/8 agonist 3M-052 enhances interferon-driven tumor immunogenicity and suppresses metastatic spread in preclinical triple-negative breast cancer. Clin Transl Immunology. 2020;9(9):e1177.PubMedPubMedCentralCrossRef Zanker DJ, Spurling AJ, Brockwell NK, Owen KL, Zakhour JM, Robinson T, et al. Intratumoral administration of the Toll-like receptor 7/8 agonist 3M-052 enhances interferon-driven tumor immunogenicity and suppresses metastatic spread in preclinical triple-negative breast cancer. Clin Transl Immunology. 2020;9(9):e1177.PubMedPubMedCentralCrossRef
154.
Zurück zum Zitat Wang D, Jiang W, Zhu F, Mao X, Agrawal S. Modulation of the tumor microenvironment by intratumoral administration of IMO-2125, a novel TLR9 agonist, for cancer immunotherapy. Int J Oncol. 2018;53(3):1193–203.PubMed Wang D, Jiang W, Zhu F, Mao X, Agrawal S. Modulation of the tumor microenvironment by intratumoral administration of IMO-2125, a novel TLR9 agonist, for cancer immunotherapy. Int J Oncol. 2018;53(3):1193–203.PubMed
155.
Zurück zum Zitat Sabree SA, Voigt AP, Blackwell SE, Vishwakarma A, Chimenti MS, Salem AK, et al. Direct and indirect immune effects of CMP-001, a virus-like particle containing a TLR9 agonist. J Immunother Cancer. 2021;9(6). Sabree SA, Voigt AP, Blackwell SE, Vishwakarma A, Chimenti MS, Salem AK, et al. Direct and indirect immune effects of CMP-001, a virus-like particle containing a TLR9 agonist. J Immunother Cancer. 2021;9(6).
156.
Zurück zum Zitat Wang S, Campos J, Gallotta M, Gong M, Crain C, Naik E, et al. Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8 + T cells. Proc Natl Acad Sci U S A. 2016;113(46):E7240-e9.CrossRef Wang S, Campos J, Gallotta M, Gong M, Crain C, Naik E, et al. Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8 + T cells. Proc Natl Acad Sci U S A. 2016;113(46):E7240-e9.CrossRef
157.
Zurück zum Zitat Mathias MD, Sockolosky JT, Chang AY, Tan KS, Liu C, Garcia KC, et al. CD47 blockade enhances therapeutic activity of TCR mimic antibodies to ultra-low density cancer epitopes. Leukemia. 2017;31(10):2254–7.PubMedPubMedCentralCrossRef Mathias MD, Sockolosky JT, Chang AY, Tan KS, Liu C, Garcia KC, et al. CD47 blockade enhances therapeutic activity of TCR mimic antibodies to ultra-low density cancer epitopes. Leukemia. 2017;31(10):2254–7.PubMedPubMedCentralCrossRef
158.
Zurück zum Zitat Petrova PS, Viller NN, Wong M, Pang X, Lin GH, Dodge K, et al. TTI-621 (SIRPαFc): A CD47-Blocking Innate Immune Checkpoint Inhibitor with Broad Antitumor Activity and Minimal Erythrocyte Binding. Clin Cancer Res. 2017;23(4):1068–79.PubMedCrossRef Petrova PS, Viller NN, Wong M, Pang X, Lin GH, Dodge K, et al. TTI-621 (SIRPαFc): A CD47-Blocking Innate Immune Checkpoint Inhibitor with Broad Antitumor Activity and Minimal Erythrocyte Binding. Clin Cancer Res. 2017;23(4):1068–79.PubMedCrossRef
159.
Zurück zum Zitat Sikic BI, Lakhani N, Patnaik A, Shah SA, Chandana SR, Rasco D, et al. First-in-Human, First-in-Class Phase I Trial of the Anti-CD47 Antibody Hu5F9-G4 in Patients With Advanced Cancers. J Clin Oncol. 2019;37(12):946–53.PubMedPubMedCentralCrossRef Sikic BI, Lakhani N, Patnaik A, Shah SA, Chandana SR, Rasco D, et al. First-in-Human, First-in-Class Phase I Trial of the Anti-CD47 Antibody Hu5F9-G4 in Patients With Advanced Cancers. J Clin Oncol. 2019;37(12):946–53.PubMedPubMedCentralCrossRef
160.
Zurück zum Zitat La Fleur L, Boura VF, Alexeyenko A, Berglund A, Pontén V, Mattsson JSM, et al. Expression of scavenger receptor MARCO defines a targetable tumor-associated macrophage subset in non-small cell lung cancer. Int J Cancer. 2018;143(7):1741–52.PubMedCrossRef La Fleur L, Boura VF, Alexeyenko A, Berglund A, Pontén V, Mattsson JSM, et al. Expression of scavenger receptor MARCO defines a targetable tumor-associated macrophage subset in non-small cell lung cancer. Int J Cancer. 2018;143(7):1741–52.PubMedCrossRef
161.
Zurück zum Zitat Min AKT, Mimura K, Nakajima S, Okayama H, Saito K, Sakamoto W, et al. Therapeutic potential of anti-VEGF receptor 2 therapy targeting for M2-tumor-associated macrophages in colorectal cancer. Cancer Immunol Immunother. 2021;70(2):289–98.PubMedCrossRef Min AKT, Mimura K, Nakajima S, Okayama H, Saito K, Sakamoto W, et al. Therapeutic potential of anti-VEGF receptor 2 therapy targeting for M2-tumor-associated macrophages in colorectal cancer. Cancer Immunol Immunother. 2021;70(2):289–98.PubMedCrossRef
162.
Zurück zum Zitat Zhang Q, Wang J, Yadav DK, Bai X, Liang T. Glucose Metabolism: The Metabolic Signature of Tumor Associated Macrophage. Front Immunol. 2021;12:702580.PubMedPubMedCentralCrossRef Zhang Q, Wang J, Yadav DK, Bai X, Liang T. Glucose Metabolism: The Metabolic Signature of Tumor Associated Macrophage. Front Immunol. 2021;12:702580.PubMedPubMedCentralCrossRef
163.
Zurück zum Zitat Lee C, Jeong H, Bae Y, Shin K, Kang S, Kim H, et al. Targeting of M2-like tumor-associated macrophages with a melittin-based pro-apoptotic peptide. J Immunother Cancer. 2019;7(1):147.PubMedPubMedCentralCrossRef Lee C, Jeong H, Bae Y, Shin K, Kang S, Kim H, et al. Targeting of M2-like tumor-associated macrophages with a melittin-based pro-apoptotic peptide. J Immunother Cancer. 2019;7(1):147.PubMedPubMedCentralCrossRef
Metadaten
Titel
Tumor-promoting myeloid cells in the pathogenesis of human oncoviruses: potential targets for immunotherapy
verfasst von
Azin Aghamajidi
Pooya Farhangnia
Salar Pashangzadeh
Amirmasoud Rayati Damavandi
Reza Jafari
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
Cancer Cell International / Ausgabe 1/2022
Elektronische ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-022-02727-3

