Skip to main content
Erschienen in: Insights into Imaging 1/2020

Open Access 01.12.2020 | Educational Review

Vascular lesions of the head and neck: an update on classification and imaging review

verfasst von: Akshaar N. Brahmbhatt, Kamila A. Skalski, Alok A. Bhatt

Erschienen in: Insights into Imaging | Ausgabe 1/2020

Abstract

Vascular lesions have a varied appearance and can commonly occur in the head and neck. A majority of these lesions are cutaneous and congenital; however, some may be acquired and malignant. The presentation and clinical history of patients presenting with head and neck lesions can be used to guide further imaging, which can provide important diagnostic and therapeutic considerations. This review discusses the revised International Society for the Study of Vascular Anomalies (ISSVA) classification system for vascular tumors and malformations, as well as explores the most common vascular anomalies including their clinical presentations and imaging findings.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AIDS
Acquired immune deficiency syndrome
CLAPO
Congenital, Lipomatous overgrowth, vascular malformations, epidermal nevi, and skeletal/spinal abnormalities
CLOVES
Congenital, lipomatous, overgrowth, vascular malformations, epidermal mevi and spinal/skeletal anomalies and/or scoliosis
EHE
Epithelioid hemangioendothelioma
GLUT1
Glucose transporter protein-1
HAART
Highly active antiretroviral therapy
ISSVA
International Society for the Study of Vascular Anomalies
KHE
Kaposiform hemangioendothelioma
KS
Kaposi sarcoma
KSHV/HHV8
Kaposi sarcoma herpesvirus/human herpes virus 8
MRI
Magnetic resonance imaging
NICH
Non-involuting capillary hemangioma
PHACE syndrome
Posterior fossa malformations, hemangiomas, arterial anomalies, cardiac abnormalities, eye anomalies
PICH
Partially involuting congenital hemangiomas
PILA
Papillary intralymphatic angioendothelioma
RICH
Rapidly involuting congenital hemangiomas

Key points

  • The ISSVA has recently updated its classification of vascular anomalies.
  • Vascular anomalies of the head and neck present unique diagnostic and therapeutic challenges.
  • Age and clinical history/presentation are important factors in diagnosis.
  • Vascular malformations and tumors may require multiple imaging modalities to fully characterize.

Background

Vascular lesions within the head and neck have a broad pathological spectrum. These include a variety of tumors and malformations ranging from simple capillary irregularities to complex structures involving arteries, veins and lymphatics. There have been several classifications dating back to a histologically based version by Virchow in 1863. Since then, there have been many others based on the gross appearance, histological appearance, therapeutic treatment, and even flow rates. One of the most well-known is that of Mulliken and Glowacki, who published the first histology-based scheme, which described lesions in the pediatric population, dividing them into two major groups, tumors, and malformations [1, 2].
The most commonly used classification in use today comes from the International Society for the Study of Vascular Anomalies (ISSVA). It is a comprehensive scheme based on Mullikan and Glowacki’s seminal work. Overtime, advances in diagnostics, genetics, and treatments have led to several iterations of this classification, most recently in 2018. This updated version includes more lesions and reflects a more comprehensive understanding of underlying genetic causes. The ISSVA classification divides vascular lesions into two major categories: tumors (true proliferative neoplasms) and malformations (defects in morphogenesis).
The basic categories have remained the same. Vascular tumors are separated into benign, locally aggressive/borderline, and malignant (Table 1). The vascular malformations are divided into simple, combined, those of named vessels, and those associated with other anomalies (Table 2). It is important to understand these anomalies in the head and neck for two major reasons. Firstly, vascular anomalies most commonly occur in the head and neck. Secondly, these lesions have unique implications based on their anatomic location and involvement of major systems, e.g., visual, digestive, respiratory, etc. [24]. This review will focus on salient imaging findings and imaging-based prognostic considerations.
Table 1
Characteristics of benign, locally aggressive/borderline, and malignant vascular tumors
Vascular Tumors
Presentation
Imaging
Important Considerations
Benign
 Infantile Hemangioma
Present at birth.
Prominent serpiginous feeding vessel.
Delineate depth of lesion.
Most commonly diagnosed in the first year of life. Rapid growth followed by slower growth and involution phases.
Iso- to intermediate T1 signal.
If lesion crosses multiple layers consider Kaposiform hemangioendothelioma.
 
