Skip to main content
Erschienen in: Der Schmerz 2/2010

01.04.2010 | Schwerpunkt

Untersuchungen zur zerebralen Verarbeitung von Schmerzen mit funktioneller Bildgebung

Somatosensorische, affektive, kognitive, vegetative und motorische Aspekte

Erschienen in: Der Schmerz | Ausgabe 2/2010

Einloggen, um Zugang zu erhalten

Zusammenfassung

Funktionelle Bildgebungsmethoden wie die Positronenemissionstomographie (PET) oder die funktionelle Magnetresonanztomographie (fMRT) erlauben faszinierende Einblicke in die zerebrale Schmerzverarbeitung. So haben bildgebende Verfahren maßgeblich zu der Erkenntnis beigetragen, dass kein klar abgegrenztes „Schmerzzentrum“ existiert. Vielmehr ist ein ganzes Netzwerk zentralnervöser Regionen an der Übertragung und Verarbeitung von Reizen beteiligt, die zu dem Sinneseindruck „Schmerz“ führen. Ausgeklügelte Paradigmen erlauben die nähere Charakterisierung sensorischer, emotionaler und kognitiver Prozesse bei der Schmerzverarbeitung. In dieser Übersichtsarbeit wird auf das Netzwerk von schmerzverarbeitenden Hirnstrukturen (Schmerzmatrix) eingegangen, und ausgewählte Aspekte der somatosensorischen (Diskrimination unterschiedlicher Reizmodalitäten, noxisch vs. nichtnoxisch, Summationseffekte), emotionalen, kognitiven (Aufmerksamkeit, Erwartung, Ablenkung), vegetativen (u. a. Homöostasekonzept) und motorischen Verarbeitung werden dargestellt.
Literatur
1.
Zurück zum Zitat Adler LJ, Gyulai FE, Diehl DJ et al (1997) Regional brain activity changes associated with fentanyl analgesia elucidated by positron emission tomography. Anesth Analg 84:120–126CrossRefPubMed Adler LJ, Gyulai FE, Diehl DJ et al (1997) Regional brain activity changes associated with fentanyl analgesia elucidated by positron emission tomography. Anesth Analg 84:120–126CrossRefPubMed
2.
Zurück zum Zitat Apkarian AV, Bushnell MC, Treede RD et al (2005) Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9:463–484CrossRefPubMed Apkarian AV, Bushnell MC, Treede RD et al (2005) Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9:463–484CrossRefPubMed
3.
Zurück zum Zitat Bantick SJ, Wise RG, Ploghaus A et al (2002) Imaging how attention modulates pain in humans using functional MRI. Brain 125:310–319CrossRefPubMed Bantick SJ, Wise RG, Ploghaus A et al (2002) Imaging how attention modulates pain in humans using functional MRI. Brain 125:310–319CrossRefPubMed
4.
Zurück zum Zitat Bingel U, Lorenz J, Glauche V et al (2004) Somatotopic organization of human somatosensory cortices for pain: a single trial fMRI study. Neuroimage 23:224–232CrossRefPubMed Bingel U, Lorenz J, Glauche V et al (2004) Somatotopic organization of human somatosensory cortices for pain: a single trial fMRI study. Neuroimage 23:224–232CrossRefPubMed
5.
Zurück zum Zitat Bingel U, Schoell E, Herken W et al (2007) Habituation to painful stimulation involves the antinociceptive system. Pain 131:21–30CrossRefPubMed Bingel U, Schoell E, Herken W et al (2007) Habituation to painful stimulation involves the antinociceptive system. Pain 131:21–30CrossRefPubMed
6.
Zurück zum Zitat Blackburn-Munro G (2004) Hypothalamo-pituitary-adrenal axis dysfunction as a contributory factor to chronic pain and depression. Curr Pain Headache Rep 8:116–124CrossRefPubMed Blackburn-Munro G (2004) Hypothalamo-pituitary-adrenal axis dysfunction as a contributory factor to chronic pain and depression. Curr Pain Headache Rep 8:116–124CrossRefPubMed
7.
Zurück zum Zitat Bowsher D (2005) Representation of somatosensory modalities in pathways ascending from the spinal anterolateral funiculus to the thalamus demonstrated by lesions in man. Eur Neurol 54:14–22CrossRefPubMed Bowsher D (2005) Representation of somatosensory modalities in pathways ascending from the spinal anterolateral funiculus to the thalamus demonstrated by lesions in man. Eur Neurol 54:14–22CrossRefPubMed
