Skip to main content
Erschienen in: Cancer and Metastasis Reviews 4/2017

27.10.2017

Ubiquitin carboxyl-terminal hydrolases: involvement in cancer progression and clinical implications

verfasst von: Ying Fang, Xizhong Shen

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

Protein ubiquitination and deubiquitination participate in a number of biological processes, including cell growth, differentiation, transcriptional regulation, and oncogenesis. Ubiquitin C-terminal hydrolases (UCHs), a subfamily of deubiquitinating enzymes (DUBs), includes four members: UCH-L1/PGP9.5 (protein gene product 9.5), UCH-L3, UCHL5/UCH37, and BRCA1-associated protein-1 (BAP1). Recently, more attention has been paid to the relationship between the UCH family and malignancies, which play different roles in the progression of different tumors. It remains controversial whether UCHL1 is a tumor promoter or suppressor. UCHL3 and UCH37 are considered to be tumor promoters, while BAP1 is considered to be a tumor suppressor. Studies have showed that UCH enzymes influence several signaling pathways that play crucial roles in oncogenesis, tumor invasion, and migration. In addition, UCH families are associated with tumor cell sensitivity to therapeutic modalities. Here, we reviewed the roles of UCH enzymes in the development of tumors, highlighting the potential consideration of UCH enzymes as new interesting targets for the development of anticancer drugs.
Literatur
1.
Zurück zum Zitat Hershko, A., & Ciechanover, A. (1998). The ubiquitin system. Annual Review of Biochemistry, 67, 425–479.PubMedCrossRef Hershko, A., & Ciechanover, A. (1998). The ubiquitin system. Annual Review of Biochemistry, 67, 425–479.PubMedCrossRef
2.
Zurück zum Zitat Pickart, C. M. (2001). Mechanisms underlying ubiquitination. Annual Review of Biochemistry, 70, 503–533.PubMedCrossRef Pickart, C. M. (2001). Mechanisms underlying ubiquitination. Annual Review of Biochemistry, 70, 503–533.PubMedCrossRef
3.
Zurück zum Zitat Finley, D., Ciechanover, A., & Varshavsky, A. (2004). Ubiquitin as a central cellular regulator. Cell, 116(Suppl. 2), S29–S32 2p following S32.PubMedCrossRef Finley, D., Ciechanover, A., & Varshavsky, A. (2004). Ubiquitin as a central cellular regulator. Cell, 116(Suppl. 2), S29–S32 2p following S32.PubMedCrossRef
4.
Zurück zum Zitat Komander, D., & Rape, M. (2012). The ubiquitin code. Annual Review of Biochemistry, 81, 203–229.PubMedCrossRef Komander, D., & Rape, M. (2012). The ubiquitin code. Annual Review of Biochemistry, 81, 203–229.PubMedCrossRef
5.
Zurück zum Zitat Liu, J., & Nussinov, R. (2013). The role of allostery in the ubiquitin-proteasome system. Critical Reviews in Biochemistry and Molecular Biology, 48(2), 89–97.PubMedCrossRef Liu, J., & Nussinov, R. (2013). The role of allostery in the ubiquitin-proteasome system. Critical Reviews in Biochemistry and Molecular Biology, 48(2), 89–97.PubMedCrossRef
6.
Zurück zum Zitat Varshavsky, A. (2012). The ubiquitin system, an immense realm. Annual Review of Biochemistry, 81, 167–176.PubMedCrossRef Varshavsky, A. (2012). The ubiquitin system, an immense realm. Annual Review of Biochemistry, 81, 167–176.PubMedCrossRef
8.
Zurück zum Zitat Welchman, R. L., Gordon, C., & Mayer, R. J. (2005). Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nature Reviews Molecular Cell Biology, 6(8), 599–609.PubMedCrossRef Welchman, R. L., Gordon, C., & Mayer, R. J. (2005). Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nature Reviews Molecular Cell Biology, 6(8), 599–609.PubMedCrossRef
9.
Zurück zum Zitat Neutzner, M., & Neutzner, A. (2012). Enzymes of ubiquitination and deubiquitination. Essays in Biochemistry, 52, 37–50.PubMedCrossRef Neutzner, M., & Neutzner, A. (2012). Enzymes of ubiquitination and deubiquitination. Essays in Biochemistry, 52, 37–50.PubMedCrossRef
11.
Zurück zum Zitat Katz, E. J., Isasa, M., & Crosas, B. (2010). A new map to understand deubiquitination. Biochemical Society Transactions, 38(Pt 1), 21–28.PubMedCrossRef Katz, E. J., Isasa, M., & Crosas, B. (2010). A new map to understand deubiquitination. Biochemical Society Transactions, 38(Pt 1), 21–28.PubMedCrossRef
12.
Zurück zum Zitat Sridhar, V. V., Kapoor, A., Zhang, K., Zhu, J., Zhou, T., Hasegawa, P. M., et al. (2007). Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination. Nature, 477(7145), 735–738.CrossRef Sridhar, V. V., Kapoor, A., Zhang, K., Zhu, J., Zhou, T., Hasegawa, P. M., et al. (2007). Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination. Nature, 477(7145), 735–738.CrossRef
13.
14.
Zurück zum Zitat Reyes-Turcu, F. E., Ventii, K. H., & Wilkinson, K. D. (2009). Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annual Review of Biochemistry, 78, 363–397.PubMedCrossRef Reyes-Turcu, F. E., Ventii, K. H., & Wilkinson, K. D. (2009). Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annual Review of Biochemistry, 78, 363–397.PubMedCrossRef
15.
Zurück zum Zitat Nijman, S. M., Luna-Vargas, M. P., Velds, A., Brummelkamp, T. R., Dirac, A. M., Sixma, T. K., et al. (2005). A genomic and functional inventory of deubiquitinating enzymes. Cell, 123(5), 773–786.PubMedCrossRef Nijman, S. M., Luna-Vargas, M. P., Velds, A., Brummelkamp, T. R., Dirac, A. M., Sixma, T. K., et al. (2005). A genomic and functional inventory of deubiquitinating enzymes. Cell, 123(5), 773–786.PubMedCrossRef
16.
Zurück zum Zitat Sowa, M. E., Bennett, E. J., Gygi, S. P., & Harper, J. W. (2009). Defining the human deubiquitinating enzyme interaction landscape. Cell, 138(2), 389–403.PubMedPubMedCentralCrossRef Sowa, M. E., Bennett, E. J., Gygi, S. P., & Harper, J. W. (2009). Defining the human deubiquitinating enzyme interaction landscape. Cell, 138(2), 389–403.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Amerik, A. Y., & Hochstrasser, M. (2004). Mechanism and function of deubiquitinating enzymes. Biochimica et Biophysica Acta, 1695(1–3), 189–207.PubMedCrossRef Amerik, A. Y., & Hochstrasser, M. (2004). Mechanism and function of deubiquitinating enzymes. Biochimica et Biophysica Acta, 1695(1–3), 189–207.PubMedCrossRef
18.
Zurück zum Zitat Soboleva, T. A., & Baker, R. T. (2004). Deubiquitinating enzymes: their functions and substrate specificity. Current Protein & Peptide Science, 5(3), 191–200.CrossRef Soboleva, T. A., & Baker, R. T. (2004). Deubiquitinating enzymes: their functions and substrate specificity. Current Protein & Peptide Science, 5(3), 191–200.CrossRef
19.
Zurück zum Zitat Lam, Y. A., Xu, W., DeMartino, G. N., & Cohen, R. E. (1997). Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature, 385(6618), 737–740.PubMedCrossRef Lam, Y. A., Xu, W., DeMartino, G. N., & Cohen, R. E. (1997). Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature, 385(6618), 737–740.PubMedCrossRef
20.
Zurück zum Zitat Larsen, C. N., Krantz, B. A., & Wilkinson, K. D. (1998). Substrate specificity of deubiquitinating enzymes: ubiquitin C-terminal hydrolases. Biochemistry, 37(10), 3358–3368.PubMedCrossRef Larsen, C. N., Krantz, B. A., & Wilkinson, K. D. (1998). Substrate specificity of deubiquitinating enzymes: ubiquitin C-terminal hydrolases. Biochemistry, 37(10), 3358–3368.PubMedCrossRef
21.
Zurück zum Zitat Doran, J. F., Jackson, P., Kynoch, P. A., & Thompson, R. J. (1983). Isolation of PGP 9.5, a new human neurone-specific protein detected by high-resolution two-dimensional electrophoresis. Journal of Neurochemistry, 40(6), 1542–1547.PubMedCrossRef Doran, J. F., Jackson, P., Kynoch, P. A., & Thompson, R. J. (1983). Isolation of PGP 9.5, a new human neurone-specific protein detected by high-resolution two-dimensional electrophoresis. Journal of Neurochemistry, 40(6), 1542–1547.PubMedCrossRef
22.
Zurück zum Zitat Wilkinson, K. D., Lee, K. M., Deshpande, S., Duerksen-Hughes, P., Boss, J. M., & Pohl, J. (1989). The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science, 246(4930), 670–673.PubMedCrossRef Wilkinson, K. D., Lee, K. M., Deshpande, S., Duerksen-Hughes, P., Boss, J. M., & Pohl, J. (1989). The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science, 246(4930), 670–673.PubMedCrossRef
23.
Zurück zum Zitat Jensen, D. E., Proctor, M., Marquis, S. T., Gardner, H. P., Ha, S. I., Chodosh, L. A., et al. (1998). BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression. Oncogene, 16(9), 1097–1112.PubMedCrossRef Jensen, D. E., Proctor, M., Marquis, S. T., Gardner, H. P., Ha, S. I., Chodosh, L. A., et al. (1998). BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression. Oncogene, 16(9), 1097–1112.PubMedCrossRef
24.
25.
Zurück zum Zitat Day, I. N., & Thompson, R. J. (1987). Molecular cloning of cDNA coding for human PGP 9.5 protein. A novel cytoplasmic marker for neurones and neuroendocrine cells. FEBS Letters, 210(2), 157–160.PubMedCrossRef Day, I. N., & Thompson, R. J. (1987). Molecular cloning of cDNA coding for human PGP 9.5 protein. A novel cytoplasmic marker for neurones and neuroendocrine cells. FEBS Letters, 210(2), 157–160.PubMedCrossRef
26.
Zurück zum Zitat Das, C., Hoang, Q. Q., Kreinbring, C. A., Luchansky, S. J., Meray, R. K., Ray, S. S., et al. (2006). Structural basis for conformational plasticity of the Parkinson’s disease-associated ubiquitin hydrolase UCH-L1. Proceedings of the National Academy of Sciences USA, 103(12), 4675–4680.CrossRef Das, C., Hoang, Q. Q., Kreinbring, C. A., Luchansky, S. J., Meray, R. K., Ray, S. S., et al. (2006). Structural basis for conformational plasticity of the Parkinson’s disease-associated ubiquitin hydrolase UCH-L1. Proceedings of the National Academy of Sciences USA, 103(12), 4675–4680.CrossRef
27.
Zurück zum Zitat Zhou, Z. R., Zhang, Y. H., Liu, S., Song, A. X., & Hu, H. Y. (2012). Length of the active-site crossover loop defines the substrate specificity of ubiquitin C-terminal hydrolases for ubiquitin chains. Biochemical Journal, 441(1), 143–149.PubMedCrossRef Zhou, Z. R., Zhang, Y. H., Liu, S., Song, A. X., & Hu, H. Y. (2012). Length of the active-site crossover loop defines the substrate specificity of ubiquitin C-terminal hydrolases for ubiquitin chains. Biochemical Journal, 441(1), 143–149.PubMedCrossRef
28.
Zurück zum Zitat Johnston, S. C., Larsen, C. N., Cook, W. J., Wilkinson, K. D., & Hill, C. P. (1997). Crystal structure of a deubiquitinating enzyme (human UCH-L3) at 1.8A° resolution. EMBO Journal, 16(13), 3787–3796.PubMedPubMedCentralCrossRef Johnston, S. C., Larsen, C. N., Cook, W. J., Wilkinson, K. D., & Hill, C. P. (1997). Crystal structure of a deubiquitinating enzyme (human UCH-L3) at 1.8A° resolution. EMBO Journal, 16(13), 3787–3796.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Hirayama, K., Aoki, S., Nishikawa, K., Matsumoto, T., & Wada, K. (2007). Identification of novel chemical inhibitors for ubiquitin C-terminal hydrolase-L3 by virtual screening. Bioorganic and Medicinal Chemistry, 15(21), 6810–6818.PubMedCrossRef Hirayama, K., Aoki, S., Nishikawa, K., Matsumoto, T., & Wada, K. (2007). Identification of novel chemical inhibitors for ubiquitin C-terminal hydrolase-L3 by virtual screening. Bioorganic and Medicinal Chemistry, 15(21), 6810–6818.PubMedCrossRef
30.
Zurück zum Zitat Navarro, M. F., Carmody, L., Romo-Fewell, O., Lokensgard, M. E., & Love, J. J. (2014). Characterizing substrate selectivity of ubiquitin C-terminal hydrolase-L3 using engineered α-linked ubiquitin substrates. Biochemistry, 53(51), 8031–8042.PubMedCrossRef Navarro, M. F., Carmody, L., Romo-Fewell, O., Lokensgard, M. E., & Love, J. J. (2014). Characterizing substrate selectivity of ubiquitin C-terminal hydrolase-L3 using engineered α-linked ubiquitin substrates. Biochemistry, 53(51), 8031–8042.PubMedCrossRef
31.
Zurück zum Zitat Nishio, K., Kim, S. W., Kawai, K., Mizushima, T., Yamane, T., et al. (2009). Crystal structure of the de-ubiquitinating enzyme UCH37 (human UCH-L5) catalytic domain. Biochemical and Biophysical Research Communications, 390(3), 855–860.PubMedCrossRef Nishio, K., Kim, S. W., Kawai, K., Mizushima, T., Yamane, T., et al. (2009). Crystal structure of the de-ubiquitinating enzyme UCH37 (human UCH-L5) catalytic domain. Biochemical and Biophysical Research Communications, 390(3), 855–860.PubMedCrossRef