Hyperintense T2 signal. Increased T1 signal due to fibrofatty infiltration in the involuting phase and decreased contrast enhancement.
 
 Congenital Hemangioma
Usually present in the first year of life.
Intermediate T1 signal. High T2 signal.
Differentiated from infantile hemangiomas based on clinical course.
 Tufted Angioma
Develops within the first five years of life with red or violaceous plaques.
Imaging rarely performed.
 
 Spindle Cell Hemangioma
Present as red or brown nodules.
Low T1 signal. High T2 signal lobulations.
Associated with Malfucci syndrome and Kaposiform hemangioendothelioma.
May see associated lymphedema.
Often with phleboliths due to abnormal venous vasculature.
 Pyogenic Granuloma
Occur secondary to prior insult such as trauma or burns.
Isointense T1. Variable T2 signal.
 
Present with bleeding.
Locally Aggressive/Borderline
 Kaposiform Hemangioendothelioma
Most common aggressive tumor.
Predominantly hyperintense T2 signal with aggressive features (ill defined margins, involvement of multiple tissue planes, stranding of the subcutaneous fat, and hemosiderin deposition due to prior hemorrhage).
 
Associated with thrombocytopenia and pain.
May involve adjacent bone.
 Hemangioendothelioma
Presents in adults as one or more slow growing nodules.
Usually evident on physical exam.
Distant metastasis rare.
 Papillary Intralymphatic Angioendothelioma
Primary involves the skin and subcutaneous tissues.
Isointense T1 signal.
Distant metastasis rare.
Heterogeneously increased T2 signal. Variable enhancement.
Often demonstrates local aggressive invasion.
Malignant
 Angiosarcoma
Can occur at any age, mainly 7th and 8th decades of life.
Intermediate T1 signal intensity. High T2 heterogeneity.
Can metastasis to lung and bone via hematogenous spread.
Most occur in the head and neck, particularly the scalp.
Avid, heterogeneous enhancement. Flow voids or high-flow serpentine loss of signal on T1 and T2 imaging in a soft tissue mass is characteristic.
Can occur secondary to chronic lymphedema and radiation.
 
 Epithelioid Hemangioma
Often incidental.
Can present as well marginated lucent lesions when involving osseous structures on radiography. Osseous lesions demonstrate T1 signal hyperintense to muscle. Heterogeneous high T2.
Potential for metastasis depending on grade.
Typically presents between 30-50 years of age.
Table 2
Characteristics of vascular malformations
Vascular Malformations
Presentation
MR Imaging Characteristics
Additional helpful imaging characteristics
Capillary
Cutaneous lesions that often follow a dermal pattern.
Limited utility of imaging.
 
Can be used to exclude complicating components not obvious on physical exam.
Additional imaging can be performed if a syndrome is suspected.
Macrocystic Lymphatic
Present at birth or by two years of age.
Complex multiloculated cystic mass with fluid-fluid levels. Cysts typically larger than > 2 cm. Enhancement of the walls and septa on post contrast imaging.
US: large cystic structures without internal vascularity.
Soft large translucent non tender mass.
Microcystic Lymphatic
Present at birth or by two years of age. Grow slowly in proportion to growing child.
Transpatial T1 hypointense T2 hyperintense lesion with multiple small cysts typically less than 2cm. No enhancement.
 