8.
Zurück zum Zitat Brooks JC, Zambreanu L, Godinez A et al (2005) Somatotopic organisation of the human insula to painful heat studied with high resolution functional imaging. Neuroimage 27:201–209CrossRefPubMed Brooks JC, Zambreanu L, Godinez A et al (2005) Somatotopic organisation of the human insula to painful heat studied with high resolution functional imaging. Neuroimage 27:201–209CrossRefPubMed
9.
Zurück zum Zitat Buchel C, Bornhovd K, Quante M et al (2002) Dissociable neural responses related to pain intensity, stimulus intensity, and stimulus awareness within the anterior cingulate cortex: a parametric single-trial laser functional magnetic resonance imaging study. J Neurosci 22:970–976PubMed Buchel C, Bornhovd K, Quante M et al (2002) Dissociable neural responses related to pain intensity, stimulus intensity, and stimulus awareness within the anterior cingulate cortex: a parametric single-trial laser functional magnetic resonance imaging study. J Neurosci 22:970–976PubMed
10.
Zurück zum Zitat Carlsson K, Petrovic P, Skare S et al (2000) Tickling expectations: neural processing in anticipation of a sensory stimulus. J Cogn Neurosci 12:691–703CrossRefPubMed Carlsson K, Petrovic P, Skare S et al (2000) Tickling expectations: neural processing in anticipation of a sensory stimulus. J Cogn Neurosci 12:691–703CrossRefPubMed
11.
Zurück zum Zitat Chen AC, Niddam DM, Crawford HJ et al (2002) Spatial summation of pain processing in the human brain as assessed by cerebral event related potentials. Neurosci Lett 328:190–194CrossRefPubMed Chen AC, Niddam DM, Crawford HJ et al (2002) Spatial summation of pain processing in the human brain as assessed by cerebral event related potentials. Neurosci Lett 328:190–194CrossRefPubMed
12.
Zurück zum Zitat Coghill RC, Sang CN, Maisog JM et al (1999) Pain intensity processing within the human brain: a bilateral, distributed mechanism. J Neurophysiol 82:1934–1943PubMed Coghill RC, Sang CN, Maisog JM et al (1999) Pain intensity processing within the human brain: a bilateral, distributed mechanism. J Neurophysiol 82:1934–1943PubMed
13.
Zurück zum Zitat Craig AD, Chen K, Bandy D et al (2000) Thermosensory activation of insular cortex. Nat Neurosci 3:184–190CrossRefPubMed Craig AD, Chen K, Bandy D et al (2000) Thermosensory activation of insular cortex. Nat Neurosci 3:184–190CrossRefPubMed
14.
Zurück zum Zitat Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3:655–666PubMed Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3:655–666PubMed
15.
Zurück zum Zitat Critchley HD, Corfield DR, Chandler MP et al (2000) Cerebral correlates of autonomic cardiovascular arousal: a functional neuroimaging investigation in humans. J Physiol 523(Pt 1):259–270CrossRefPubMed Critchley HD, Corfield DR, Chandler MP et al (2000) Cerebral correlates of autonomic cardiovascular arousal: a functional neuroimaging investigation in humans. J Physiol 523(Pt 1):259–270CrossRefPubMed
16.
Zurück zum Zitat Critchley HD, Mathias CJ, Josephs O et al (2003) Human cingulate cortex and autonomic control: converging neuroimaging and clinical evidence. Brain 126:2139–2152CrossRefPubMed Critchley HD, Mathias CJ, Josephs O et al (2003) Human cingulate cortex and autonomic control: converging neuroimaging and clinical evidence. Brain 126:2139–2152CrossRefPubMed
17.
Zurück zum Zitat Critchley HD, Wiens S, Rotshtein P et al (2004) Neural systems supporting interoceptive awareness. Nat Neurosci 7:189–195CrossRefPubMed Critchley HD, Wiens S, Rotshtein P et al (2004) Neural systems supporting interoceptive awareness. Nat Neurosci 7:189–195CrossRefPubMed
18.