32.
Zurück zum Zitat Yao, T., Song, L., Xu, W., DeMartino, G. N., Florens, L., Swanson, S. K., et al. (2006). Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nature Cell Biology, 8(9), 994–1002.PubMedCrossRef Yao, T., Song, L., Xu, W., DeMartino, G. N., Florens, L., Swanson, S. K., et al. (2006). Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nature Cell Biology, 8(9), 994–1002.PubMedCrossRef
33.
Zurück zum Zitat Burgie, S. E., Bingman, C. A., Soni, A. B., & Phillips Jr., G. N. (2012). Structural characterization of human Uch37. Proteins, 80(2), 649–654.PubMedCrossRef Burgie, S. E., Bingman, C. A., Soni, A. B., & Phillips Jr., G. N. (2012). Structural characterization of human Uch37. Proteins, 80(2), 649–654.PubMedCrossRef
34.
Zurück zum Zitat Leroy, E., Boyer, R., Auburger, G., Leube, B., Ulm, G., Mezey, E., et al. (1998). The ubiquitin pathway in Parkinson's disease. Nature, 395(6701), 451–452.PubMedCrossRef Leroy, E., Boyer, R., Auburger, G., Leube, B., Ulm, G., Mezey, E., et al. (1998). The ubiquitin pathway in Parkinson's disease. Nature, 395(6701), 451–452.PubMedCrossRef
35.
Zurück zum Zitat Osaka, H., Wang, Y. L., Takada, K., Takizawa, S., Setsuie, R., Li, H., et al. (2003). Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Human Molecular Genetics, 12(16), 1945–1958.PubMedCrossRef Osaka, H., Wang, Y. L., Takada, K., Takizawa, S., Setsuie, R., Li, H., et al. (2003). Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Human Molecular Genetics, 12(16), 1945–1958.PubMedCrossRef
36.
Zurück zum Zitat Liu, Y., Fallon, L., Lashuel, H. A., Liu, Z., & Lansbury Jr., P. T. (2002). The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson’s disease susceptibility. Cell, 111(2), 209–218.PubMedCrossRef Liu, Y., Fallon, L., Lashuel, H. A., Liu, Z., & Lansbury Jr., P. T. (2002). The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson’s disease susceptibility. Cell, 111(2), 209–218.PubMedCrossRef
37.
Zurück zum Zitat Hemelaar, J., Borodovsky, A., Kessler, B. M., Reverter, D., Cook, J., Kolli, N., et al. (2004). Specific and covalent targeting of conjugating and deconjugating enzymes of ubiquitin-like proteins. Molecular and Cellular Biology, 24(1), 84–95.PubMedPubMedCentralCrossRef Hemelaar, J., Borodovsky, A., Kessler, B. M., Reverter, D., Cook, J., Kolli, N., et al. (2004). Specific and covalent targeting of conjugating and deconjugating enzymes of ubiquitin-like proteins. Molecular and Cellular Biology, 24(1), 84–95.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Grou, C. P., Pinto, M. P., Mendes, A. V., Domingues, P., & Azevedo, J. E. (2015). The de novo synthesis of ubiquitin: identification of deubiquitinases acting on ubiquitin precursors. Scientific Reports, 5, 12836.PubMedPubMedCentralCrossRef Grou, C. P., Pinto, M. P., Mendes, A. V., Domingues, P., & Azevedo, J. E. (2015). The de novo synthesis of ubiquitin: identification of deubiquitinases acting on ubiquitin precursors. Scientific Reports, 5, 12836.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Frickel, E. M., Quesada, V., Muething, L., Gubbels, M. J., Spooner, E., Ploegh, H., et al. (2007). Apicomplexan UCHL3 retains dual specificity for ubiquitin and Nedd8 throughout evolution. Cellular Microbiology, 9(6), 1601–1610.PubMedCrossRef Frickel, E. M., Quesada, V., Muething, L., Gubbels, M. J., Spooner, E., Ploegh, H., et al. (2007). Apicomplexan UCHL3 retains dual specificity for ubiquitin and Nedd8 throughout evolution. Cellular Microbiology, 9(6), 1601–1610.PubMedCrossRef
40.
Zurück zum Zitat Misaghi, S., Galardy, P. J., Meester, W. J., Ovaa, H., Ploegh, H. L., & Gaudet, R. (2005). Structure of the ubiquitin hydrolase UCH-L3 complexed with a suicide substrate. Journal of Biological Chemistry, 280(2), 1512–1520.PubMedCrossRef Misaghi, S., Galardy, P. J., Meester, W. J., Ovaa, H., Ploegh, H. L., & Gaudet, R. (2005). Structure of the ubiquitin hydrolase UCH-L3 complexed with a suicide substrate. Journal of Biological Chemistry, 280(2), 1512–1520.PubMedCrossRef
41.
Zurück zum Zitat Husnjak, K., Elsasser, S., Zhang, N., Chen, X., Randles, L., Shi, Y., et al. (2008). Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature, 453(7194), 481–488.PubMedPubMedCentralCrossRef Husnjak, K., Elsasser, S., Zhang, N., Chen, X., Randles, L., Shi, Y., et al. (2008). Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature, 453(7194), 481–488.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Schreiner, P., Chen, X., Husnjak, K., Randles, L., Zhang, N., Elsasser, S., et al. (2008). Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature, 453(7194), 548–552.PubMedPubMedCentralCrossRef Schreiner, P., Chen, X., Husnjak, K., Randles, L., Zhang, N., Elsasser, S., et al. (2008). Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature, 453(7194), 548–552.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat VanderLinden, R. T., Hemmis, C. W., Schmitt, B., Ndoja, A., Whitby, F. G., Robinson, H., et al. (2015). Structural basis for the activation and inhibition of the UCH37 deubiquitylase. Molecular Cell, 57(5), 901–911.CrossRef VanderLinden, R. T., Hemmis, C. W., Schmitt, B., Ndoja, A., Whitby, F. G., Robinson, H., et al. (2015). Structural basis for the activation and inhibition of the UCH37 deubiquitylase. Molecular Cell, 57(5), 901–911.CrossRef
44.
Zurück zum Zitat Jiao, L., Ouyang, S., Shaw, N., Song, G., Feng, Y., Niu, F., et al. (2014). Mechanism of the Rpn13-induced activation of Uch37. Protein & Cell, 5(8), 616–630.CrossRef Jiao, L., Ouyang, S., Shaw, N., Song, G., Feng, Y., Niu, F., et al. (2014). Mechanism of the Rpn13-induced activation of Uch37. Protein & Cell, 5(8), 616–630.CrossRef
45.
Zurück zum Zitat Ventii, K. H., Devi, N. S., Friedrich, K. L., Chernova, T. A., Tighiouart, M., Van Meir, E. G., et al. (2008). BRCA1-associated protein 1 is a tumor suppressor that requires deubiquitinating activity and nuclear localization. Cancer Research, 68(17), 6953–6962.PubMedPubMedCentralCrossRef Ventii, K. H., Devi, N. S., Friedrich, K. L., Chernova, T. A., Tighiouart, M., Van Meir, E. G., et al. (2008). BRCA1-associated protein 1 is a tumor suppressor that requires deubiquitinating activity and nuclear localization. Cancer Research, 68(17), 6953–6962.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Okino, Y., Machida, Y., Frankland-Searby, S., & Machida, Y. J. (2015). BRCA1-associated protein 1 (BAP1) deubiquitinase antagonizes the ubiquitin-mediated activation of FoxK2 target genes. Journal of Biological Chemistry, 290(3), 1580–1591.PubMedCrossRef Okino, Y., Machida, Y., Frankland-Searby, S., & Machida, Y. J. (2015). BRCA1-associated protein 1 (BAP1) deubiquitinase antagonizes the ubiquitin-mediated activation of FoxK2 target genes. Journal of Biological Chemistry, 290(3), 1580–1591.PubMedCrossRef
47.
Zurück zum Zitat Misaghi, S., Ottosen, S., Izrael-Tomasevic, A., Arnott, D., Lamkanfi, M., Lee, J., et al. (2009). Association of C-terminal ubiquitin hydrolase BRCA1-associated protein 1 with cell cycle regulator host cell factor 1. Molecular and Cellular Biology, 29(8), 2181–2192.PubMedPubMedCentralCrossRef Misaghi, S., Ottosen, S., Izrael-Tomasevic, A., Arnott, D., Lamkanfi, M., Lee, J., et al. (2009). Association of C-terminal ubiquitin hydrolase BRCA1-associated protein 1 with cell cycle regulator host cell factor 1. Molecular and Cellular Biology, 29(8), 2181–2192.PubMedPubMedCentralCrossRef
48.
49.
Zurück zum Zitat Mallery, D. L., Vandenberg, C. J., & Hiom, K. (2002). Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains. EMBO Journal, 21(24), 6755–6762.PubMedPubMedCentralCrossRef Mallery, D. L., Vandenberg, C. J., & Hiom, K. (2002). Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains. EMBO Journal, 21(24), 6755–6762.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Choi, J., Levey, A. I., Weintraub, S. T., Rees, H. D., Gearing, M., Chin, L. S., et al. (2004). Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson's and Alzheimer's diseases. Journal Biological Chemistry, 279(13), 13256–13264.CrossRef Choi, J., Levey, A. I., Weintraub, S. T., Rees, H. D., Gearing, M., Chin, L. S., et al. (2004). Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson's and Alzheimer's diseases. Journal Biological Chemistry, 279(13), 13256–13264.CrossRef
51.
Zurück zum Zitat Son, O. L., Kim, H. T., Ji, M. H., Yoo, K. W., Rhee, M., & Kim, C. H. (2003). Cloning and expression analysis of a Parkinson's disease gene, Uch-L1, and its promoter in zebrafish. Biochemical and Biophysical Research Communications, 312(3), 601–607.PubMedCrossRef Son, O. L., Kim, H. T., Ji, M. H., Yoo, K. W., Rhee, M., & Kim, C. H. (2003). Cloning and expression analysis of a Parkinson's disease gene, Uch-L1, and its promoter in zebrafish. Biochemical and Biophysical Research Communications, 312(3), 601–607.PubMedCrossRef
52.
Zurück zum Zitat Barrachina, M., Castano, E., Dalfo, E., Maes, T., Buesa, C., & Ferrer, I. (2006). Reduced ubiquitin C-terminal hydrolase-1 expression levels in dementia with Lewy bodies. Neurobiology of Disease, 22(2), 265–273.PubMedCrossRef Barrachina, M., Castano, E., Dalfo, E., Maes, T., Buesa, C., & Ferrer, I. (2006). Reduced ubiquitin C-terminal hydrolase-1 expression levels in dementia with Lewy bodies. Neurobiology of Disease, 22(2), 265–273.PubMedCrossRef
53.
Zurück zum Zitat Gong, B., Cao, Z., Zheng, P., Vitolo, O. V., Liu, S., Staniszewski, A., et al. (2006). Ubiquitin hydrolase Uch-L1 rescues β-amyloid-induced decreases in synaptic function and contextual memory. Cell, 126(4), 775–788.PubMedCrossRef Gong, B., Cao, Z., Zheng, P., Vitolo, O. V., Liu, S., Staniszewski, A., et al. (2006). Ubiquitin hydrolase Uch-L1 rescues β-amyloid-induced decreases in synaptic function and contextual memory. Cell, 126(4), 775–788.PubMedCrossRef
54.
Zurück zum Zitat Cartier, A. E., Djakovic, S. N., Salehi, A., Wilson, S. M., Masliah, E., & Patrick, G. N. (2009). Regulation of synaptic structure by ubiquitin C-terminal hydrolase L1. Journal of Neuroscience, 29(24), 7857–7868.PubMedPubMedCentralCrossRef Cartier, A. E., Djakovic, S. N., Salehi, A., Wilson, S. M., Masliah, E., & Patrick, G. N. (2009). Regulation of synaptic structure by ubiquitin C-terminal hydrolase L1. Journal of Neuroscience, 29(24), 7857–7868.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Lederer, C. W., Torrisi, A., Pantelidou, M., Santama, N., & Cavallaro, S. (2007). Pathways and genes differentially expressed in the motor cortex of patients with sporadic amyotrophic lateral sclerosis. BMC Genomics, 8, 26.PubMedPubMedCentralCrossRef Lederer, C. W., Torrisi, A., Pantelidou, M., Santama, N., & Cavallaro, S. (2007). Pathways and genes differentially expressed in the motor cortex of patients with sporadic amyotrophic lateral sclerosis. BMC Genomics, 8, 26.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Lakshmana, M. K., Chung, J. Y., Wickramarachchi, S., Tak, E., Bianchi, E., Koo, E. H., et al. (2010). A fragment of the scaffolding protein RanBP9 is increased in Alzheimer’s disease brains and strongly potentiates amyloidbeta peptide generation. FASEB Journal, 24(1), 119–127.PubMedPubMedCentralCrossRef Lakshmana, M. K., Chung, J. Y., Wickramarachchi, S., Tak, E., Bianchi, E., Koo, E. H., et al. (2010). A fragment of the scaffolding protein RanBP9 is increased in Alzheimer’s disease brains and strongly potentiates amyloidbeta peptide generation. FASEB Journal, 24(1), 119–127.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Zhou, Y., Gu, G., Goodlett, D. R., Zhang, T., Pan, C., Montine, T. J., et al. (2004). Analysis of alpha-synuclein-associated proteins by quantitative proteomics. Journal of Biological Chemistry, 279(37), 39155–39164.PubMedCrossRef Zhou, Y., Gu, G., Goodlett, D. R., Zhang, T., Pan, C., Montine, T. J., et al. (2004). Analysis of alpha-synuclein-associated proteins by quantitative proteomics. Journal of Biological Chemistry, 279(37), 39155–39164.PubMedCrossRef