Weitere Artikel der Ausgabe 1/2022

Cancer Cell International 1/2022 Zur Ausgabe

Alphablocker schützt vor Miktionsproblemen nach der Biopsie

16.05.2024 alpha-1-Rezeptorantagonisten Nachrichten

Nach einer Prostatabiopsie treten häufig Probleme beim Wasserlassen auf. Ob sich das durch den periinterventionellen Einsatz von Alphablockern verhindern lässt, haben australische Mediziner im Zuge einer Metaanalyse untersucht.

Labor, CT-Anthropometrie zeigen Risiko für Pankreaskrebs

13.05.2024 Pankreaskarzinom Nachrichten

Gerade bei aggressiven Malignomen wie dem duktalen Adenokarzinom des Pankreas könnte Früherkennung die Therapiechancen verbessern. Noch jedoch klafft hier eine Lücke. Ein Studienteam hat einen Weg gesucht, sie zu schließen.

Viel pflanzliche Nahrung, seltener Prostata-Ca.-Progression

12.05.2024 Prostatakarzinom Nachrichten

Ein hoher Anteil pflanzlicher Nahrung trägt möglicherweise dazu bei, das Progressionsrisiko von Männern mit Prostatakarzinomen zu senken. In einer US-Studie war das Risiko bei ausgeprägter pflanzlicher Ernährung in etwa halbiert.

Alter verschlechtert Prognose bei Endometriumkarzinom

11.05.2024 Endometriumkarzinom Nachrichten

Ein höheres Alter bei der Diagnose eines Endometriumkarzinoms ist mit aggressiveren Tumorcharakteristika assoziiert, scheint aber auch unabhängig von bekannten Risikofaktoren die Prognose der Erkrankung zu verschlimmern.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.