Skip to main content
Erschienen in: Journal of Inherited Metabolic Disease 2/2015

01.03.2015 | Original Article

Understanding cerebral L-lysine metabolism: the role of L-pipecolate metabolism in Gcdh-deficient mice as a model for glutaric aciduria type I

verfasst von: Roland Posset, Silvana Opp, Eduard A. Struys, Alfred Völkl, Heribert Mohr, Georg F. Hoffmann, Stefan Kölker, Sven W. Sauer, Jürgen G. Okun

Erschienen in: Journal of Inherited Metabolic Disease | Ausgabe 2/2015

Einloggen, um Zugang zu erhalten

Abstract

Inherited deficiencies of the L-lysine catabolic pathway cause glutaric aciduria type I and pyridoxine-dependent epilepsy. Dietary modulation of cerebral L-lysine metabolism is thought to be an important therapeutic intervention for these diseases. To better understand cerebral L-lysine degradation, we studied in mice the two known catabolic routes — pipecolate and saccharopine pathways — using labeled stable L-lysine and brain peroxisomes purified according to a newly established protocol. Experiments with labeled stable L-lysine show that cerebral L-pipecolate is generated along two pathways: i) a minor proportion retrograde after ε-deamination of L-lysine along the saccharopine pathway, and ii) a major proportion anterograde after α-deamination of L-lysine along the pipecolate pathway. In line with these findings, we observed only little production of saccharopine in the murine brain. L-pipecolate oxidation was only detectable in brain peroxisomes, but L-pipecolate oxidase activity was low (7 ± 2μU/mg protein). In conclusion, L-pipecolate is a major degradation product from L-lysine in murine brain generated by α-deamination of this amino acid.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Blemings KP, Crenshaw TD, Swick RW, Benevenga NJ (1994) Lysine-alpha-ketoglutarate reductase and saccharopine dehydrogenase are located only in the mitochondrial matrix in rat liver. J Nutr 124:1215–1221PubMed Blemings KP, Crenshaw TD, Swick RW, Benevenga NJ (1994) Lysine-alpha-ketoglutarate reductase and saccharopine dehydrogenase are located only in the mitochondrial matrix in rat liver. J Nutr 124:1215–1221PubMed
Zurück zum Zitat Chang YF (1976) Pipecolic acid pathway: the major lysine metabolic route in the rat brain. Biochem Biophys Res Commun 69:174–180CrossRefPubMed Chang YF (1976) Pipecolic acid pathway: the major lysine metabolic route in the rat brain. Biochem Biophys Res Commun 69:174–180CrossRefPubMed
Zurück zum Zitat Cimini AM, Moreno S, Giorgi M, Serafini B, Cerú MP (1993) Purification of peroxisomal fraction from rat brain. Neurochem Int 23:249–260CrossRefPubMed Cimini AM, Moreno S, Giorgi M, Serafini B, Cerú MP (1993) Purification of peroxisomal fraction from rat brain. Neurochem Int 23:249–260CrossRefPubMed
Zurück zum Zitat Goodman SI, Markey SP, Moe PG, Miles BS, Teng CC (1975) Glutaric aciduria; a “new” disorder of amino acid metabolism. Biochem Med 12:12–21CrossRefPubMed Goodman SI, Markey SP, Moe PG, Miles BS, Teng CC (1975) Glutaric aciduria; a “new” disorder of amino acid metabolism. Biochem Med 12:12–21CrossRefPubMed
Zurück zum Zitat Higashino K, Fujioka M, Yamamura Y (1971) The conversion of L-lysine to saccharopine and alpha-aminoadipate in mouse. Arch Biochem Biophys 142:606–614CrossRefPubMed Higashino K, Fujioka M, Yamamura Y (1971) The conversion of L-lysine to saccharopine and alpha-aminoadipate in mouse. Arch Biochem Biophys 142:606–614CrossRefPubMed
Zurück zum Zitat Horie S, Ogawa S, Suga T (1989) Identity of acyl-CoA oxidase with glutaryl-CoA oxidase. Life Sci 44:1141–1148CrossRefPubMed Horie S, Ogawa S, Suga T (1989) Identity of acyl-CoA oxidase with glutaryl-CoA oxidase. Life Sci 44:1141–1148CrossRefPubMed
Zurück zum Zitat Ijlst L, de Kromme I, Oostheim W, Wanders RJ (2000) Molecular cloning and expression of human L-pipecolate oxidase. Biochem Biophys Res Commun 270:1101–1105CrossRefPubMed Ijlst L, de Kromme I, Oostheim W, Wanders RJ (2000) Molecular cloning and expression of human L-pipecolate oxidase. Biochem Biophys Res Commun 270:1101–1105CrossRefPubMed