58.
Zurück zum Zitat Zhang, M., Deng, Y., Luo, Y., Zhang, S., Zou, H., Cai, F., et al. (2012). Control of BACE1 degradation and APP processing by ubiquitin carboxyl-terminal hydrolase L1. Journal of Neurochemistry, 120(6), 1129–1138.PubMed Zhang, M., Deng, Y., Luo, Y., Zhang, S., Zou, H., Cai, F., et al. (2012). Control of BACE1 degradation and APP processing by ubiquitin carboxyl-terminal hydrolase L1. Journal of Neurochemistry, 120(6), 1129–1138.PubMed
59.
Zurück zum Zitat Guglielmotto, M., Monteleone, D., Boido, M., Piras, A., Giliberto, L., Borghi, R., et al. (2012). Aβ1-42-mediated down-regulation of Uch-L1 is dependent on NF-κB activation and impaired BACE1 lysosomal degradation. Aging Cell, 11(5), 834–844.PubMedCrossRef Guglielmotto, M., Monteleone, D., Boido, M., Piras, A., Giliberto, L., Borghi, R., et al. (2012). Aβ1-42-mediated down-regulation of Uch-L1 is dependent on NF-κB activation and impaired BACE1 lysosomal degradation. Aging Cell, 11(5), 834–844.PubMedCrossRef
60.
Zurück zum Zitat Carmine Belin, A., Westerlund, M., Bergman, O., Nissbrandt, H., Lind, C., Sydow, O., et al. (2007). S18Y in ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) associated with decreased risk of Parkinson's disease in Sweden. Parkinsonism & Related Disorders, 13(5), 295–298.CrossRef Carmine Belin, A., Westerlund, M., Bergman, O., Nissbrandt, H., Lind, C., Sydow, O., et al. (2007). S18Y in ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) associated with decreased risk of Parkinson's disease in Sweden. Parkinsonism & Related Disorders, 13(5), 295–298.CrossRef
61.
Zurück zum Zitat Sun, S., Zhao, Y., Jin, G., & Kang, H. (2014). Lack of association between UCHL1 S18Y gene polymorphism and Parkinson's disease in the Asian population: a meta-analysis. Neurological Sciences, 35(12), 1867–1876.PubMedCrossRef Sun, S., Zhao, Y., Jin, G., & Kang, H. (2014). Lack of association between UCHL1 S18Y gene polymorphism and Parkinson's disease in the Asian population: a meta-analysis. Neurological Sciences, 35(12), 1867–1876.PubMedCrossRef
62.
Zurück zum Zitat Bishop, P., Rocca, D., & Henley, J. M. (2016). Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction. The Biochemical Journal, 473(16), 2453–2462.PubMedPubMedCentralCrossRef Bishop, P., Rocca, D., & Henley, J. M. (2016). Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction. The Biochemical Journal, 473(16), 2453–2462.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Mandelker, D. L., Yamashita, K., Tokumaru, Y., Mimori, K., Howard, D. L., Tanaka, Y., et al. (2005). PGP9.5 promoter methylation is an independent prognostic factor for esophageal squamous cell carcinoma. Cancer Research, 65(11), 4963–4968.PubMedCrossRef Mandelker, D. L., Yamashita, K., Tokumaru, Y., Mimori, K., Howard, D. L., Tanaka, Y., et al. (2005). PGP9.5 promoter methylation is an independent prognostic factor for esophageal squamous cell carcinoma. Cancer Research, 65(11), 4963–4968.PubMedCrossRef
64.
Zurück zum Zitat Yamashita, K., Park, H. L., Kim, M. S., Osada, M., Tokumaru, Y., Inoue, H., et al. (2006). PGP9.5 methylation in diffusetype gastric cancer. Cancer Research, 66(7), 3921–3927.PubMedCrossRef Yamashita, K., Park, H. L., Kim, M. S., Osada, M., Tokumaru, Y., Inoue, H., et al. (2006). PGP9.5 methylation in diffusetype gastric cancer. Cancer Research, 66(7), 3921–3927.PubMedCrossRef
65.
Zurück zum Zitat Wang, G., Zhang, W., Zhou, B., Jin, C., Wang, Z., Yang, Y., et al. (2015). The diagnosis value of promoter methylation of UCHL1 in the serum for progression of gastric cancer. BioMed Research International, 2015, 741030.PubMedPubMedCentral Wang, G., Zhang, W., Zhou, B., Jin, C., Wang, Z., Yang, Y., et al. (2015). The diagnosis value of promoter methylation of UCHL1 in the serum for progression of gastric cancer. BioMed Research International, 2015, 741030.PubMedPubMedCentral
66.
Zurück zum Zitat Kagara, I., Enokida, H., Kawakami, K., Matsuda, R., Toki, K., Nishimura, H., et al. (2008). CpG hypermethylation of the UCHL1 gene promoter is associated with pathogenesis and poor prognosis in renal cell carcinoma. The Joural of Urology, 180(1), 343–351.CrossRef Kagara, I., Enokida, H., Kawakami, K., Matsuda, R., Toki, K., Nishimura, H., et al. (2008). CpG hypermethylation of the UCHL1 gene promoter is associated with pathogenesis and poor prognosis in renal cell carcinoma. The Joural of Urology, 180(1), 343–351.CrossRef
67.
Zurück zum Zitat Seliger, B., Handke, D., Schabel, E., Bukur, J., Lichtenfels, R., & Dammann, R. (2009). Epigenetic control of the ubiquitin carboxyl terminal hydrolase 1 in renal cell carcinoma. Journal of Translational Medicine, 7, 90.PubMedPubMedCentralCrossRef Seliger, B., Handke, D., Schabel, E., Bukur, J., Lichtenfels, R., & Dammann, R. (2009). Epigenetic control of the ubiquitin carboxyl terminal hydrolase 1 in renal cell carcinoma. Journal of Translational Medicine, 7, 90.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Wang, Y., Yu, Q., Cho, A. H., Rondeau, G., Welsh, J., Adamson, E., et al. (2005). Survey of differentially methylated promoters in prostate cancer cell lines. Neoplasia, 7(8), 748–760.PubMedPubMedCentralCrossRef Wang, Y., Yu, Q., Cho, A. H., Rondeau, G., Welsh, J., Adamson, E., et al. (2005). Survey of differentially methylated promoters in prostate cancer cell lines. Neoplasia, 7(8), 748–760.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Mitsui, Y., Shiina, H., Hiraki, M., Arichi, N., Hiraoka, T., Sumura, M., et al. (2012). Tumor suppressor function of PGP9.5 is associated with epigenetic regulation in prostate cancer--novel predictor of biochemical recurrence after radical surgery. Cancer Epidemiol Biomarkers Prevention, 21(3), 487–496.CrossRef Mitsui, Y., Shiina, H., Hiraki, M., Arichi, N., Hiraoka, T., Sumura, M., et al. (2012). Tumor suppressor function of PGP9.5 is associated with epigenetic regulation in prostate cancer--novel predictor of biochemical recurrence after radical surgery. Cancer Epidemiol Biomarkers Prevention, 21(3), 487–496.CrossRef
70.
Zurück zum Zitat Tokumaru, Y., Yamashita, K., Kim, M. S., Park, H. L., Osada, M., Mori, M., et al. (2008). The role of PGP9.5 as a tumor suppressor gene in human cancer. Internation Journal of Cancer, 123(4), 753–759.CrossRef Tokumaru, Y., Yamashita, K., Kim, M. S., Park, H. L., Osada, M., Mori, M., et al. (2008). The role of PGP9.5 as a tumor suppressor gene in human cancer. Internation Journal of Cancer, 123(4), 753–759.CrossRef
71.
Zurück zum Zitat Yu, J., Tao, Q., Cheung, K. F., Jin, H., Poon, F. F., Wang, X., et al. (2008). Epigenetic identification of ubiquitin carboxyl-terminal hydrolase L1 as a functional tumor suppressor and biomarker for hepatocellular carcinoma and other digestive tumors. Hepatology, 48(2), 508–518.PubMedCrossRef Yu, J., Tao, Q., Cheung, K. F., Jin, H., Poon, F. F., Wang, X., et al. (2008). Epigenetic identification of ubiquitin carboxyl-terminal hydrolase L1 as a functional tumor suppressor and biomarker for hepatocellular carcinoma and other digestive tumors. Hepatology, 48(2), 508–518.PubMedCrossRef
72.
Zurück zum Zitat Okochi-Takada, E., Nakazawa, K., Wakabayashi, M., Mori, A., Ichimura, S., Yasugi, T., et al. (2006). Silencing of the UCHL1 gene in human colorectal and ovarian cancers. Internation Journal of Cancer, 119(6), 1338–1344.CrossRef Okochi-Takada, E., Nakazawa, K., Wakabayashi, M., Mori, A., Ichimura, S., Yasugi, T., et al. (2006). Silencing of the UCHL1 gene in human colorectal and ovarian cancers. Internation Journal of Cancer, 119(6), 1338–1344.CrossRef
73.
Zurück zum Zitat Brait, M., Maldonado, L., Noordhuis, M. G., Begum, S., Loyo, M., et al. (2013). Association of promoter methylation of VGF and PGP9.5 with ovarian cancer progression. PLoS One, 8(9), e70878.PubMedPubMedCentralCrossRef Brait, M., Maldonado, L., Noordhuis, M. G., Begum, S., Loyo, M., et al. (2013). Association of promoter methylation of VGF and PGP9.5 with ovarian cancer progression. PLoS One, 8(9), e70878.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Li, L., Tao, Q., Jin, H., van Hasselt, A., Poon, F. F., et al. (2010). The tumor suppressor UCHL1 forms a complex with p53/MDM2/ARF to promote p53 signaling and is frequently silenced in nasopharyngeal carcinoma. Clinical Cancer Research, 16(11), 2949–2958.PubMedCrossRef Li, L., Tao, Q., Jin, H., van Hasselt, A., Poon, F. F., et al. (2010). The tumor suppressor UCHL1 forms a complex with p53/MDM2/ARF to promote p53 signaling and is frequently silenced in nasopharyngeal carcinoma. Clinical Cancer Research, 16(11), 2949–2958.PubMedCrossRef
75.
Zurück zum Zitat Fukutomi, S., Seki, N., Koda, K., & Miyazaki, M. (2007). Identification of methylation-silenced genes in colorectal cancer cell lines: Genomic screening using oligonucleotide arrays. Scandinavian Journal of Gastroenterology, 42(12), 1486–1494.PubMedCrossRef Fukutomi, S., Seki, N., Koda, K., & Miyazaki, M. (2007). Identification of methylation-silenced genes in colorectal cancer cell lines: Genomic screening using oligonucleotide arrays. Scandinavian Journal of Gastroenterology, 42(12), 1486–1494.PubMedCrossRef
76.
Zurück zum Zitat Mizukami, H., Shirahata, A., Goto, T., Sakata, M., Saito, M., et al. (2008). PGP9.5 methylation as a marker for metastatic colorectal cancer. Anticancer Research, 28(5A), 2697–2700.PubMed Mizukami, H., Shirahata, A., Goto, T., Sakata, M., Saito, M., et al. (2008). PGP9.5 methylation as a marker for metastatic colorectal cancer. Anticancer Research, 28(5A), 2697–2700.PubMed
77.
Zurück zum Zitat Abdelmaksoud-Dammak, R., Saadallah-Kallel, A., Miladi-Abdennadher, I., Ayedi, L., Khabir, A., et al. (2016). CpG methylation of ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) and P53 mutation pattern in sporadic colorectal cancer. Tumour Biology, 37(2), 1707–1714.PubMedCrossRef Abdelmaksoud-Dammak, R., Saadallah-Kallel, A., Miladi-Abdennadher, I., Ayedi, L., Khabir, A., et al. (2016). CpG methylation of ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) and P53 mutation pattern in sporadic colorectal cancer. Tumour Biology, 37(2), 1707–1714.PubMedCrossRef
78.
Zurück zum Zitat Hibi, K., Liu, Q., Beaudry, G. A., Madden, S. L., Westra, W. H., Wehage, S. L., et al. (1998). Serial analysis of gene expression in non-small cell lung cancer. Cancer Research, 58(24), 5690–5694.PubMed Hibi, K., Liu, Q., Beaudry, G. A., Madden, S. L., Westra, W. H., Wehage, S. L., et al. (1998). Serial analysis of gene expression in non-small cell lung cancer. Cancer Research, 58(24), 5690–5694.PubMed
79.
Zurück zum Zitat Kusakabe, M., Kutomi, T., Watanabe, K., Emoto, N., Aki, N., et al. (2010). Identification of G0S2 as a gene frequently methylated in squamous lung cancer by combination of in silico and experimental approaches. Internation Journal of Cancer, 126(8), 1895–1902. Kusakabe, M., Kutomi, T., Watanabe, K., Emoto, N., Aki, N., et al. (2010). Identification of G0S2 as a gene frequently methylated in squamous lung cancer by combination of in silico and experimental approaches. Internation Journal of Cancer, 126(8), 1895–1902.
80.
Zurück zum Zitat Trifa, F., Karray-Chouayekh, S., Jmaa, Z. B., Jmal, E., Khabir, A., et al. (2013). Frequent CpG methylation of ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) in sporadic and hereditary Tunisian breast cancer patients: clinical significance. Medical Oncology, 30(1), 418.PubMedCrossRef Trifa, F., Karray-Chouayekh, S., Jmaa, Z. B., Jmal, E., Khabir, A., et al. (2013). Frequent CpG methylation of ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) in sporadic and hereditary Tunisian breast cancer patients: clinical significance. Medical Oncology, 30(1), 418.PubMedCrossRef