May appear as several small, raised sacs on the skin.
Venous
Most common type of vascular malformation. Slow flow vascular malformation presents as a non pulsatile compressible soft tissue prominence or discrete mass typically with blueish-purple hue.
T2 hyperintense serpiginous tubules that enhance on delayed phase.
CT: serpiginous lesions that enhance on post contrast imaging. More sensitive for phlebolith identification.
Often tracking along muscle groups or nerves. These are responsive to changes in flow i.e. Valsalva.
T2 hypointense focal phleboliths.
Venolymphatic
Present with characteristics of both lymphatic and venous malformation.
Multiloculated cystic mass with fluid-fluid levels. Some enhancement on delayed phase images. Phleboliths can be present.
CT: serpiginous lesions, some areas can enhance on post contrast imaging. More sensitive for phlebolith identification.
Classically soft nontender mass can have a blueish-purple hue.
AVM
Can present with CHF, embolism, pain, or bleeding depending on location.
Serpiginous tangle of vessels with enhancement on post contrast imaging and early enhancement of the draining veins.
DSA remains the gold standard.
High flow vascular malformation can present with pulsating lesion or thrill on examination. May feel warm on palpation.
Serpiginous tangle or mass of vessels with enhancement on post contrast imaging and early enhancement of the enlarged draining veins.
AVF
Symptoms depend on location and what vessels are involved. Can be asymptomatic and incidentally found.
Abnormal connection between an artery and vein, may present as abnormal dilation and fistulous tract on post contrast imaging.
DSA remains the gold standard and demonstrates direct communication of an artery with an abnormal early filling draining vein.
Increased collateralization commonly seen.
Best seen on MRA which demonstrates abnormal early venous enhancement.
Many of these vascular lesions have characteristic presentations and a comprehensive patient history plays a key role in establishing the correct diagnosis. Additionally, the clinical history can help recommend the imaging modality of choice and guide the clinician to the next most appropriate step. Most commonly, initial evaluation of most vascular lesions is often performed with ultrasound. This is followed by magnetic resonance imaging (MRI) for further characterization and to evaluate extent and structural involvement.

Vascular Tumors

Benign

Hemangiomas

Hemangiomas come in two forms infantile or congenital. Infantile hemangiomas are glucose transporter protein-1 (GLUT1) positive while congenital hemangiomas are not. Interestingly, GLUT-1 expression has been linked to poor prognosis in many neoplastic processes [57]. This over expression is thought to be due to increased need for glucose mediated by hypoxia. It is hypothesized that in utero episodes of hypoxia may lead to upregulation of GLUT-1 and angiogenic cytokines contributing to hemangioma formation [8, 9].
In addition to this genetic difference, they have several unique features that can help differentiate them. Infantile hemangiomas are usually diagnosed in the first year of life. They follow a pattern of rapid growth in the first few months followed by slower growth and involution phases that are slower and more variable. These lesions can be contrasted with congenital hemangiomas, which by definition are present at birth, and become symptomatic as they increase in size or in response to hormonal changes, infection and trauma.