Zurück zum Zitat Kok RM, Kaster L, de Jong AP, Poll-Thé B, Saudubray JM, Jakobs C (1987) Stable isotope dilution analysis of pipecolic acid in cerebrospinal fluid, plasma, urine, and amniotic fluid using electron capture negative ion mass fragmentography. Clin Chim Acta 168:143–152CrossRefPubMed Kok RM, Kaster L, de Jong AP, Poll-Thé B, Saudubray JM, Jakobs C (1987) Stable isotope dilution analysis of pipecolic acid in cerebrospinal fluid, plasma, urine, and amniotic fluid using electron capture negative ion mass fragmentography. Clin Chim Acta 168:143–152CrossRefPubMed
Zurück zum Zitat Kovacs WJ, Faust PL, Keller GA, Krisans SK (2001) Purification of brain peroxisomes and localization of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Eur J Biochem 268:4850–4859CrossRefPubMed Kovacs WJ, Faust PL, Keller GA, Krisans SK (2001) Purification of brain peroxisomes and localization of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Eur J Biochem 268:4850–4859CrossRefPubMed
Zurück zum Zitat Lazarow PB, De Duve C (1976) A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci U S A 73:2043–2046CrossRefPubMedCentralPubMed Lazarow PB, De Duve C (1976) A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci U S A 73:2043–2046CrossRefPubMedCentralPubMed
Zurück zum Zitat Lazo O, Singh AK, Singh I (1991) Postnatal development and isolation of peroxisomes from brain. J Neurochem 56:1343–1353CrossRefPubMed Lazo O, Singh AK, Singh I (1991) Postnatal development and isolation of peroxisomes from brain. J Neurochem 56:1343–1353CrossRefPubMed
Zurück zum Zitat Leighton F, Coloma L, Koenig C (1975) Structure, composition, physical properties, and turnover of proliferated peroxisomes. A study of the trophic effects of Su-13437 on rat liver. J Cell Biol 67:281–309CrossRefPubMedCentralPubMed Leighton F, Coloma L, Koenig C (1975) Structure, composition, physical properties, and turnover of proliferated peroxisomes. A study of the trophic effects of Su-13437 on rat liver. J Cell Biol 67:281–309CrossRefPubMedCentralPubMed
Zurück zum Zitat Mihalik SJ, Rhead WJ (1989) L-pipecolic acid oxidation in the rabbit and cynomolgus monkey. Evidence for differing organellar locations and cofactor requirements in each species. J Biol Chem 264:2509–2517PubMed Mihalik SJ, Rhead WJ (1989) L-pipecolic acid oxidation in the rabbit and cynomolgus monkey. Evidence for differing organellar locations and cofactor requirements in each species. J Biol Chem 264:2509–2517PubMed
Zurück zum Zitat Mihalik SJ, Rhead WJ (1991) Species variation in organellar location and activity of L-pipecolic acid oxidation in mammals. J Comp Physiol B 160:671–676CrossRefPubMed Mihalik SJ, Rhead WJ (1991) Species variation in organellar location and activity of L-pipecolic acid oxidation in mammals. J Comp Physiol B 160:671–676CrossRefPubMed
Zurück zum Zitat Mills PB, Struys E, Jakobs C et al (2006) Mutations in antiquitin in individuals with pyridoxine-dependent seizures. Nat Med 12:307–309CrossRefPubMed Mills PB, Struys E, Jakobs C et al (2006) Mutations in antiquitin in individuals with pyridoxine-dependent seizures. Nat Med 12:307–309CrossRefPubMed
Zurück zum Zitat Murthy SN, Janardanasarma MK (1999) Identification of L-amino acid/L-lysine alpha-amino oxidase in mouse brain. Mol Cell Biochem 197:13–23CrossRefPubMed Murthy SN, Janardanasarma MK (1999) Identification of L-amino acid/L-lysine alpha-amino oxidase in mouse brain. Mol Cell Biochem 197:13–23CrossRefPubMed
Zurück zum Zitat Sacksteder KA, Biery BJ, Morrell JC et al (2000) Identification of the alpha-aminoadipic semialdehyde synthase gene, which is defective in familial hyperlysinemia. Am J Hum Genet 66:1736–1743CrossRefPubMedCentralPubMed Sacksteder KA, Biery BJ, Morrell JC et al (2000) Identification of the alpha-aminoadipic semialdehyde synthase gene, which is defective in familial hyperlysinemia. Am J Hum Genet 66:1736–1743CrossRefPubMedCentralPubMed
Zurück zum Zitat Sauer SW, Opp S, Hoffmann GF, Koeller DM, Okun JG, Kölker S (2011) Therapeutic modulation of cerebral L-lysine metabolism in a mouse model for glutaric aciduria type I. Brain 134:157–170CrossRefPubMed Sauer SW, Opp S, Hoffmann GF, Koeller DM, Okun JG, Kölker S (2011) Therapeutic modulation of cerebral L-lysine metabolism in a mouse model for glutaric aciduria type I. Brain 134:157–170CrossRefPubMed