81.
Zurück zum Zitat Lien, H. C., Wang, C. C., Lin, C. H., Lu, Y. S., Huang, C. S., et al. (2013). Differential expression of ubiquitin carboxy-terminal hydrolase L1 in breast carcinoma and its biological significance. Human Pathology, 44(9), 1838–1848.PubMedCrossRef Lien, H. C., Wang, C. C., Lin, C. H., Lu, Y. S., Huang, C. S., et al. (2013). Differential expression of ubiquitin carboxy-terminal hydrolase L1 in breast carcinoma and its biological significance. Human Pathology, 44(9), 1838–1848.PubMedCrossRef
82.
Zurück zum Zitat Lien, H. C., Wang, C. C., Huang, C. S., Yang, Y. W., Kuo, W. H., et al. (2013). Ubiquitin carboxy-terminal hydrolase L1 may be involved in the development of mammary phyllodes tumors. Virchows Archiv, 462(2), 155–161.PubMedCrossRef Lien, H. C., Wang, C. C., Huang, C. S., Yang, Y. W., Kuo, W. H., et al. (2013). Ubiquitin carboxy-terminal hydrolase L1 may be involved in the development of mammary phyllodes tumors. Virchows Archiv, 462(2), 155–161.PubMedCrossRef
83.
Zurück zum Zitat Jin, Y., Zhang, W., Xu, J., Wang, H., Zhang, Z., et al. (2015). UCH-L1 involved in regulating the degradation of EGFR and promoting malignant properties in drug-resistant breast cancer. International Journal of Clinicl and Experimental Pathology, 8(10), 12500–12508. Jin, Y., Zhang, W., Xu, J., Wang, H., Zhang, Z., et al. (2015). UCH-L1 involved in regulating the degradation of EGFR and promoting malignant properties in drug-resistant breast cancer. International Journal of Clinicl and Experimental Pathology, 8(10), 12500–12508.
84.
Zurück zum Zitat Mastoraki, A., Ioannidis, E., Patsouris, E., Safioleas, M., & Aroni, K. (2009). PGP 9.5 expression in cutaneous keratoacanthomas and squamous cell carcinomas. Archives of Dermatological Research, 301(9), 653–658.PubMedCrossRef Mastoraki, A., Ioannidis, E., Patsouris, E., Safioleas, M., & Aroni, K. (2009). PGP 9.5 expression in cutaneous keratoacanthomas and squamous cell carcinomas. Archives of Dermatological Research, 301(9), 653–658.PubMedCrossRef
85.
Zurück zum Zitat Mastoraki, A., Ioannidis, E., Apostolaki, A., Patsouris, E., & Aroni, K. (2009). PGP 9.5 and cyclin D1 coexpression in cutaneous squamous cell carcinomas. International Journal of Surgical Pathology, 17(6), 413–420.PubMedCrossRef Mastoraki, A., Ioannidis, E., Apostolaki, A., Patsouris, E., & Aroni, K. (2009). PGP 9.5 and cyclin D1 coexpression in cutaneous squamous cell carcinomas. International Journal of Surgical Pathology, 17(6), 413–420.PubMedCrossRef
86.
Zurück zum Zitat Takano, T., Miyauchi, A., Matsuzuka, F., Yoshida, H., Nakata, Y., Kuma, K., et al. (2004). PGP9.5 mRNA could contribute to the molecular-based diagnosis of medullary thyroid carcinoma. European Journal of Cancer, 40(4), 614–618.PubMedCrossRef Takano, T., Miyauchi, A., Matsuzuka, F., Yoshida, H., Nakata, Y., Kuma, K., et al. (2004). PGP9.5 mRNA could contribute to the molecular-based diagnosis of medullary thyroid carcinoma. European Journal of Cancer, 40(4), 614–618.PubMedCrossRef
87.
Zurück zum Zitat Howell, V. M., Gill, A., Clarkson, A., Nelson, A. E., Dunne, R., Delbridge, L. W., et al. (2009). Accuracy of combined protein gene product 9.5 and parafibromin markers for immunohistochemical diagnosis of parathyroid carcinoma. Journal of Clinical Endocrinology and Metabolism, 94(2), 434–441.PubMedCrossRef Howell, V. M., Gill, A., Clarkson, A., Nelson, A. E., Dunne, R., Delbridge, L. W., et al. (2009). Accuracy of combined protein gene product 9.5 and parafibromin markers for immunohistochemical diagnosis of parathyroid carcinoma. Journal of Clinical Endocrinology and Metabolism, 94(2), 434–441.PubMedCrossRef
88.
Zurück zum Zitat Truran, P. P., Johnson, S. J., Bliss, R. D., Lennard, T. W., & Aspinall, S. R. (2014). Parafibromin, galectin-3, PGP9.5, Ki67, and cyclin D1: using an immunohistochemical panel to aid in the diagnosis of parathyroid cancer. World Journal of Surgery, 38(11), 2845–2854.PubMedCrossRef Truran, P. P., Johnson, S. J., Bliss, R. D., Lennard, T. W., & Aspinall, S. R. (2014). Parafibromin, galectin-3, PGP9.5, Ki67, and cyclin D1: using an immunohistochemical panel to aid in the diagnosis of parathyroid cancer. World Journal of Surgery, 38(11), 2845–2854.PubMedCrossRef
89.
Zurück zum Zitat Wulfänger, J., Biehl, K., Tetzner, A., Wild, P., Ikenberg, K., Meyer, S., et al. (2013). Heterogeneous expression and functional relevance of the ubiquitin carboxyl-terminal hydrolase L1 in melanoma. International Journal of Cancer, 133(11), 2522–2532.PubMed Wulfänger, J., Biehl, K., Tetzner, A., Wild, P., Ikenberg, K., Meyer, S., et al. (2013). Heterogeneous expression and functional relevance of the ubiquitin carboxyl-terminal hydrolase L1 in melanoma. International Journal of Cancer, 133(11), 2522–2532.PubMed
90.
Zurück zum Zitat Kim, H. J., Magesh, V., Lee, J. J., Kim, S., Knaus, U. G., & Lee, K. J. (2015). Ubiquitin C-terminal hydrolase-L1 increases cancer cell invasion by modulating hydrogen peroxide generated via NADPH oxidase 4. Oncotarget, 6(18), 16287–16303.PubMedPubMedCentralCrossRef Kim, H. J., Magesh, V., Lee, J. J., Kim, S., Knaus, U. G., & Lee, K. J. (2015). Ubiquitin C-terminal hydrolase-L1 increases cancer cell invasion by modulating hydrogen peroxide generated via NADPH oxidase 4. Oncotarget, 6(18), 16287–16303.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Liu, X., Zeng, B., Ma, J., & Wan, C. (2009). Comparative proteomic analysis of osteosarcoma cell and human primary cultured osteoblastic cell. Cancer Investigation, 27(3), 345–352.PubMedCrossRef Liu, X., Zeng, B., Ma, J., & Wan, C. (2009). Comparative proteomic analysis of osteosarcoma cell and human primary cultured osteoblastic cell. Cancer Investigation, 27(3), 345–352.PubMedCrossRef
92.
Zurück zum Zitat Zheng, S., Qiao, G., Min, D., Zhang, Z., Lin, F., Yang, Q., et al. (2015). Heterogeneous expression and biological function of ubiquitin carboxy-terminal hydrolase-L1 in osteosarcoma. Cancer Letters, 359(1), 36–46.PubMedCrossRef Zheng, S., Qiao, G., Min, D., Zhang, Z., Lin, F., Yang, Q., et al. (2015). Heterogeneous expression and biological function of ubiquitin carboxy-terminal hydrolase-L1 in osteosarcoma. Cancer Letters, 359(1), 36–46.PubMedCrossRef
93.
Zurück zum Zitat Hibi, K., Kodera, Y., Ito, K., Akiyama, S., Shirane, M., & Nakao, A. (2004). Plasminogen activator inhibitor-1 is a downstream mediator of the PGP9.5-related oncogenic pathway in esophageal squamous cell carcinoma. Anticancer Research, 24(6), 3731–3734.PubMed Hibi, K., Kodera, Y., Ito, K., Akiyama, S., Shirane, M., & Nakao, A. (2004). Plasminogen activator inhibitor-1 is a downstream mediator of the PGP9.5-related oncogenic pathway in esophageal squamous cell carcinoma. Anticancer Research, 24(6), 3731–3734.PubMed
94.
Zurück zum Zitat Mizukami, H., Goto, T., Kitamura, Y., Sakata, M., Saito, M., Ishibashi, K., et al. (2009). PGP9.5 was less frequently methylated in advanced gastric carcinoma. Hepato-Gastroenterology, 56(94–95), 1576–1579.PubMed Mizukami, H., Goto, T., Kitamura, Y., Sakata, M., Saito, M., Ishibashi, K., et al. (2009). PGP9.5 was less frequently methylated in advanced gastric carcinoma. Hepato-Gastroenterology, 56(94–95), 1576–1579.PubMed
95.
Zurück zum Zitat Yang, H., Zhang, C., Fang, S., Ou, R., Li, W., & Xu, Y. (2015). UCH-LI acts as a novel prognostic biomarker in gastric cardiac adenocarcinoma. International Journal of Clinicl and Experimental Pathology, 8(11), 13957–13967. Yang, H., Zhang, C., Fang, S., Ou, R., Li, W., & Xu, Y. (2015). UCH-LI acts as a novel prognostic biomarker in gastric cardiac adenocarcinoma. International Journal of Clinicl and Experimental Pathology, 8(11), 13957–13967.
96.
Zurück zum Zitat Gu, Y. Y., Yang, M., Zhao, M., Luo, Q., Yang, L., Peng, H., et al. (2015). The de-ubiquitinase UCHL1 promotes gastric cancer metastasis via the Akt and Erk1/2 pathways. Tumour Biology, 36(11), 8379–8387.PubMedCrossRef Gu, Y. Y., Yang, M., Zhao, M., Luo, Q., Yang, L., Peng, H., et al. (2015). The de-ubiquitinase UCHL1 promotes gastric cancer metastasis via the Akt and Erk1/2 pathways. Tumour Biology, 36(11), 8379–8387.PubMedCrossRef
97.
Zurück zum Zitat Orr, K. S., Shi, Z., Brown, W. M., O'Hagan, K. A., Lappin, T. R., Maxwell, P., et al. (2011). Potential prognostic marker ubiquitin carboxyl-terminal hydrolase-L1 does not predict patient survival in non-small cell lung carcinoma. Journal of Experimental and Clinical Cancer Research, 30, 79.PubMedPubMedCentralCrossRef Orr, K. S., Shi, Z., Brown, W. M., O'Hagan, K. A., Lappin, T. R., Maxwell, P., et al. (2011). Potential prognostic marker ubiquitin carboxyl-terminal hydrolase-L1 does not predict patient survival in non-small cell lung carcinoma. Journal of Experimental and Clinical Cancer Research, 30, 79.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Akishima-Fukasawa, Y., Ino, Y., Nakanishi, Y., Miura, A., Moriya, Y., Kondo, T., et al. (2010). Significance of PGP9.5 expression in cancer-associated fibroblasts for prognosis of colorectal carcinoma. American Journal of Clinical Pathology, 134(1), 71–79.PubMedCrossRef Akishima-Fukasawa, Y., Ino, Y., Nakanishi, Y., Miura, A., Moriya, Y., Kondo, T., et al. (2010). Significance of PGP9.5 expression in cancer-associated fibroblasts for prognosis of colorectal carcinoma. American Journal of Clinical Pathology, 134(1), 71–79.PubMedCrossRef
99.
Zurück zum Zitat Ma, Y., Zhao, M., Zhong, J., Shi, L., Luo, Q., Liu, J., et al. (2010). Proteomic profiling of proteins associated with lymph node metastasis in colorectal cancer. Journal of Cellular Biochemistry, 110(6), 1512–1519.PubMedCrossRef Ma, Y., Zhao, M., Zhong, J., Shi, L., Luo, Q., Liu, J., et al. (2010). Proteomic profiling of proteins associated with lymph node metastasis in colorectal cancer. Journal of Cellular Biochemistry, 110(6), 1512–1519.PubMedCrossRef
100.
Zurück zum Zitat Zhong, J., Zhao, M., Ma, Y., Luo, Q., Liu, J., Wang, J., et al. (2012). UCHL1 acts as a colorectal cancer oncogene via activation of the β-catenin/TCF pathway through its deubiquitinating activity. International Journal of Molecular Medicine, 30(2), 430–436.PubMedCrossRef Zhong, J., Zhao, M., Ma, Y., Luo, Q., Liu, J., Wang, J., et al. (2012). UCHL1 acts as a colorectal cancer oncogene via activation of the β-catenin/TCF pathway through its deubiquitinating activity. International Journal of Molecular Medicine, 30(2), 430–436.PubMedCrossRef
101.
Zurück zum Zitat Hussain, S., Foreman, O., Perkins, S. L., Witzig, T. E., Miles, R. R., van Deursen, J., et al. (2010). The de-ubiquitinase UCH-L1 is an oncogene that drives the development of lymphoma in vivo by deregulating PHLPP1 and Akt signaling. Leukemia, 24(9), 1641–1655.PubMedPubMedCentralCrossRef Hussain, S., Foreman, O., Perkins, S. L., Witzig, T. E., Miles, R. R., van Deursen, J., et al. (2010). The de-ubiquitinase UCH-L1 is an oncogene that drives the development of lymphoma in vivo by deregulating PHLPP1 and Akt signaling. Leukemia, 24(9), 1641–1655.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Goto, Y., Zeng, L., Yeom, C. J., Zhu, Y., Morinibu, A., Shinomiya, K., et al. (2015). UCHL1 provides diagnostic and antimetastatic strategies due to its deubiquitinating effect on HIF-1α. Nature Communications, 6, 6153.PubMedPubMedCentralCrossRef Goto, Y., Zeng, L., Yeom, C. J., Zhu, Y., Morinibu, A., Shinomiya, K., et al. (2015). UCHL1 provides diagnostic and antimetastatic strategies due to its deubiquitinating effect on HIF-1α. Nature Communications, 6, 6153.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Bheda, A., Yue, W., Gullapalli, A., Whitehurst, C., Liu, R., Pagano, J. S., et al. (2009). Positive reciprocal regulation of ubiquitin C-terminal hydrolase L1 and β-catenin/TCF signaling. PLoS One, 4(6), e5955.PubMedPubMedCentralCrossRef Bheda, A., Yue, W., Gullapalli, A., Whitehurst, C., Liu, R., Pagano, J. S., et al. (2009). Positive reciprocal regulation of ubiquitin C-terminal hydrolase L1 and β-catenin/TCF signaling. PLoS One, 4(6), e5955.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Caballero, O. L., Resto, V., Patturajan, M., Meerzaman, D., Guo, M. Z., Engles, J., et al. (2002). Interaction and colocalization of PGP9.5 with JAB1 and p27(Kip1). Oncogene, 21(19), 3003–3010.PubMedCrossRef Caballero, O. L., Resto, V., Patturajan, M., Meerzaman, D., Guo, M. Z., Engles, J., et al. (2002). Interaction and colocalization of PGP9.5 with JAB1 and p27(Kip1). Oncogene, 21(19), 3003–3010.PubMedCrossRef