Infantile Hemangiomas

Infantile hemangiomas can be hyper or hypoechoic on ultrasound but demonstrate hypervascularity on color flow Doppler. These are best imaged on T1, T2, and post-contrast sequences when using MRI. Proliferating hemangiomas are iso to intermediate T1 and relatively hyperintense on T2 (however, not as hyperintense as cerebral spinal fluid), with enhancement after contrast administration. A serpiginous vessel with a prominent flow void denotes an arterial feeder, this along with lack of perilesional edema are important supporting findings. Dynamic contrast-enhanced imaging will demonstrate gradual, intense enhancement of the lesion, followed by gradual washout. In the involuting phase; these lesions demonstrate fibro-fatty infiltration with T1 hyper intense foci and decreasing contrast enhancement (Figs. 1 and 2).
These are further broken down based on their distribution into focal (single localized lesion, which is the most common), multifocal (several lesions), segmental (diffuse plaque like), and indeterminate [10]. In addition to the location, depth is used to characterize these lesions. The most common are superficial lesions limited to the skin. These are commonly dubbed “strawberry” lesions. Deep lesions occur under the skin and often appear bluish on gross examination. There are also mixed lesions with superficial and deep components. The last major subtype is reticular, abortive, minimal growth; these present as reticular or telangiectatic patches. They do not proliferate as readily and often involute faster than the other subtypes [11]. These hemangiomas are associated with posterior fossa malformations, arterial anomalies, cardiac abnormalities, and eye anomalies (PHACE syndrome).
It is important to contrast these lesions to Kaposiform hemangioendothelioma (KHE), which can also have a rapidly expanding phase, but is more infiltrative often crossing multiple soft tissue planes and often involving of the overlying skin. Most hemangiomas are clinically observed, but treatment maybe indicated if there is involvement of the airway, visual system, permanent disfigurement, or large lesions that may result in cardiac symptomatology. The mainstay of treatment is beta-blockers, namely propranolol [2].

Congenital hemangiomas

Congenital hemangiomas are similar to infantile hemangiomas in regards to their US and MRI findings. They are diagnosed retrospectively by their natural progression into rapidly involuting congenital hemangiomas (RICH), partially involuting congenital hemangiomas (PICH) and non-involuting capillary hemangioma (NICH) subtypes. RICH involute during the first year of life, in contrast to PICH and NICH. These lesions are associated with GNAQ/GNA11 genetic changes [10, 12]. Similar to infantile hemangiomas, most of these can be observed unless there is a complicating factor; the mainstay of treatment is beta blockers, but excision, laser therapy, or sclerosants can be used for residual lesions.

Tufted angioma

Tufted angioma is a rare vascular tumor that presents with red or violet plaques. Histologically, it is characterized by capillary vessels forming oval or rounded “tufts.” These develop usually within the first 5 years of life and can extend into many layers beyond the dermis. There is differing data on the location of these lesions but they tend to occur in the trunk and extremities in children. In adults, lesions are more likely to present in the head and neck, specifically the oral mucosa [13, 14]. It is important to biopsy these lesions to exclude a malignant neoplasm namely Kaposi sarcoma or angiosarcoma. Once pathological diagnosis is obtained, these lesions are usually observed; some of these lesions have known to regress. Treatment is usually symptomatic or cosmetic [15, 16]. Imaging is rarely performed on these lesions. Similar to KHE, these lesions have also been associated with GNA14.
Spindle cell hemangioma can present as a red–brown nodule ranging from a few millimeter to a few centimeter in diameter. They can present as a solitary lesion or cluster of several lesions. These lesions can be painful and have been associated with lymphedema, Mafucci syndrome, and Klippel–Trenaunay syndrome. These are mostly superficial lesions limited to the dermal and subcutaneous tissues. On MRI, they have low T1 signal and lobulated high T2 signal, often with phleboliths due to abnormal venous vessels. The most common treatment is surgical excision. While imaging is of limited utility, in select cases it can be helpful prior to treatment to characterize extent and when extensive reconstruction is expected [17, 18].
Epithelioid hemangiomas, previously named angiolymphoid hyperplasia with eosinophilia, are slow growing vascular lesions that present as one or more nodules in the soft tissues. It can also occur within osseous structures. It is most common in patients in their third through sixth decade of life with a mean age of onset in the early 30s. These lesions most commonly occur in the head and neck, most commonly in the periauricular region [19, 20]. These usually present as small erythematous dermal nodules in the head and neck, bleed easily and can itch [21]. Scarce literature is found on imaging characteristics of epithelioid hemangiomas, most reported as case reports. Soft tissue lesions have been described as well-circumscribed periorbital masses or as diffuse thickening and/or enlargement of the lacrimal gland [22]. Osseous lesions tend to present as well-defined expanding lytic lesions with thinned or destroyed cortex. MRI lesions have been described in literature as T1 hypointense, intermediate signal intensity on T2 with variable enhancement [23] (Fig. 3). Imaging plays a key role in determining extent especially when extensive reconstruction is expected as these lesions have been shown to involve the orbit, airway, and external auditory canal [24, 25].
Pyogenic granulomas, also known as lobular capillary hemangiomas, are relatively common and commonly present as a angiomatous pedunculated polyp or papule. These lesions commonly occur on the forehead and check, but can also occur on the mucosal surface including the conjunctiva and oral mucosa. These lesions most often occur secondary to prior trauma, infection, burns, and even pregnancy [2628]. These lesions are usually first found on clinical examination often presenting as enlarging lesions over the course of a few weeks often with bleeding and ulceration. The underlying pathogenesis of these lesions is still unclear; historically, these were thought to be reactive hyperplasia. However, recent genetic studies showing mutations in BRAF, RAS, and GNA14 suggest that this is truly a benign neoplastic process. Sonographic evaluation usually demonstrates hypoechoic nodules in the region of interest with marked internal vascularity [29]. On MRI, these lesions present as T1 iso-intense to muscle with variable T2 signal. As expected, these lesions demonstrate avid enhancement [30]. Imaging can be used to guide biopsy and excision in more extensive cases.