Zurück zum Zitat Derbyshire SW, Whalley MG, Stenger VA et al (2004) Cerebral activation during hypnotically induced and imagined pain. Neuroimage 23:392–401CrossRefPubMed Derbyshire SW, Whalley MG, Stenger VA et al (2004) Cerebral activation during hypnotically induced and imagined pain. Neuroimage 23:392–401CrossRefPubMed
19.
Zurück zum Zitat Dunckley P, Aziz Q, Wise RG et al (2007) Attentional modulation of visceral and somatic pain. Neurogastroenterol Motil 19:569–577CrossRefPubMed Dunckley P, Aziz Q, Wise RG et al (2007) Attentional modulation of visceral and somatic pain. Neurogastroenterol Motil 19:569–577CrossRefPubMed
20.
Zurück zum Zitat Fairhurst M, Wiech K, Dunckley P et al (2007) Anticipatory brainstem activity predicts neural processing of pain in humans. Pain 128:101–110CrossRefPubMed Fairhurst M, Wiech K, Dunckley P et al (2007) Anticipatory brainstem activity predicts neural processing of pain in humans. Pain 128:101–110CrossRefPubMed
21.
Zurück zum Zitat Faymonville ME, Boly M, Laureys S (2006) Functional neuroanatomy of the hypnotic state. J Physiol Paris 99:463–469CrossRefPubMed Faymonville ME, Boly M, Laureys S (2006) Functional neuroanatomy of the hypnotic state. J Physiol Paris 99:463–469CrossRefPubMed
22.
Zurück zum Zitat Ferretti A, Babiloni C, Gratta CD et al (2003) Functional topography of the secondary somatosensory cortex for nonpainful and painful stimuli: an fMRI study. Neuroimage 20:1625–1638CrossRefPubMed Ferretti A, Babiloni C, Gratta CD et al (2003) Functional topography of the secondary somatosensory cortex for nonpainful and painful stimuli: an fMRI study. Neuroimage 20:1625–1638CrossRefPubMed
23.
Zurück zum Zitat Forss N, Raij TT, Seppa M et al (2005) Common cortical network for first and second pain. Neuroimage 24:132–142CrossRefPubMed Forss N, Raij TT, Seppa M et al (2005) Common cortical network for first and second pain. Neuroimage 24:132–142CrossRefPubMed
24.
Zurück zum Zitat Gündel H, Valet M, Sorg C et al (2008) Altered cerebral response to noxious heat stimulation in patients with somatoform pain disorder. Pain 137:413–421CrossRefPubMed Gündel H, Valet M, Sorg C et al (2008) Altered cerebral response to noxious heat stimulation in patients with somatoform pain disorder. Pain 137:413–421CrossRefPubMed
25.
Zurück zum Zitat Hamalainen H, Hiltunen J, Titievskaja I (2000) fMRI activations of SI and SII cortices during tactile stimulation depend on attention. Neuroreport 11:1673–1676PubMedCrossRef Hamalainen H, Hiltunen J, Titievskaja I (2000) fMRI activations of SI and SII cortices during tactile stimulation depend on attention. Neuroreport 11:1673–1676PubMedCrossRef
26.
Zurück zum Zitat Hua le H, Strigo IA, Baxter LC et al (2005) Anteroposterior somatotopy of innocuous cooling activation focus in human dorsal posterior insular cortex. Am J Physiol Regul Integr Comp Physiol 289:R319–R325 Hua le H, Strigo IA, Baxter LC et al (2005) Anteroposterior somatotopy of innocuous cooling activation focus in human dorsal posterior insular cortex. Am J Physiol Regul Integr Comp Physiol 289:R319–R325
27.
Zurück zum Zitat Hugdahl K, Rosen G, Ersland L et al (2001) Common pathways in mental imagery and pain perception: an fMRI study of a subject with an amputated arm. Scand J Psychol 42:269–275CrossRefPubMed Hugdahl K, Rosen G, Ersland L et al (2001) Common pathways in mental imagery and pain perception: an fMRI study of a subject with an amputated arm. Scand J Psychol 42:269–275CrossRefPubMed
28.
Zurück zum Zitat Johansen-Berg H, Christensen V, Woolrich M et al (2000) Attention to touch modulates activity in both primary and secondary somatosensory areas. Neuroreport 11:1237–1241CrossRefPubMed Johansen-Berg H, Christensen V, Woolrich M et al (2000) Attention to touch modulates activity in both primary and secondary somatosensory areas. Neuroreport 11:1237–1241CrossRefPubMed