105.
Zurück zum Zitat Takami, Y., Nakagami, H., Morishita, R., Katsuya, T., Cui, T. X., Ichikawa, T., et al. (2007). Ubiquitin carboxyl-terminal hydrolase L1, a novel deubiquitinating enzyme in the vasculature, attenuates NF-kappaB activation. Arteriosclerosis Thrombosis and Vascular Biology, 27(10), 2184–2190.CrossRef Takami, Y., Nakagami, H., Morishita, R., Katsuya, T., Cui, T. X., Ichikawa, T., et al. (2007). Ubiquitin carboxyl-terminal hydrolase L1, a novel deubiquitinating enzyme in the vasculature, attenuates NF-kappaB activation. Arteriosclerosis Thrombosis and Vascular Biology, 27(10), 2184–2190.CrossRef
106.
Zurück zum Zitat Ichikawa, T., Li, J., Dong, X., Potts, J. D., Tang, D. Q., Li, D. S., et al. (2010). Ubiquitin carboxyl terminal hydrolase L1 negatively regulates TNFalpha-mediated vascular smooth muscle cell proliferation via suppressing ERK activation. Biochemical and Biophysical Research Communications, 391(1), 852–856.PubMedCrossRef Ichikawa, T., Li, J., Dong, X., Potts, J. D., Tang, D. Q., Li, D. S., et al. (2010). Ubiquitin carboxyl terminal hydrolase L1 negatively regulates TNFalpha-mediated vascular smooth muscle cell proliferation via suppressing ERK activation. Biochemical and Biophysical Research Communications, 391(1), 852–856.PubMedCrossRef
107.
Zurück zum Zitat Sosna, J., Voigt, S., Mathieu, S., Kabelitz, D., Trad, A., Janssen, O., et al. (2013). The proteases HtrA2/Omi and UCH-L1 regulate TNF-induced necroptosis. Cell Communication and Signaling, 11, 76.PubMedPubMedCentralCrossRef Sosna, J., Voigt, S., Mathieu, S., Kabelitz, D., Trad, A., Janssen, O., et al. (2013). The proteases HtrA2/Omi and UCH-L1 regulate TNF-induced necroptosis. Cell Communication and Signaling, 11, 76.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Karim, R., Tummers, B., Meyers, C., Biryukov, J. L., Alam, S., Backendorf, C., et al. (2013). Human papillomavirus (HPV) upregulates the cellular deubiquitinase UCHL1 to suppress the keratinocyte's innate immune response. PLoS Pathogens, 9(5), e1003384.PubMedPubMedCentralCrossRef Karim, R., Tummers, B., Meyers, C., Biryukov, J. L., Alam, S., Backendorf, C., et al. (2013). Human papillomavirus (HPV) upregulates the cellular deubiquitinase UCHL1 to suppress the keratinocyte's innate immune response. PLoS Pathogens, 9(5), e1003384.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Zhang, H., Mao, X., Sun, Y., Hu, R., Luo, W., Zhao, Z., et al. (2015). NF-κB upregulates ubiquitin C-terminal hydrolase 1 in diseased podocytes in glomerulonephritis. Molecular Medicine Reports, 12(2), 2893–2901.PubMedCrossRef Zhang, H., Mao, X., Sun, Y., Hu, R., Luo, W., Zhao, Z., et al. (2015). NF-κB upregulates ubiquitin C-terminal hydrolase 1 in diseased podocytes in glomerulonephritis. Molecular Medicine Reports, 12(2), 2893–2901.PubMedCrossRef
110.
Zurück zum Zitat Kwon, J. (2007). The new function of two ubiquitin C-terminal hydrolase isozymes as reciprocal modulators of germ cell apoptosis. Experimental Animals, 56(2), 71–77.PubMedCrossRef Kwon, J. (2007). The new function of two ubiquitin C-terminal hydrolase isozymes as reciprocal modulators of germ cell apoptosis. Experimental Animals, 56(2), 71–77.PubMedCrossRef
111.
Zurück zum Zitat Mtango, N. R., Sutovsky, M., Vandevoort, C. A., Latham, K. E., & Sutovsky, P. (2012). Essential role of ubiquitin C-terminal hydrolases UCHL1 and UCHL3 in mammalian oocyte maturation. Journal of Cellular Physiology, 227(5), 2022–2029.PubMedPubMedCentralCrossRef Mtango, N. R., Sutovsky, M., Vandevoort, C. A., Latham, K. E., & Sutovsky, P. (2012). Essential role of ubiquitin C-terminal hydrolases UCHL1 and UCHL3 in mammalian oocyte maturation. Journal of Cellular Physiology, 227(5), 2022–2029.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Yi, Y. J., Sutovsky, M., Song, W. H., & Sutovsky, P. (2015). Protein deubiquitination during oocyte maturation influences sperm function during fertilisation, antipolyspermy defense and embryo development. Reproduction Fertility and Development, 27(8), 1154–1167.CrossRef Yi, Y. J., Sutovsky, M., Song, W. H., & Sutovsky, P. (2015). Protein deubiquitination during oocyte maturation influences sperm function during fertilisation, antipolyspermy defense and embryo development. Reproduction Fertility and Development, 27(8), 1154–1167.CrossRef
113.
Zurück zum Zitat Hennings, J. M., Zimmer, R. L., Nabli, H., Davis, J. W., Sutovsky, P., Sutovsky, M., et al. (2016). Improved murine blastocyst quality and development in a single culture medium compared to sequential culture media. Reproductive Sciences, 23(3), 310–317.PubMedCrossRef Hennings, J. M., Zimmer, R. L., Nabli, H., Davis, J. W., Sutovsky, P., Sutovsky, M., et al. (2016). Improved murine blastocyst quality and development in a single culture medium compared to sequential culture media. Reproductive Sciences, 23(3), 310–317.PubMedCrossRef
114.
Zurück zum Zitat Miyoshi, Y., Nakayama, S., Torikoshi, Y., Tanaka, S., Ishihara, H., Taguchi, T., et al. (2006). High expression of ubiquitin carboxy-terminal hydrolase-L1 and -L3 mRNA predicts early recurrence in patients with invasive breast cancer. Cancer Science, 97(6), 523–529.PubMedCrossRef Miyoshi, Y., Nakayama, S., Torikoshi, Y., Tanaka, S., Ishihara, H., Taguchi, T., et al. (2006). High expression of ubiquitin carboxy-terminal hydrolase-L1 and -L3 mRNA predicts early recurrence in patients with invasive breast cancer. Cancer Science, 97(6), 523–529.PubMedCrossRef
115.
Zurück zum Zitat Luo, K., Li, L., Li, Y., Wu, C., Yin, Y., Chen, Y., et al. (2016). A phosphorylation-deubiquitination cascade regulates the BRCA2-RAD51 axis in homologous recombination. Genes & Development, 30(23), 2581–2595.CrossRef Luo, K., Li, L., Li, Y., Wu, C., Yin, Y., Chen, Y., et al. (2016). A phosphorylation-deubiquitination cascade regulates the BRCA2-RAD51 axis in homologous recombination. Genes & Development, 30(23), 2581–2595.CrossRef
116.
Zurück zum Zitat Song, H. M., Lee, J. E., & Kim, J. H. (2014). Ubiquitin C-terminal hydrolase-L3 regulates EMT process and cancer metastasis in prostate cell lines. Biochemical and Biophysical Research Communications, 452(3), 722–727.PubMedCrossRef Song, H. M., Lee, J. E., & Kim, J. H. (2014). Ubiquitin C-terminal hydrolase-L3 regulates EMT process and cancer metastasis in prostate cell lines. Biochemical and Biophysical Research Communications, 452(3), 722–727.PubMedCrossRef
117.
Zurück zum Zitat Chiba, T., & Tanaka, K. (2004). Cullin-based ubiquitin ligase and its control by NEDD8-conjugating system. Current Protein and Peptide Science, 5(3), 177–184.PubMedCrossRef Chiba, T., & Tanaka, K. (2004). Cullin-based ubiquitin ligase and its control by NEDD8-conjugating system. Current Protein and Peptide Science, 5(3), 177–184.PubMedCrossRef
118.
Zurück zum Zitat Lam, Y. A., DeMartino, G. N., Pickart, C. M., & Cohen, R. E. (1997). Specificity of the ubiquitin isopeptidase in the PA700 regulatory complex of 26 S proteasomes. Journal of Biological Chemistry, 272(45), 28438–28446.PubMedCrossRef Lam, Y. A., DeMartino, G. N., Pickart, C. M., & Cohen, R. E. (1997). Specificity of the ubiquitin isopeptidase in the PA700 regulatory complex of 26 S proteasomes. Journal of Biological Chemistry, 272(45), 28438–28446.PubMedCrossRef
119.
Zurück zum Zitat Fang, Y., Fu, D., & Shen, X. Z. (2010). The potential role of ubiquitin c-terminal hydrolases in oncogenesis. Biochimica et Biophysica Acta, 1806(1), 1–6.PubMed Fang, Y., Fu, D., & Shen, X. Z. (2010). The potential role of ubiquitin c-terminal hydrolases in oncogenesis. Biochimica et Biophysica Acta, 1806(1), 1–6.PubMed
120.
Zurück zum Zitat Randles, L., Anchoori, R. K., Roden, R. B., & Walters, K. J. (2016). The proteasome ubiquitin receptor hRpn13 and its interacting deubiquitinating enzyme Uch37 are required for proper cell cycle progression. Journal of Biological Chemistry, 291(16), 8773–8783.PubMedPubMedCentralCrossRef Randles, L., Anchoori, R. K., Roden, R. B., & Walters, K. J. (2016). The proteasome ubiquitin receptor hRpn13 and its interacting deubiquitinating enzyme Uch37 are required for proper cell cycle progression. Journal of Biological Chemistry, 291(16), 8773–8783.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Yao, T., Song, L., Jin, J., Cai, Y., Takahashi, H., Swanson, M. P., et al. (2008). Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatinremodeling complex. Molecular Cell, 31(6), 909–917.PubMedPubMedCentralCrossRef Yao, T., Song, L., Jin, J., Cai, Y., Takahashi, H., Swanson, M. P., et al. (2008). Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatinremodeling complex. Molecular Cell, 31(6), 909–917.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Zediak, V. P., & Berger, S. L. (2008). Hit and run: Transient deubiquitylase activity in a chromatin-remodeling complex. Molecular Cell, 31(6), 773–774.PubMedPubMedCentralCrossRef Zediak, V. P., & Berger, S. L. (2008). Hit and run: Transient deubiquitylase activity in a chromatin-remodeling complex. Molecular Cell, 31(6), 773–774.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Chen, X., & Walters, K. J. (2015). Structural plasticity allows UCH37 to be primed by RPN13 or locked down by INO80G. Molecular Cell, 57(5), 767–768.PubMedCrossRef Chen, X., & Walters, K. J. (2015). Structural plasticity allows UCH37 to be primed by RPN13 or locked down by INO80G. Molecular Cell, 57(5), 767–768.PubMedCrossRef
124.
Zurück zum Zitat Cai, Y., Jin, J., Yao, T., Gottschalk, A. J., Swanson, S. K., Wu, S., et al. (2007). YY1 functions with INO80 to activate transcription. Nature Structural & Molecular Biology, 14(8), 872–874.CrossRef Cai, Y., Jin, J., Yao, T., Gottschalk, A. J., Swanson, S. K., Wu, S., et al. (2007). YY1 functions with INO80 to activate transcription. Nature Structural & Molecular Biology, 14(8), 872–874.CrossRef
125.
Zurück zum Zitat Rolen, U., Kobzeva, V., Gasparjan, N., Ovaa, H., Winberg, G., Kisseljov, F., et al. (2006). Activity profiling of deubiquitinating enzymes in cervical carcinoma biopsies and cell lines. Molecular Carcinogenesis, 45(4), 260–269.PubMedCrossRef Rolen, U., Kobzeva, V., Gasparjan, N., Ovaa, H., Winberg, G., Kisseljov, F., et al. (2006). Activity profiling of deubiquitinating enzymes in cervical carcinoma biopsies and cell lines. Molecular Carcinogenesis, 45(4), 260–269.PubMedCrossRef
126.
Zurück zum Zitat Fang, Y., Fu, D., Tang, W., Cai, Y., Ma, D., Wang, H., et al. (2013). Ubiquitin C-terminal hydrolase 37, a novel predictor for hepatocellular carcinoma recurrence, promotes cell migration and invasion via interacting and deubiquitinating PRP19. Biochimica et Biophysica Acta, 1833(3), 559–572.PubMedCrossRef Fang, Y., Fu, D., Tang, W., Cai, Y., Ma, D., Wang, H., et al. (2013). Ubiquitin C-terminal hydrolase 37, a novel predictor for hepatocellular carcinoma recurrence, promotes cell migration and invasion via interacting and deubiquitinating PRP19. Biochimica et Biophysica Acta, 1833(3), 559–572.PubMedCrossRef
127.
Zurück zum Zitat Chen, Y., Fu, D., Xi, J., Ji, Z., Liu, T., Ma, Y., et al. (2012). Expression and clinical significance of UCH37 in human esophageal squamous cell carcinoma. Digestive Diseases and Science, 57(9), 2310–2317.CrossRef Chen, Y., Fu, D., Xi, J., Ji, Z., Liu, T., Ma, Y., et al. (2012). Expression and clinical significance of UCH37 in human esophageal squamous cell carcinoma. Digestive Diseases and Science, 57(9), 2310–2317.CrossRef