Zurück zum Zitat Singh H, Usher S, Poulos A (1989) Mitochondrial and peroxisomal beta-oxidation of stearic and lignoceric acids by rat brain. J Neurochem 53:1711–1718CrossRefPubMed Singh H, Usher S, Poulos A (1989) Mitochondrial and peroxisomal beta-oxidation of stearic and lignoceric acids by rat brain. J Neurochem 53:1711–1718CrossRefPubMed
Zurück zum Zitat Struys EA, Jakobs C (2010) Metabolism of lysine in alpha-aminoadipic semialdehyde dehydrogenase-deficient fibroblasts: evidence for an alternative pathway of pipecolic acid formation. FEBS Lett 584:181–186CrossRefPubMed Struys EA, Jakobs C (2010) Metabolism of lysine in alpha-aminoadipic semialdehyde dehydrogenase-deficient fibroblasts: evidence for an alternative pathway of pipecolic acid formation. FEBS Lett 584:181–186CrossRefPubMed
Zurück zum Zitat Struys EA, Jansen EE, Salomons GS (2014) Human pyrroline-5-carboxylate reductase (PYCR1) acts on Δ1-piperideine-6-carboxylate generating L-pipecolic acid. J Inherit Metab Dis 37:327–332CrossRefPubMed Struys EA, Jansen EE, Salomons GS (2014) Human pyrroline-5-carboxylate reductase (PYCR1) acts on Δ1-piperideine-6-carboxylate generating L-pipecolic acid. J Inherit Metab Dis 37:327–332CrossRefPubMed
Zurück zum Zitat Vamecq J, Van Hoof F (1984) Implication of a peroxisomal enzyme in the catabolism of glutaryl-CoA. Biochem J 221:203–211PubMedCentralPubMed Vamecq J, Van Hoof F (1984) Implication of a peroxisomal enzyme in the catabolism of glutaryl-CoA. Biochem J 221:203–211PubMedCentralPubMed
Zurück zum Zitat van Veldhoven PP, Vanhove G, Assselberghs S, Eyssen HJ, Mannaerts GP (1992) Substrate specificities of rat liver peroxisomal acyl-CoA oxidases: palmitoyl-CoA oxidase (inducible acyl-CoA oxidase), pristanoyl-CoA oxidase (non-inducible acyl-CoA oxidase), and trihydroxycoprostanoyl-CoA oxidase. J Biol Chem 267:20065–20074PubMed van Veldhoven PP, Vanhove G, Assselberghs S, Eyssen HJ, Mannaerts GP (1992) Substrate specificities of rat liver peroxisomal acyl-CoA oxidases: palmitoyl-CoA oxidase (inducible acyl-CoA oxidase), pristanoyl-CoA oxidase (non-inducible acyl-CoA oxidase), and trihydroxycoprostanoyl-CoA oxidase. J Biol Chem 267:20065–20074PubMed
Zurück zum Zitat Völkl A, Fahimi HD (1985) Isolation and characterization of peroxisomes from the liver of normal untreated rats. Eur J Biochem 149:257–265CrossRefPubMed Völkl A, Fahimi HD (1985) Isolation and characterization of peroxisomes from the liver of normal untreated rats. Eur J Biochem 149:257–265CrossRefPubMed
Zurück zum Zitat Wanders BJ, Denis SW, Dacremont G (1993) Studies on the substrate specificity of the inducible and non-inducible acyl-CoA oxidases from rat kidney peroxisomes. J Biochem 113:577–582PubMed Wanders BJ, Denis SW, Dacremont G (1993) Studies on the substrate specificity of the inducible and non-inducible acyl-CoA oxidases from rat kidney peroxisomes. J Biochem 113:577–582PubMed
Zurück zum Zitat Zaar K, Angermüller S, Völkl A, Fahimi HD (1986) Pipecolic acid is oxidized by renal and hepatic peroxisomes. Implications for Zellweger’s cerebro-hepato-renal syndrome (CHRS). Exp Cell Res 164:267–271CrossRefPubMed Zaar K, Angermüller S, Völkl A, Fahimi HD (1986) Pipecolic acid is oxidized by renal and hepatic peroxisomes. Implications for Zellweger’s cerebro-hepato-renal syndrome (CHRS). Exp Cell Res 164:267–271CrossRefPubMed
Metadaten
Titel
Understanding cerebral L-lysine metabolism: the role of L-pipecolate metabolism in Gcdh-deficient mice as a model for glutaric aciduria type I
verfasst von
Roland Posset
Silvana Opp
Eduard A. Struys
Alfred Völkl
Heribert Mohr
Georg F. Hoffmann
Stefan Kölker
Sven W. Sauer
Jürgen G. Okun
Publikationsdatum
01.03.2015
Verlag
Springer Netherlands
Erschienen in
Journal of Inherited Metabolic Disease / Ausgabe 2/2015
Print ISSN: 0141-8955
Elektronische ISSN: 1573-2665
DOI
https://doi.org/10.1007/s10545-014-9762-z

Weitere Artikel der Ausgabe 2/2015

Journal of Inherited Metabolic Disease 2/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.