29.
Zurück zum Zitat Kilpatrick L, Cahill L (2003) Amygdala modulation of parahippocampal and frontal regions during emotionally influenced memory storage. Neuroimage 20:2091–2099CrossRefPubMed Kilpatrick L, Cahill L (2003) Amygdala modulation of parahippocampal and frontal regions during emotionally influenced memory storage. Neuroimage 20:2091–2099CrossRefPubMed
30.
Zurück zum Zitat King AB, Menon RS, Hachinski V et al (1999) Human forebrain activation by visceral stimuli. J Comp Neurol 413:572–582CrossRefPubMed King AB, Menon RS, Hachinski V et al (1999) Human forebrain activation by visceral stimuli. J Comp Neurol 413:572–582CrossRefPubMed
31.
Zurück zum Zitat Kong J, White NS, Kwong KK et al (2006) Using fMRI to dissociate sensory encoding from cognitive evaluation of heat pain intensity. Hum Brain Mapp 27:715–721CrossRefPubMed Kong J, White NS, Kwong KK et al (2006) Using fMRI to dissociate sensory encoding from cognitive evaluation of heat pain intensity. Hum Brain Mapp 27:715–721CrossRefPubMed
32.
Zurück zum Zitat Lamm C, Nusbaum HC, Meltzoff AN et al (2007) What are you feeling? Using functional magnetic resonance imaging to assess the modulation of sensory and affective responses during empathy for pain. PLoS ONE 2:e1292CrossRefPubMed Lamm C, Nusbaum HC, Meltzoff AN et al (2007) What are you feeling? Using functional magnetic resonance imaging to assess the modulation of sensory and affective responses during empathy for pain. PLoS ONE 2:e1292CrossRefPubMed
33.
Zurück zum Zitat Maihofner C, Schmelz M, Forster C et al (2004) Neural activation during experimental allodynia: a functional magnetic resonance imaging study. Eur J Neurosci 19:3211–3218CrossRefPubMed Maihofner C, Schmelz M, Forster C et al (2004) Neural activation during experimental allodynia: a functional magnetic resonance imaging study. Eur J Neurosci 19:3211–3218CrossRefPubMed
34.
Zurück zum Zitat Matthews SC, Paulus MP, Simmons AN et al (2004) Functional subdivisions within anterior cingulate cortex and their relationship to autonomic nervous system function. Neuroimage 22:1151–1156CrossRefPubMed Matthews SC, Paulus MP, Simmons AN et al (2004) Functional subdivisions within anterior cingulate cortex and their relationship to autonomic nervous system function. Neuroimage 22:1151–1156CrossRefPubMed
35.
Zurück zum Zitat Melzack R, Wall PD (1968) Sensory motivational and central control determinants of pain. In: Kenshalo DR (ed) The skin senses. Thomas, Springfield, pp 423–439 Melzack R, Wall PD (1968) Sensory motivational and central control determinants of pain. In: Kenshalo DR (ed) The skin senses. Thomas, Springfield, pp 423–439
36.
Zurück zum Zitat Morrison I, Peelen MV, Downing PE (2007) The sight of others‘ pain modulates motor processing in human cingulate cortex. Cereb Cortex 17:2214–2222CrossRefPubMed Morrison I, Peelen MV, Downing PE (2007) The sight of others‘ pain modulates motor processing in human cingulate cortex. Cereb Cortex 17:2214–2222CrossRefPubMed
37.
Zurück zum Zitat Nelson AJ, Staines WR, Graham SJ et al (2004) Activation in SI and SII: the influence of vibrotactile amplitude during passive and task-relevant stimulation. Brain Res Cogn Brain Res 19:174–184CrossRefPubMed Nelson AJ, Staines WR, Graham SJ et al (2004) Activation in SI and SII: the influence of vibrotactile amplitude during passive and task-relevant stimulation. Brain Res Cogn Brain Res 19:174–184CrossRefPubMed
38.
Zurück zum Zitat Ochsner KN, Ludlow DH, Knierim K et al (2006) Neural correlates of individual differences in pain-related fear and anxiety. Pain 120:69–77CrossRefPubMed Ochsner KN, Ludlow DH, Knierim K et al (2006) Neural correlates of individual differences in pain-related fear and anxiety. Pain 120:69–77CrossRefPubMed