Locally aggressive/borderline

Kaposiform hemangioendothelioma

Kaposiform hemangioendotheliomas are the most common aggressive vascular tumors, but still rare with a reported incidence between .07 and .091 per 100,000 children, presenting usually within the first year. It is an enlarging cutaneous lesion often associated with thrombocytopenia and pain. The majority of these lesions occur in the extremities, but about one-fifth occur in the head and neck region. On imaging, it is an ill-defined region of soft tissue thickening that crosses multiple planes. On T2-weighted imaging, the lesions demonstrate a hyperintense mass with an ill-defined margin that crosses multiple soft tissue planes. Additionally, there can be stranding of the subcutaneous fat, hemosiderin deposits, and destructive changes in the adjacent bone [31] (Fig. 4). This lesion is associated with GNA14, thought to act via a MAPK upregulation [32]. It is usually treated with propranolol and corticosteroids along with chemotherapeutic agents, classically vincristine. More recently, there has been good clinical success with mTOR inhibitors such as everolimus and sirolimus [3335].
In addition to these, there are several other less common hemangioendotheliomas. These mainly affect adults. Overall, these commonly present as a solitary or several nodules in the skin, but can be seen elsewhere. They generally have a low metastatic potential, but can and often recur locally. Retiform hemangioendothelioma is a rare tumor with few cases and only one noted on the face. It has been shown to present as a dermal or subcutaneous nodule with slow growth over the course of months to several years. It is most common among young and middle-aged adults [36, 37]. These are similar to pseudomyogenic hemangioendothelioma [38]. Polymorphous hemangioendothelioma are extremely rare and characterized by varying patterns in different tumor areas. This is similar to composite hemangioendothelioma, which are actually composites of other types of hemangiomas. This variant can also include parts that resemble angiosarcoma [39].
Papillary intralymphatic angioendothelioma (PILA), also known as Dabska Tumor, is a rare locally aggressive tumor that involves the skin and subcutaneous tissues, with few case reports reporting lesions in the bone and other organs. It rarely metastasizes. On imaging, it has been shown to demonstrate aggressive features with isointense T1, heterogeneously increased T2 signal, and variable enhancement that can invade adjacent structures and demonstrate infiltrative characteristics [40, 41].
Lastly, there is Kaposi sarcoma (KS), a mesenchymal tumor that arises from lymphatic endothelial cells first described in 1872 [42]. KS garnered attention in literature and worldwide in the 1980s for its association with acquired immune deficiency syndrome (AIDS) [43]. Kaposi sarcoma herpesvirus/human herpes virus 8 (KSHV/HHV8) was identified in 1994 and plays a key role in the pathogenesis of KS, particularly in the setting of immune dysregulation [44, 45].
KS is divided into four variants: classic, endemic, iatrogenic (most commonly post-transplant), and AIDs related. Classic and endemic KS have a more indolent course and typically do not require imaging evaluation. Iatrogenic and AIDS-related KS are much more aggressive and often present with disseminated disease [43]. There has been significant decrease in AIDS-related cases since the introduction of highly active antiretroviral therapy (HAART) [46].
Conversely, due to increase number of transplants, biologic treatment, and long-term immunosuppression, the iatrogenic variant has been increasing in incidence [47, 48]. Patients typically present with multiple characteristic purple macules and papules, which can coalesce to form large plaques and tumors on the skin and can involve multiple organs. Cutaneous involvement is the most common presentation in head and neck KS seen in 66% of cases, 56% involve the mucosa, most commonly intraoral and laryngeal-pharyngeal mucosa, with the remainder presenting with isolated lymphadenopathy without papules. KS can be multifocal, which helps to differentiate it from other lesions [45, 49, 50]. CT and MR characteristics of KS are multiple nodular or polypoid lesions in the skin or mucosa. These lesions can vary in size and can infiltrate deep tissue however do not typically ulcerate. They most commonly demonstrate avid, enhancement on post-contrast imaging, however, can present as subtle asymmetries in the valleculae and pyriforum sinus [51]. In cases that present as isolated lymphadenopathy, it is important to have a good clinical history to help early diagnosis.