128.
Zurück zum Zitat Wang, L., Chen, Y. J., Xu, K., Wang, Y. Y., Shen, X. Z., & Tu, R. Q. (2014). High expression of UCH37 is significantly associated with poor prognosis in human epithelial ovarian cancer. Tumour Biology, 35(11), 11427–11433.PubMedCrossRef Wang, L., Chen, Y. J., Xu, K., Wang, Y. Y., Shen, X. Z., & Tu, R. Q. (2014). High expression of UCH37 is significantly associated with poor prognosis in human epithelial ovarian cancer. Tumour Biology, 35(11), 11427–11433.PubMedCrossRef
129.
Zurück zum Zitat Chen, Z., Niu, X., Li, Z., Yu, Y., Ye, X., Lu, S., et al. (2011). Effect of ubiquitin carboxy-terminal hydrolase 37 on apoptotic in A549 cells. Cell Biochemistry and Function, 29(2), 142–148.PubMedCrossRef Chen, Z., Niu, X., Li, Z., Yu, Y., Ye, X., Lu, S., et al. (2011). Effect of ubiquitin carboxy-terminal hydrolase 37 on apoptotic in A549 cells. Cell Biochemistry and Function, 29(2), 142–148.PubMedCrossRef
130.
Zurück zum Zitat Cutts, A. J., Soond, S. M., Powell, S., & Chantry, A. (2011). Early phase TGFβ receptor signalling dynamics stabilised by the deubiquitinase UCH37 promotes cell migratory responses. International Journal of Biochemistry & Cell Biology, 43(4), 604–612.CrossRef Cutts, A. J., Soond, S. M., Powell, S., & Chantry, A. (2011). Early phase TGFβ receptor signalling dynamics stabilised by the deubiquitinase UCH37 promotes cell migratory responses. International Journal of Biochemistry & Cell Biology, 43(4), 604–612.CrossRef
131.
Zurück zum Zitat Wicks, S. J., Haros, K., Maillard, M., Song, L., Cohen, R. E., Dijke, P. T., et al. (2005). The deubiquitinating enzyme UCH37 interacts with Smads and regulates TGF-β signaling. Oncogene, 24(54), 8080–8084.PubMedCrossRef Wicks, S. J., Haros, K., Maillard, M., Song, L., Cohen, R. E., Dijke, P. T., et al. (2005). The deubiquitinating enzyme UCH37 interacts with Smads and regulates TGF-β signaling. Oncogene, 24(54), 8080–8084.PubMedCrossRef
132.
Zurück zum Zitat Wicks, S. J., Grocott, T., Haros, K., Maillard, M., ten Dijke, P., & Chantry, A. (2006). Reversible ubiquitination regulates the Smad/TGF-β signalling pathway. Biochemical Society Transactions, 34(Pt 5), 761–763.PubMedCrossRef Wicks, S. J., Grocott, T., Haros, K., Maillard, M., ten Dijke, P., & Chantry, A. (2006). Reversible ubiquitination regulates the Smad/TGF-β signalling pathway. Biochemical Society Transactions, 34(Pt 5), 761–763.PubMedCrossRef
133.
Zurück zum Zitat Fang, Y., Mu, J., Ma, Y., Ma, D., Fu, D., & Shen, X. (2012). The interaction between ubiquitin C-terminal hydrolase 37 and glucose-regulated protein 78 in hepatocellular carcinoma. Molecular and Cellular Biochemistry, 359(1–2), 59–66.PubMedCrossRef Fang, Y., Mu, J., Ma, Y., Ma, D., Fu, D., & Shen, X. (2012). The interaction between ubiquitin C-terminal hydrolase 37 and glucose-regulated protein 78 in hepatocellular carcinoma. Molecular and Cellular Biochemistry, 359(1–2), 59–66.PubMedCrossRef
134.
Zurück zum Zitat Mahanic, C. S., Budhavarapu, V., Graves, J. D., Li, G., & Lin, W. C. (2015). Regulation of E2 promoter binding factor 1 (E2F1) transcriptional activity through a deubiquitinating enzyme, UCH37. Journal of Biological Chemistry, 290(44), 26508–26522.PubMedPubMedCentralCrossRef Mahanic, C. S., Budhavarapu, V., Graves, J. D., Li, G., & Lin, W. C. (2015). Regulation of E2 promoter binding factor 1 (E2F1) transcriptional activity through a deubiquitinating enzyme, UCH37. Journal of Biological Chemistry, 290(44), 26508–26522.PubMedPubMedCentralCrossRef
135.
Zurück zum Zitat Han, W., Lee, H., & Han, J. K. (2017). Ubiquitin C-terminal hydrolase37 regulates Tcf7 DNA binding for the activation of Wnt signalling. Scientific Reports, 7, 42590.PubMedPubMedCentralCrossRef Han, W., Lee, H., & Han, J. K. (2017). Ubiquitin C-terminal hydrolase37 regulates Tcf7 DNA binding for the activation of Wnt signalling. Scientific Reports, 7, 42590.PubMedPubMedCentralCrossRef
136.
Zurück zum Zitat Chen, Y. J., Ma, Y. S., Fang, Y., Wang, Y., Fu, D., & Shen, X. Z. (2013). Power and promise of ubiquitin carboxyl-terminal hydrolase 37 as a target of cancer therapy. Asian Pacific Journal of Cancer Prevention, 14(4), 2173–2179.PubMedCrossRef Chen, Y. J., Ma, Y. S., Fang, Y., Wang, Y., Fu, D., & Shen, X. Z. (2013). Power and promise of ubiquitin carboxyl-terminal hydrolase 37 as a target of cancer therapy. Asian Pacific Journal of Cancer Prevention, 14(4), 2173–2179.PubMedCrossRef
137.
Zurück zum Zitat Harbour, J. W., Onken, M. D., Roberson, E. D., Duan, S., Cao, L., Worley, L. A., et al. (2010). Frequent mutation of BAP1 in metastasizing uveal melanomas. Science, 330(6009), 1410–1413.PubMedPubMedCentralCrossRef Harbour, J. W., Onken, M. D., Roberson, E. D., Duan, S., Cao, L., Worley, L. A., et al. (2010). Frequent mutation of BAP1 in metastasizing uveal melanomas. Science, 330(6009), 1410–1413.PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat Testa, J. R., Cheung, M., Pei, J., Below, J. E., Tan, Y., Sementino, E., et al. (2011). Germline BAP1 mutations predispose to malignant mesothelioma. Nature Genetics, 43(10), 1022–1025.PubMedPubMedCentralCrossRef Testa, J. R., Cheung, M., Pei, J., Below, J. E., Tan, Y., Sementino, E., et al. (2011). Germline BAP1 mutations predispose to malignant mesothelioma. Nature Genetics, 43(10), 1022–1025.PubMedPubMedCentralCrossRef
139.
Zurück zum Zitat Joseph, N. M., Chen, Y. Y., Nasr, A., Yeh, I., Talevich, E., Onodera, C., et al. (2017). Genomic profiling of malignant peritoneal mesothelioma reveals recurrent alterations in epigenetic regulatory genes BAP1, SETD2, and DDX3X. Modern Pathology, 30(2), 246–254.PubMedCrossRef Joseph, N. M., Chen, Y. Y., Nasr, A., Yeh, I., Talevich, E., Onodera, C., et al. (2017). Genomic profiling of malignant peritoneal mesothelioma reveals recurrent alterations in epigenetic regulatory genes BAP1, SETD2, and DDX3X. Modern Pathology, 30(2), 246–254.PubMedCrossRef
140.
Zurück zum Zitat Leblay, N., Leprêtre, F., Le Stang, N., Gautier-Stein, A., Villeneuve, L., Isaac, S., et al. (2017). BAP1 is altered by copy number loss, mutation, and/or loss of protein expression in more than 70% of malignant peritoneal mesotheliomas. Journal of Thoracic Oncology, 12(4), 724–733.PubMedCrossRef Leblay, N., Leprêtre, F., Le Stang, N., Gautier-Stein, A., Villeneuve, L., Isaac, S., et al. (2017). BAP1 is altered by copy number loss, mutation, and/or loss of protein expression in more than 70% of malignant peritoneal mesotheliomas. Journal of Thoracic Oncology, 12(4), 724–733.PubMedCrossRef
141.
Zurück zum Zitat Wu, D., Hiroshima, K., Yusa, T., Ozaki, D., Koh, E., Sekine, Y., et al. (2017). Usefulness of p16/CDKN2A fluorescence in situ hybridization and BAP1 immunohistochemistry for the diagnosis of biphasic mesothelioma. Annals of Diagnostic Pathology, 26, 31–37.PubMedCrossRef Wu, D., Hiroshima, K., Yusa, T., Ozaki, D., Koh, E., Sekine, Y., et al. (2017). Usefulness of p16/CDKN2A fluorescence in situ hybridization and BAP1 immunohistochemistry for the diagnosis of biphasic mesothelioma. Annals of Diagnostic Pathology, 26, 31–37.PubMedCrossRef
142.
Zurück zum Zitat McCroskey, Z., Staerkel, G., & Roy-Chowdhuri, S. (2017). Utility of BRCA1-associated protein 1 immunoperoxidase stain to differentiate benign versus malignant mesothelial proliferations in cytologic specimens. Diagnostic Cytopathology, 45(4), 312–319.PubMedCrossRef McCroskey, Z., Staerkel, G., & Roy-Chowdhuri, S. (2017). Utility of BRCA1-associated protein 1 immunoperoxidase stain to differentiate benign versus malignant mesothelial proliferations in cytologic specimens. Diagnostic Cytopathology, 45(4), 312–319.PubMedCrossRef
143.
Zurück zum Zitat Hida, T., Hamasaki, M., Matsumoto, S., Sato, A., Tsujimura, T., Kawahara, K., et al. (2017). Immunohistochemical detection of MTAP and BAP1 protein loss for mesothelioma diagnosis: Comparison with 9p21 FISH and BAP1 immunohistochemistry. Lung Cancer, 104, 98–105.PubMedCrossRef Hida, T., Hamasaki, M., Matsumoto, S., Sato, A., Tsujimura, T., Kawahara, K., et al. (2017). Immunohistochemical detection of MTAP and BAP1 protein loss for mesothelioma diagnosis: Comparison with 9p21 FISH and BAP1 immunohistochemistry. Lung Cancer, 104, 98–105.PubMedCrossRef
144.
Zurück zum Zitat Shah, A. A., Bourne, T. D., & Murali, R. (2013). BAP1 protein loss by immunohistochemistry: a potentially useful tool for prognostic prediction in patients with uveal melanoma. Pathology, 45(7), 651–656.PubMedCrossRef Shah, A. A., Bourne, T. D., & Murali, R. (2013). BAP1 protein loss by immunohistochemistry: a potentially useful tool for prognostic prediction in patients with uveal melanoma. Pathology, 45(7), 651–656.PubMedCrossRef
145.
Zurück zum Zitat Kalirai, H., Dodson, A., Faqir, S., Damato, B. E., & Coupland, S. E. (2014). Lack of BAP1 protein expression in uveal melanoma is associated with increased metastatic risk and has utility in routine prognostic testing. British Journal of Cancer, 111(7), 1373–1380.PubMedPubMedCentralCrossRef Kalirai, H., Dodson, A., Faqir, S., Damato, B. E., & Coupland, S. E. (2014). Lack of BAP1 protein expression in uveal melanoma is associated with increased metastatic risk and has utility in routine prognostic testing. British Journal of Cancer, 111(7), 1373–1380.PubMedPubMedCentralCrossRef
146.
Zurück zum Zitat Koopmans, A. E., Verdijk, R. M., Brouwer, R. W., van den Bosch, T. P., van den Berg, M. M., Vaarwater, J., et al. (2014). Clinical significance of immunohistochemistry for detection of BAP1 mutations in uveal melanoma. Modern Pathology, 27(10), 1321–1330.PubMedCrossRef Koopmans, A. E., Verdijk, R. M., Brouwer, R. W., van den Bosch, T. P., van den Berg, M. M., Vaarwater, J., et al. (2014). Clinical significance of immunohistochemistry for detection of BAP1 mutations in uveal melanoma. Modern Pathology, 27(10), 1321–1330.PubMedCrossRef
147.
Zurück zum Zitat van Essen, T. H., van Pelt, S. I., Versluis, M., Bronkhorst, I. H., van Duinen, S. G., Marinkovic, M., et al. (2014). Prognostic parameters in uveal melanoma and their association with BAP1 expression. British Journal of Ophthalmology, 98(12), 1738–1743.PubMedPubMedCentralCrossRef van Essen, T. H., van Pelt, S. I., Versluis, M., Bronkhorst, I. H., van Duinen, S. G., Marinkovic, M., et al. (2014). Prognostic parameters in uveal melanoma and their association with BAP1 expression. British Journal of Ophthalmology, 98(12), 1738–1743.PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Kumar, R., Taylor, M., Miao, B., Ji, Z., Njauw, J. C., J€onsson, G., et al. (2015). BAP1 has a survival role in cutaneous melanoma. Journal of Investigative Dermatology, 135(4), 1089–1097.PubMedCrossRef Kumar, R., Taylor, M., Miao, B., Ji, Z., Njauw, J. C., J€onsson, G., et al. (2015). BAP1 has a survival role in cutaneous melanoma. Journal of Investigative Dermatology, 135(4), 1089–1097.PubMedCrossRef
149.
Zurück zum Zitat Jiao, Y., Pawlik, T. M., Anders, R. A., Selaru, F. M., Streppel, M. M., Lucas, D. J., et al. (2013). Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nature Genetics, 45(12), 1470–1473.PubMedPubMedCentralCrossRef Jiao, Y., Pawlik, T. M., Anders, R. A., Selaru, F. M., Streppel, M. M., Lucas, D. J., et al. (2013). Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nature Genetics, 45(12), 1470–1473.PubMedPubMedCentralCrossRef
150.
Zurück zum Zitat Simbolo, M., Fassan, M., Ruzzenente, A., Mafficini, A., Wood, L. D., Corbo, V., et al. (2014). Multigene mutational profiling of cholangiocarcinomas identifies actionable molecular subgroups. Oncotarget, 5(9), 2839–2852.PubMedPubMedCentralCrossRef Simbolo, M., Fassan, M., Ruzzenente, A., Mafficini, A., Wood, L. D., Corbo, V., et al. (2014). Multigene mutational profiling of cholangiocarcinomas identifies actionable molecular subgroups. Oncotarget, 5(9), 2839–2852.PubMedPubMedCentralCrossRef