39.
Zurück zum Zitat Ogino Y, Nemoto H, Goto F (2005) Somatotopy in human primary somatosensory cortex in pain system. Anesthesiology 103:821–827CrossRefPubMed Ogino Y, Nemoto H, Goto F (2005) Somatotopy in human primary somatosensory cortex in pain system. Anesthesiology 103:821–827CrossRefPubMed
40.
Zurück zum Zitat Petrovic P, Petersson KM, Ghatan PH et al (2000) Pain-related cerebral activation is altered by a distracting cognitive task. Pain 85:19–30CrossRefPubMed Petrovic P, Petersson KM, Ghatan PH et al (2000) Pain-related cerebral activation is altered by a distracting cognitive task. Pain 85:19–30CrossRefPubMed
41.
Zurück zum Zitat Peyron R, Laurent B, Garcia-Larrea L (2000) Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiol Clin 30:263–288CrossRefPubMed Peyron R, Laurent B, Garcia-Larrea L (2000) Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiol Clin 30:263–288CrossRefPubMed
42.
Zurück zum Zitat Peyron R, Frot M, Schneider F et al (2002) Role of operculoinsular cortices in human pain processing: converging evidence from PET, fMRI, dipole modeling, and intracerebral recordings of evoked potentials. Neuroimage 17:1336–1346CrossRefPubMed Peyron R, Frot M, Schneider F et al (2002) Role of operculoinsular cortices in human pain processing: converging evidence from PET, fMRI, dipole modeling, and intracerebral recordings of evoked potentials. Neuroimage 17:1336–1346CrossRefPubMed
43.
Zurück zum Zitat Peyron R, Kupers R, Jehl JL et al (2007) Central representation of the RIII flexion reflex associated with overt motor reaction: an fMRI study. Neurophysiol Clin 37:249–259CrossRefPubMed Peyron R, Kupers R, Jehl JL et al (2007) Central representation of the RIII flexion reflex associated with overt motor reaction: an fMRI study. Neurophysiol Clin 37:249–259CrossRefPubMed
44.
Zurück zum Zitat Ploghaus A, Tracey I, Gati JS et al (1999) Dissociating pain from its anticipation in the human brain. Science 284:1979–1981CrossRefPubMed Ploghaus A, Tracey I, Gati JS et al (1999) Dissociating pain from its anticipation in the human brain. Science 284:1979–1981CrossRefPubMed
45.
Zurück zum Zitat Ploghaus A, Narain C, Beckmann CF et al (2001) Exacerbation of pain by anxiety is associated with activity in a hippocampal network. J Neurosci 21:9896–9903PubMed Ploghaus A, Narain C, Beckmann CF et al (2001) Exacerbation of pain by anxiety is associated with activity in a hippocampal network. J Neurosci 21:9896–9903PubMed
46.
Zurück zum Zitat Ploner M, Schmitz F, Freund HJ et al (1999) Parallel activation of primary and secondary somatosensory cortices in human pain processing. J Neurophysiol 81:3100–3104PubMed Ploner M, Schmitz F, Freund HJ et al (1999) Parallel activation of primary and secondary somatosensory cortices in human pain processing. J Neurophysiol 81:3100–3104PubMed
47.
Zurück zum Zitat Ploner M, Gross J, Timmermann L et al (2002) Cortical representation of first and second pain sensation in humans. Proc Natl Acad Sci U S A 99:12444–12448CrossRefPubMed Ploner M, Gross J, Timmermann L et al (2002) Cortical representation of first and second pain sensation in humans. Proc Natl Acad Sci U S A 99:12444–12448CrossRefPubMed
48.
Zurück zum Zitat Porro CA, Baraldi P, Pagnoni G et al (2002) Does anticipation of pain affect cortical nociceptive systems? J Neurosci 22:3206–3214PubMed Porro CA, Baraldi P, Pagnoni G et al (2002) Does anticipation of pain affect cortical nociceptive systems? J Neurosci 22:3206–3214PubMed
49.