Malignant

Angiosarcoma

Angiosarcoma is a rare aggressive soft tissue malignancy arising from endothelial cells. Overall survival is approximately 6 to 16 months as these tumors have a propensity to recur and metastasize [52]. Angiosarcoma can occur at any age with the reported median age between 60 and 71 years [53]. There is a male predilection for soft tissue angiosarcomas; however, the incidence of deep soft tissue and parenchymal tumors is the same in men and women [52, 54]. Approximately 50% of angiosarcomas occur in the head and neck soft tissue, particularly the scalp; 10% occur in the deep soft tissue including the peritoneum, retroperitoneum, and mediastinum; and the remainder present in parenchymal organs including breast, bone, and liver. Lung and bone are the most common site for metastasis through hematogenous spread. The two most common risk factors are chronic lymphedema and radiation therapy [55]. Patients often present with skin lesions such as an enlarging bruise, a discolored nodule, or persistent ulceration. In the early stages, these lesions can be misdiagnosed for benign entities caused by cellulitis, infection, or skin injuries [56]. Typical imaging characteristics include intermediate T1 signal intensity and high T2 heterogeneity with avid enhancement. Flow voids or high-flow serpentine loss of signal on T1 and T2 imaging in a soft tissue mass is characteristic of the lesions [57]. On contrast-enhanced CT, lesions are typically irregular, enhancing soft-tissue masses with possible invasion of adjacent osseous and parenchymal structures [56] (Fig. 5).

Epithelioid hemangioendothelioma

Epithelioid hemangioendothelioma (EHE) is a rare vascular tumor first described in 1975 as an aggressive bronchoalveolar cell carcinoma [58]. Later named EHE by Weiss and Enzinger in 1982 for its similar features between a hemangioma and angiosarcoma [58]. EHE is exceedingly rare and accounts for 1% of all vascular malignancies; it is often misdiagnosed at presentation. Most commonly it affects the lungs, liver, or bones, although can present in the head and neck area, mediastinum, among many other sites. EHE is often incidentally diagnosed and over 50–76% of patients are asymptomatic. Typically, the lesion presents in patients between the age of 30 and 50 years [59, 60]. There is limited literature describing imaging characteristics of EHE involving the head and neck, but aggressive features can suggest the diagnosis (Fig. 6).

Others

The lesions discussed above are not inclusive of all vascular malignant vascular tumors; there are others, which are exceedingly rare and mostly differentiated on pathology.