151.
Zurück zum Zitat Churi, C. R., Shroff, R., Wang, Y., Rashid, A., Kang, H. C., Weatherly, J., et al. (2014). Mutation profiling in cholangiocarcinoma: prognostic and therapeutic implications. PLoS One, 9(12), e115383.PubMedPubMedCentralCrossRef Churi, C. R., Shroff, R., Wang, Y., Rashid, A., Kang, H. C., Weatherly, J., et al. (2014). Mutation profiling in cholangiocarcinoma: prognostic and therapeutic implications. PLoS One, 9(12), e115383.PubMedPubMedCentralCrossRef
152.
Zurück zum Zitat Simbolo, M., Fassan, M., Mafficini, A., Lawlor, R. T., Ruzzenente, A., & Scarpa, A. (2016). New genomic landscapes and therapeutic targets for biliary tract cancers. Frontiers in Bioscience, 21, 707–718.CrossRef Simbolo, M., Fassan, M., Mafficini, A., Lawlor, R. T., Ruzzenente, A., & Scarpa, A. (2016). New genomic landscapes and therapeutic targets for biliary tract cancers. Frontiers in Bioscience, 21, 707–718.CrossRef
153.
Zurück zum Zitat Fan, L. H., Tang, L. N., Yue, L., Yang, Y., Gao, Z. L., & Shen, Z. (2012). BAP1 is a good prognostic factor in advanced non-small cell lung cancer. Clinical and Investigative Medicine, 35(4), E182–E189.PubMedCrossRef Fan, L. H., Tang, L. N., Yue, L., Yang, Y., Gao, Z. L., & Shen, Z. (2012). BAP1 is a good prognostic factor in advanced non-small cell lung cancer. Clinical and Investigative Medicine, 35(4), E182–E189.PubMedCrossRef
154.
Zurück zum Zitat Andrici, J., Parkhill, T. R., Jung, J., Wardell, K. L., Verdonk, B., Singh, A., et al. (2016). Loss of expression of BAP1 is very rare in non-small cell lung carcinoma. Pathology, 48(4), 336–340.PubMedCrossRef Andrici, J., Parkhill, T. R., Jung, J., Wardell, K. L., Verdonk, B., Singh, A., et al. (2016). Loss of expression of BAP1 is very rare in non-small cell lung carcinoma. Pathology, 48(4), 336–340.PubMedCrossRef
155.
Zurück zum Zitat Gossage, L., Murtaza, M., Slatter, A. F., Lichtenstein, C. P., Warren, A., Haynes, B., et al. (2014). Clinical and pathological impact of VHL, PBRM1, BAP1, SETD2, KDM6A, and JARID1c in clear cell renal cell carcinoma. Genes, Chromosomes & Cancer, 53(1), 38–51.CrossRef Gossage, L., Murtaza, M., Slatter, A. F., Lichtenstein, C. P., Warren, A., Haynes, B., et al. (2014). Clinical and pathological impact of VHL, PBRM1, BAP1, SETD2, KDM6A, and JARID1c in clear cell renal cell carcinoma. Genes, Chromosomes & Cancer, 53(1), 38–51.CrossRef
156.
Zurück zum Zitat Piva, F., Santoni, M., Matrana, M. R., Satti, S., Giulietti, M., Occhipinti, G., et al. (2015). BAP1, PBRM1 and SETD2 in clear-cell renal cell carcinoma: molecular diagnostics and possible targets for personalized therapies. Expert Review of Molecular Diagnostics, 15(9), 1201–1210.PubMedCrossRef Piva, F., Santoni, M., Matrana, M. R., Satti, S., Giulietti, M., Occhipinti, G., et al. (2015). BAP1, PBRM1 and SETD2 in clear-cell renal cell carcinoma: molecular diagnostics and possible targets for personalized therapies. Expert Review of Molecular Diagnostics, 15(9), 1201–1210.PubMedCrossRef
157.
Zurück zum Zitat Jensen, D. E., & Rauscher, F. J. (1999). Defining biochemical functions for the BRCA1 tumor suppressor protein: analysis of the BRCA1 binding protein BAP1. Cancer Letters, 143(Suppl. 1), S13–S17.PubMedCrossRef Jensen, D. E., & Rauscher, F. J. (1999). Defining biochemical functions for the BRCA1 tumor suppressor protein: analysis of the BRCA1 binding protein BAP1. Cancer Letters, 143(Suppl. 1), S13–S17.PubMedCrossRef
158.
Zurück zum Zitat Coupier, I., Cousin, P. Y., Hughes, D., Legoix-Ne, P., Trehin, A., Sinilnikova, O. M., et al. (2005). BAP1 and breast cancer risk. Familial Cancer, 4(4), 273–277.PubMedCrossRef Coupier, I., Cousin, P. Y., Hughes, D., Legoix-Ne, P., Trehin, A., Sinilnikova, O. M., et al. (2005). BAP1 and breast cancer risk. Familial Cancer, 4(4), 273–277.PubMedCrossRef
159.
Zurück zum Zitat Tang, J., Xi, S., Wang, G., Wang, B., Yan, S., Wu, Y., et al. (2013). Prognostic significance of BRCA1-associated protein 1 in colorectal cancer. Medical Oncology, 30(2), 541.PubMedCrossRef Tang, J., Xi, S., Wang, G., Wang, B., Yan, S., Wu, Y., et al. (2013). Prognostic significance of BRCA1-associated protein 1 in colorectal cancer. Medical Oncology, 30(2), 541.PubMedCrossRef
160.
Zurück zum Zitat Luchini, C., Veronese, N., Yachida, S., Cheng, L., Nottegar, A., Stubbs, B., et al. (2016). Different prognostic roles of tumor suppressor gene BAP1 in cancer: a systematic review with meta-analysis. Genes Chromosomes & Cancer, 55(10), 741–749.CrossRef Luchini, C., Veronese, N., Yachida, S., Cheng, L., Nottegar, A., Stubbs, B., et al. (2016). Different prognostic roles of tumor suppressor gene BAP1 in cancer: a systematic review with meta-analysis. Genes Chromosomes & Cancer, 55(10), 741–749.CrossRef
161.
Zurück zum Zitat Farzin, M., Toon, C. W., Clarkson, A., Sioson, L., Watson, N., Andrici, J., et al. (2015). Loss of expression of BAP1 predicts longer survival in mesothelioma. Pathology, 47(4), 302–307.PubMedCrossRef Farzin, M., Toon, C. W., Clarkson, A., Sioson, L., Watson, N., Andrici, J., et al. (2015). Loss of expression of BAP1 predicts longer survival in mesothelioma. Pathology, 47(4), 302–307.PubMedCrossRef
162.
Zurück zum Zitat Baumann, F., Flores, E., Napolitano, A., Kanodia, S., Taioli, E., Pass, H., et al. (2015). Mesothelioma patients with germline BAP1 mutations have 7-fold improved long-term survival. Carcinogenesis, 36(1), 76–81.PubMedCrossRef Baumann, F., Flores, E., Napolitano, A., Kanodia, S., Taioli, E., Pass, H., et al. (2015). Mesothelioma patients with germline BAP1 mutations have 7-fold improved long-term survival. Carcinogenesis, 36(1), 76–81.PubMedCrossRef
163.
Zurück zum Zitat Xu, J., Kadariya, Y., Cheung, M., Pei, J., Talarchek, J., Sementino, E., et al. (2014). Germline mutation of Bap1 accelerates development of asbestos-induced malignant mesothelioma. Cancer Research, 74(16), 4388–4397.PubMedPubMedCentralCrossRef Xu, J., Kadariya, Y., Cheung, M., Pei, J., Talarchek, J., Sementino, E., et al. (2014). Germline mutation of Bap1 accelerates development of asbestos-induced malignant mesothelioma. Cancer Research, 74(16), 4388–4397.PubMedPubMedCentralCrossRef
164.
Zurück zum Zitat Hwang, H. C., Pyott, S., Rodriguez, S., Cindric, A., Carr, A., Michelsen, C., et al. (2016). BAP1 immunohistochemistry and p16 FISH in the diagnosis of sarcomatous and desmoplastic mesotheliomas. American Journal of Surgical Pathology, 40(5), 714–718.PubMedCrossRef Hwang, H. C., Pyott, S., Rodriguez, S., Cindric, A., Carr, A., Michelsen, C., et al. (2016). BAP1 immunohistochemistry and p16 FISH in the diagnosis of sarcomatous and desmoplastic mesotheliomas. American Journal of Surgical Pathology, 40(5), 714–718.PubMedCrossRef
165.
Zurück zum Zitat Cigognetti, M., Lonardi, S., Fisogni, S., Balzarini, P., Pellegrini, V., Tironi, A., et al. (2015). BAP1 (BRCA1-associated protein 1) is a highly specific marker for differentiating mesothelioma from reactive mesothelial proliferations. Modern Pathology, 28(8), 1043–1057.PubMedCrossRef Cigognetti, M., Lonardi, S., Fisogni, S., Balzarini, P., Pellegrini, V., Tironi, A., et al. (2015). BAP1 (BRCA1-associated protein 1) is a highly specific marker for differentiating mesothelioma from reactive mesothelial proliferations. Modern Pathology, 28(8), 1043–1057.PubMedCrossRef
166.
Zurück zum Zitat O'Shea, S.J., Robles-Espinoza, C.D., McLellan, L., Harrigan, J., Jacq, X., Hewinson, J., et al. (2017). A population-based analysis of germline BAP1 mutations in melanoma. Human molecular genetics. Pii: ddw403. https://doi.org/10.1093/hmg/ddw403. O'Shea, S.J., Robles-Espinoza, C.D., McLellan, L., Harrigan, J., Jacq, X., Hewinson, J., et al. (2017). A population-based analysis of germline BAP1 mutations in melanoma. Human molecular genetics. Pii: ddw403. https://​doi.​org/​10.​1093/​hmg/​ddw403.
167.
Zurück zum Zitat Greenberg, R. A., Sobhian, B., Pathania, S., Cantor, S. B., Nakatani, Y., & Livingston, D. M. (2006). Multifactorial contributions to an acute DNA damage response by BRCA1/BARD1-containing complexes. Genes & Development, 20(1), 34–46.CrossRef Greenberg, R. A., Sobhian, B., Pathania, S., Cantor, S. B., Nakatani, Y., & Livingston, D. M. (2006). Multifactorial contributions to an acute DNA damage response by BRCA1/BARD1-containing complexes. Genes & Development, 20(1), 34–46.CrossRef
168.
Zurück zum Zitat Nishikawa, H., Wu, W., Koike, A., Kojima, R., Gomi, H., Fkuda, M., et al. (2009). BRCA1-associated protein 1 interferes with BRCA1/BARD1 RING heterodimer activity. Cancer Research, 69(1), 111–119.PubMedCrossRef Nishikawa, H., Wu, W., Koike, A., Kojima, R., Gomi, H., Fkuda, M., et al. (2009). BRCA1-associated protein 1 interferes with BRCA1/BARD1 RING heterodimer activity. Cancer Research, 69(1), 111–119.PubMedCrossRef
169.
Zurück zum Zitat Forma, E., Jozwiak, P., Brys, M., & Krzeslak, A. (2014). The potential role of O-GlcNAc modification in cancer epigenetics. Cell & Molecular Biology Letters, 19(3), 438–460.CrossRef Forma, E., Jozwiak, P., Brys, M., & Krzeslak, A. (2014). The potential role of O-GlcNAc modification in cancer epigenetics. Cell & Molecular Biology Letters, 19(3), 438–460.CrossRef
170.
Zurück zum Zitat Wang, A., Papneja, A., Hyrcza, M., Al-Habeeb, A., & Ghazarian, D. (2016). Gene of the month: BAP1. Journal of Clinical Pathology, 69(9), 750–753.PubMedCrossRef Wang, A., Papneja, A., Hyrcza, M., Al-Habeeb, A., & Ghazarian, D. (2016). Gene of the month: BAP1. Journal of Clinical Pathology, 69(9), 750–753.PubMedCrossRef
171.
Zurück zum Zitat Daou, S., Hammond-Martel, I., Mashtalir, N., Barbour, H., Gagnon, J., Jannantuono, N. V., et al. (2015). The BAP1/ASXL2 histone H2A deubiquitinase complex regulates cell proliferation and is disrupted in cancer. Journal of Biological Chemistry, 290(48), 28643–28663.PubMedPubMedCentralCrossRef Daou, S., Hammond-Martel, I., Mashtalir, N., Barbour, H., Gagnon, J., Jannantuono, N. V., et al. (2015). The BAP1/ASXL2 histone H2A deubiquitinase complex regulates cell proliferation and is disrupted in cancer. Journal of Biological Chemistry, 290(48), 28643–28663.PubMedPubMedCentralCrossRef
172.
Zurück zum Zitat Shang, D., Han, T., Xu, X., & Liu, Y. (2015). Decitabine induces G2/M cell cycle arrest by suppressing p38/NF-κB signaling in human renal clear cell carcinoma. International Journal of Clinical Experimental Pathology, 8(9), 11140–11148.PubMedPubMedCentral Shang, D., Han, T., Xu, X., & Liu, Y. (2015). Decitabine induces G2/M cell cycle arrest by suppressing p38/NF-κB signaling in human renal clear cell carcinoma. International Journal of Clinical Experimental Pathology, 8(9), 11140–11148.PubMedPubMedCentral
173.
Zurück zum Zitat Brinkmann, K., Zigrino, P., Witt, A., Schell, M., Ackermann, L., Broxtermann, P., et al. (2013). Ubiquitin C-terminal hydrolase-L1 potentiates cancer chemosensitivity by stabilizing NOXA. Cell Reports, 3(3), 881–891.PubMedCrossRef Brinkmann, K., Zigrino, P., Witt, A., Schell, M., Ackermann, L., Broxtermann, P., et al. (2013). Ubiquitin C-terminal hydrolase-L1 potentiates cancer chemosensitivity by stabilizing NOXA. Cell Reports, 3(3), 881–891.PubMedCrossRef
174.
Zurück zum Zitat Pena-Llopis, S., Vega-Rubin-de-Celis, S., Liao, A., Leng, N., Pavía-Jiménez, A., Wang, S., et al. (2012). BAP1 loss defines a new class of renal cell carcinoma. Nature Genetics, 44(7), 751–759.PubMedPubMedCentralCrossRef Pena-Llopis, S., Vega-Rubin-de-Celis, S., Liao, A., Leng, N., Pavía-Jiménez, A., Wang, S., et al. (2012). BAP1 loss defines a new class of renal cell carcinoma. Nature Genetics, 44(7), 751–759.PubMedPubMedCentralCrossRef
Metadaten
Titel
Ubiquitin carboxyl-terminal hydrolases: involvement in cancer progression and clinical implications
verfasst von
Ying Fang
Xizhong Shen
Publikationsdatum
27.10.2017
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 4/2017
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-017-9702-0