Zurück zum Zitat Qiu Y, Noguchi Y, Honda M et al (2006) Brain processing of the signals ascending through unmyelinated C fibers in humans: an event-related functional magnetic resonance imaging study. Cereb Cortex 16:1289–1295CrossRefPubMed Qiu Y, Noguchi Y, Honda M et al (2006) Brain processing of the signals ascending through unmyelinated C fibers in humans: an event-related functional magnetic resonance imaging study. Cereb Cortex 16:1289–1295CrossRefPubMed
50.
Zurück zum Zitat Raij TT, Numminen J, Narvanen S et al (2005) Brain correlates of subjective reality of physically and psychologically induced pain. Proc Natl Acad Sci U S A 102:2147–2151CrossRefPubMed Raij TT, Numminen J, Narvanen S et al (2005) Brain correlates of subjective reality of physically and psychologically induced pain. Proc Natl Acad Sci U S A 102:2147–2151CrossRefPubMed
51.
Zurück zum Zitat Rainville P, Duncan GH, Price DD et al (1997) Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277:968–971CrossRefPubMed Rainville P, Duncan GH, Price DD et al (1997) Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277:968–971CrossRefPubMed
52.
Zurück zum Zitat Rainville P, Bao QV, Chretien P (2005) Pain-related emotions modulate experimental pain perception and autonomic responses. Pain 118:306–318CrossRefPubMed Rainville P, Bao QV, Chretien P (2005) Pain-related emotions modulate experimental pain perception and autonomic responses. Pain 118:306–318CrossRefPubMed
53.
Zurück zum Zitat Rosen G, Hugdahl K, Ersland L et al (2001) Different brain areas activated during imagery of painful and non-painful „finger movements“ in a subject with an amputated arm. Neurocase 7:255–260CrossRefPubMed Rosen G, Hugdahl K, Ersland L et al (2001) Different brain areas activated during imagery of painful and non-painful „finger movements“ in a subject with an amputated arm. Neurocase 7:255–260CrossRefPubMed
54.
Zurück zum Zitat Rosen SD, Paulesu E, Frith CD et al (1994) Central nervous pathways mediating angina pectoris. Lancet 344:147–150CrossRefPubMed Rosen SD, Paulesu E, Frith CD et al (1994) Central nervous pathways mediating angina pectoris. Lancet 344:147–150CrossRefPubMed
55.
Zurück zum Zitat Ruehle BS, Handwerker HO, Lennerz JK et al (2006) Brain activation during input from mechanoinsensitive versus polymodal C-nociceptors. J Neurosci 26:5492–5499CrossRefPubMed Ruehle BS, Handwerker HO, Lennerz JK et al (2006) Brain activation during input from mechanoinsensitive versus polymodal C-nociceptors. J Neurosci 26:5492–5499CrossRefPubMed
56.
Zurück zum Zitat Singer T, Seymour B, O’Doherty J et al (2004) Empathy for pain involves the affective but not sensory components of pain. Science 303:1157–1162CrossRefPubMed Singer T, Seymour B, O’Doherty J et al (2004) Empathy for pain involves the affective but not sensory components of pain. Science 303:1157–1162CrossRefPubMed
57.
Zurück zum Zitat Sprenger T, Berthele A, Platzer S et al (2005) What to learn from in vivo opioidergic brain imaging? Eur J Pain 9:117–121CrossRefPubMed Sprenger T, Berthele A, Platzer S et al (2005) What to learn from in vivo opioidergic brain imaging? Eur J Pain 9:117–121CrossRefPubMed
58.
Zurück zum Zitat Sprenger T, Valet M, Boecker H et al (2006) Opioidergic activation in the medial pain system after heat pain. Pain 122:63–67CrossRefPubMed Sprenger T, Valet M, Boecker H et al (2006) Opioidergic activation in the medial pain system after heat pain. Pain 122:63–67CrossRefPubMed
59.
Zurück zum Zitat Sprenger T, Valet M, Woltmann R et al (2006) Imaging pain modulation by subanesthetic S-(+)-ketamine. Anesth Analg 103:729–737CrossRefPubMed Sprenger T, Valet M, Woltmann R et al (2006) Imaging pain modulation by subanesthetic S-(+)-ketamine. Anesth Analg 103:729–737CrossRefPubMed
60.