Vascular malformations

Vascular malformations make up the second set of anomalies and are broken up into four categories. Simple malformations include capillary, lymphatic, venous, arteriovenous malformations, and arteriovenous fistulas. These are usually described on imaging based on flow rates through the lesion, slow or fast. Combined malformations include lesions with more than one type of malformation, such as capillary-venous, lymphatic-venous, etc. Malformations of major vessels and those associated with other anomalies make up the last two categories (Fig. 7).

Capillary malformations

Capillary malformations are cutaneous lesions that often follow a dermal pattern. The diagnosis is usually clinical as a “port wine stain” is usually noted on routine physical exam. On ultrasound, these lesions are isoechoic and confined to the dermis; Doppler flow can be seen occasionally. The main utility of imaging is in the setting of associated findings (i.e., Sturge-Webber). The mainstay of treatment is laser therapy, but surgical excision with reconstruction can also be considered [61].

Venous

Venous malformations make up most slow flow lesions. These lesions initially present during mid to late childhood. They are continuous, soft, and compressible lesions that involve several layers. They tend to align with muscle groups or track along nerves or major vessels. They are responsive to changes in venous flow such as Valsalva or sometimes compression of the ipsilateral jugular vein when the lesion is in the head and neck. On ultrasound, these lesions appear as multiple tubules and may or may not have detectible flow due to low velocities. MRI is the mainstay for evaluating venous malformations. These lesions are markedly T2 hyperintense with serpiginous tubules. One of the most common and highly specific differentiating features is the presence of phleboliths. These lesions can thrombose [10, 61]. CT is best for the evaluation of the presence of phleboliths, as well as in cases of osseous involvement (Fig. 8).

Lymphatic

Lymphatic malformations are overall very rare, but the majority, approximately three-fourth, occur in the head and neck region. One review found the bulk of these occur in the cheek, around the mandible and parotid gland. They are soft and compressible cystic structures, which usually present within the first two years of life. These cystic structures can be macrocytic (greater than 2 cm) or microcystic (less than 2 cm). Mixed lesions with macro- and microcystic components can also occur. On ultrasound, they appear as cystic structures without flow. On MRI, they usually have high T2 signal with minimal peripheral enhancement. The T1 signal is variable. These lesions have a tendency to hemorrhage, and therefore fluid-fluid levels are key to the correct diagnosis (Fig. 9). An important variation is a diffuse microcystic lymphatic malformation, as these may present with mild diffuse enhancement of the cyst walls (Fig. 10). These lesions can be difficult to treat as both surgery and sclerotherapy have high rates of recurrence, with the possibility of aggravation [10, 62].

High flow lesions

Arteriovenous malformations and fistulae are high flow anomalies. These malformations lack the normal capillary bed between vessels. They can be congenital or occur secondary to surgery, trauma, and pregnancy. They may present with a skin deformity, pulsatile mass, bleeding, ulceration, or secondary symptoms including arterial steal, venous congestion, and high output cardiac failure. These lesions demonstrate high flow on ultrasound; it can be difficult to identify the arterial origin or venous drainage of these lesions. CT is employed to evaluate bony involvement. MRI can be used to evaluate soft tissue involvement. Key to diagnosis is that these lesions show flow voids on both T1W and T2W sequences. Conventional arteriography can be both diagnostic and therapeutic if there is embolization of the lesion (Figs. 11 and 12). Other options for treatment include surgical excision and radiation [2, 10, 61].

Combined malformations

These lesions are complex and include more than one type of malformation. These lesions are highly variable and can present unique challenges in both diagnosis and treatment. It is important to determine if the lesion is high or slow flow or a combination. These lesions can be evaluated by MRI and magnetic resonance venography, which can help delineate between venous and lymphatic components (Fig. 13). Additionally conventional venography or arteriography with varying techniques including direct puncture, tourniquets, and other maneuvers can be used to delineate components of the malformation. It is important to rule out collateral involvement of major neck and intracranial vessels. A multidisciplinary approach is essential to treating these lesions [63, 64].