Weitere Artikel der Ausgabe 4/2017

Cancer and Metastasis Reviews 4/2017 Zur Ausgabe

OriginalPaper

Preface

Labor, CT-Anthropometrie zeigen Risiko für Pankreaskrebs

13.05.2024 Pankreaskarzinom Nachrichten

Gerade bei aggressiven Malignomen wie dem duktalen Adenokarzinom des Pankreas könnte Früherkennung die Therapiechancen verbessern. Noch jedoch klafft hier eine Lücke. Ein Studienteam hat einen Weg gesucht, sie zu schließen.

Viel pflanzliche Nahrung, seltener Prostata-Ca.-Progression

12.05.2024 Prostatakarzinom Nachrichten

Ein hoher Anteil pflanzlicher Nahrung trägt möglicherweise dazu bei, das Progressionsrisiko von Männern mit Prostatakarzinomen zu senken. In einer US-Studie war das Risiko bei ausgeprägter pflanzlicher Ernährung in etwa halbiert.

Alter verschlechtert Prognose bei Endometriumkarzinom

11.05.2024 Endometriumkarzinom Nachrichten

Ein höheres Alter bei der Diagnose eines Endometriumkarzinoms ist mit aggressiveren Tumorcharakteristika assoziiert, scheint aber auch unabhängig von bekannten Risikofaktoren die Prognose der Erkrankung zu verschlimmern.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.