Zurück zum Zitat Staud R, Craggs JG, Robinson ME et al (2007) Brain activity related to temporal summation of C-fiber evoked pain. Pain 129:130–142CrossRefPubMed Staud R, Craggs JG, Robinson ME et al (2007) Brain activity related to temporal summation of C-fiber evoked pain. Pain 129:130–142CrossRefPubMed
61.
Zurück zum Zitat Straube T, Schmidt S, Weiss T et al (2009) Sex differences in brain activation to anticipated and experienced pain in the medial prefrontal cortex. Hum Brain Mapp 30:689–698CrossRefPubMed Straube T, Schmidt S, Weiss T et al (2009) Sex differences in brain activation to anticipated and experienced pain in the medial prefrontal cortex. Hum Brain Mapp 30:689–698CrossRefPubMed
62.
Zurück zum Zitat Timmann D, Kolb FP, Baier C et al (1996) Cerebellar activation during classical conditioning of the human flexion reflex: a PET study. Neuroreport 7:2056–2060CrossRefPubMed Timmann D, Kolb FP, Baier C et al (1996) Cerebellar activation during classical conditioning of the human flexion reflex: a PET study. Neuroreport 7:2056–2060CrossRefPubMed
63.
Zurück zum Zitat Tölle TR, Kaufmann T, Siessmeier T et al (1999) Region-specific encoding of sensory and affective components of pain in the human brain: a positron emission tomography correlation analysis. Ann Neurol 45:40–47CrossRefPubMed Tölle TR, Kaufmann T, Siessmeier T et al (1999) Region-specific encoding of sensory and affective components of pain in the human brain: a positron emission tomography correlation analysis. Ann Neurol 45:40–47CrossRefPubMed
64.
Zurück zum Zitat Treede R, Apkarian AV, Bromm B et al (2000) Cortical representation of pain: functional characterization of nociceptive areas near the lateral sulcus. Pain 87:113–119CrossRefPubMed Treede R, Apkarian AV, Bromm B et al (2000) Cortical representation of pain: functional characterization of nociceptive areas near the lateral sulcus. Pain 87:113–119CrossRefPubMed
65.
Zurück zum Zitat Valet M, Sprenger T, Boecker H et al (2004) Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain – an fMRI analysis. Pain 109:399–408CrossRefPubMed Valet M, Sprenger T, Boecker H et al (2004) Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain – an fMRI analysis. Pain 109:399–408CrossRefPubMed
66.
Zurück zum Zitat Valet M, Sprenger T, Boecker H et al (2006) Repetitive pain exposure: neuronal correlates in the human brain. In: Flor H, Kalso E, Dostrovsky JO (eds) Proceedings of the 11th world congress on pain. IASP, Seattle, pp 431–437 Valet M, Sprenger T, Boecker H et al (2006) Repetitive pain exposure: neuronal correlates in the human brain. In: Flor H, Kalso E, Dostrovsky JO (eds) Proceedings of the 11th world congress on pain. IASP, Seattle, pp 431–437
67.
Zurück zum Zitat Valet M, Pfab F, Sprenger T et al (2008) Cerebral processing of histamine-induced itch using short-term alternating temperature modulation – an FMRI study. J Invest Dermatol 128:426–433PubMed Valet M, Pfab F, Sprenger T et al (2008) Cerebral processing of histamine-induced itch using short-term alternating temperature modulation – an FMRI study. J Invest Dermatol 128:426–433PubMed
68.
Zurück zum Zitat Wagner KJ, Willoch F, Kochs EF et al (2001) Dose-dependent regional cerebral blood flow changes during remifentanil infusion in humans: a positron emission tomography study. Anesthesiology 94:732–739CrossRefPubMed Wagner KJ, Willoch F, Kochs EF et al (2001) Dose-dependent regional cerebral blood flow changes during remifentanil infusion in humans: a positron emission tomography study. Anesthesiology 94:732–739CrossRefPubMed
69.
Zurück zum Zitat Wagner KJ, Sprenger T, Kochs EF et al (2007) Imaging human cerebral pain modulation by dose-dependent opioid analgesia: a positron emission tomography activation study using remifentanil. Anesthesiology 106:548–556CrossRefPubMed Wagner KJ, Sprenger T, Kochs EF et al (2007) Imaging human cerebral pain modulation by dose-dependent opioid analgesia: a positron emission tomography activation study using remifentanil. Anesthesiology 106:548–556CrossRefPubMed
70.
Zurück zum Zitat Willis WD Jr (1985) Pain pathways in the primate. Prog Clin Biol Res 176:117–133PubMed Willis WD Jr (1985) Pain pathways in the primate. Prog Clin Biol Res 176:117–133PubMed
71.
Zurück zum Zitat Willoch F, Rosen G, Tolle TR et al (2000) Phantom limb pain in the human brain: unraveling neural circuitries of phantom limb sensations using positron emission tomography. Ann Neurol 48:842–849CrossRefPubMed Willoch F, Rosen G, Tolle TR et al (2000) Phantom limb pain in the human brain: unraveling neural circuitries of phantom limb sensations using positron emission tomography. Ann Neurol 48:842–849CrossRefPubMed
72.
Zurück zum Zitat Wise RG, Lujan BJ, Schweinhardt P et al (2007) The anxiolytic effects of midazolam during anticipation to pain revealed using fMRI. Magn Reson Imaging 25:801–810CrossRefPubMed Wise RG, Lujan BJ, Schweinhardt P et al (2007) The anxiolytic effects of midazolam during anticipation to pain revealed using fMRI. Magn Reson Imaging 25:801–810CrossRefPubMed
73.
Zurück zum Zitat Wunsch A, Philippot P, Plaghki L (2003) Affective associative learning modifies the sensory perception of nociceptive stimuli without participant’s awareness. Pain 102:27–38CrossRefPubMed Wunsch A, Philippot P, Plaghki L (2003) Affective associative learning modifies the sensory perception of nociceptive stimuli without participant’s awareness. Pain 102:27–38CrossRefPubMed
74.
Zurück zum Zitat Eippert F, Finsterbusch J, Bingel U, Büchel C (2009) Direct evidence for spinal cord involvement in placebo analgesia. Science 16;326(5951):404 Eippert F, Finsterbusch J, Bingel U, Büchel C (2009) Direct evidence for spinal cord involvement in placebo analgesia. Science 16;326(5951):404
75.
Zurück zum Zitat Ghazni NF, Cahill CM, Stroman PW (2009) Tactile sensory and pain networks in the human spinal cord and brain stem mapped by means of functional MR imaging. AJNR Am J Neuroradiol 17 (Epub ahead of print) Ghazni NF, Cahill CM, Stroman PW (2009) Tactile sensory and pain networks in the human spinal cord and brain stem mapped by means of functional MR imaging. AJNR Am J Neuroradiol 17 (Epub ahead of print)
Metadaten
Titel
Untersuchungen zur zerebralen Verarbeitung von Schmerzen mit funktioneller Bildgebung
Somatosensorische, affektive, kognitive, vegetative und motorische Aspekte
Publikationsdatum
01.04.2010
Erschienen in
Der Schmerz / Ausgabe 2/2010
Print ISSN: 0932-433X
Elektronische ISSN: 1432-2129
DOI
https://doi.org/10.1007/s00482-010-0896-0

Weitere Artikel der Ausgabe 2/2010

Der Schmerz 2/2010 Zur Ausgabe

CME Weiterbildung · Zertifizierte Fortbildung

Wunsch nach vorzeitigem Lebensende

Beutel versus Maschine: Beste Beatmungstechnik bei Herzstillstand gesucht

02.05.2024 Kardiopulmonale Reanimation Nachrichten

Stehen die Chancen auf eine Rückkehr der Spontanzirkulation nach Herz-Kreislauf-Stillstand bei manueller oder maschineller Beatmung besser? Und unterscheidet sich das neurologische Outcome nach der Reanimation? Das belgische Herzstillstand-Register liefert die Daten für einen direkten Vergleich zwischen Beutel und Beatmungsgerät.

Tipps für den Umgang mit Behandlungsfehlern

01.05.2024 DGIM 2024 Kongressbericht

Es ist nur eine Frage der Zeit, bis es zu einem Zwischenfall kommt und ein Behandlungsfehler passiert. Doch wenn Ärztinnen und Ärzte gut vorbereitet sind, schaffen es alle Beteiligten den Umständen entsprechend gut durch diese Krise. 

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders scheint das auf weibliche Kranke zuzutreffen, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.