Associations with other anomalies

There are numerous malformations associated with syndromes. In this review, we have included multiple related to the head and neck. The most commonly seen is Sturge-Weber. These patients have facial capillary malformations with variable involvement of the leptomeninges and orbits [65]. This anomaly is tied to a mutation in GNAQ, which impacts cell differentiation, proliferation, and inhibits apoptosis but is not oncogenic in this setting [66].
Congenital, lipomatous overgrowth, vascular malformations, epidermal nevi, and skeletal/spinal abnormalities (CLAPO) syndrome is characterized by capillary malformations of the lower lip often with lymphatic and venous malformations of the head and neck. Additionally, these patients have variable degrees of asymmetric overgrowth. It is important to look for venous and lymphatic malformations in patients with suspected CLAPO syndrome. Other common findings include facial infiltrating lipomatosis. Interestingly, these patients do not have neurological findings seen in other similar syndromes, likely due to the embryonic origin of the involved tissues [67, 68].
Congenital, lipomatous, overgrowth, vascular malformations, epidermal nevi and spinal/skeletal anomalies and/or scoliosis (CLOVES) syndrome is associated with several kinds of malformations, including lymphatic, venous, capillary, and even arteriovenous malformations, along with lipomatous overgrowth. Patients with CLOVES syndrome often have cranial abnormalities including megalocephaly, Chiari malformation, and cortical dysplasia, among others. These findings should be considered when evaluating CLOVES syndrome patients [69, 70]. Several other malformations are associated with gross cephalic abnormalities. Both macrocephaly and microcephaly are associated with capillary malformations. Bannayan-Riley-Ruvalcaba syndrome is characterized by macrocephaly, as well as AVMs and VMs [71]. Lastly, patients with Proteus syndrome present with dolichocephalic, hyperostosis, and asymmetric overgrowth; they can have capillary, venous, or lymphatic malformations with asymmetrical somatic overgrowth [72]. As a whole, these are rare syndromes with a significant amount of variability; however, if several malformations are seen, one should consider one of these syndromes and tailor further studies accordingly.

Conclusion

It is important to remember that vascular anomalies of the head and neck can be divided into vascular tumors and vascular malformations; the former representing true proliferative neoplasms and the latter defects of vascular morphogenesis. These lesions can present in a variety of locations in the head and neck. Imaging plays a role for many of these lesions, and therefore, knowledge of the classification of these lesions based on the updated 2018 International Society for the Study of Vascular Anomalies, as well as characteristic imaging findings are key to diagnosis and subsequent appropriate treatment.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Mulliken JB, Glowacki J (1982) Hemangiomas and vascular malformations in infants and children: a classification based on endothelial characteristics. Plast Reconstr Surg 69:412–422 Mulliken JB, Glowacki J (1982) Hemangiomas and vascular malformations in infants and children: a classification based on endothelial characteristics. Plast Reconstr Surg 69:412–422
3.
Zurück zum Zitat Zheng JW, Zhou Q, Yang XJ et al (2010) Treatment guideline for hemangiomas and vascular malformations of the head and neck. Head Neck 32:1088–1098 Zheng JW, Zhou Q, Yang XJ et al (2010) Treatment guideline for hemangiomas and vascular malformations of the head and neck. Head Neck 32:1088–1098
4.
Zurück zum Zitat Klosterman T, O TM (2018) The management of vascular malformations of the airway: natural history, investigations, medical, surgical and radiological management. Otolaryngol Clin North Am 51:213–223PubMed Klosterman T, O TM (2018) The management of vascular malformations of the airway: natural history, investigations, medical, surgical and radiological management. Otolaryngol Clin North Am 51:213–223PubMed
5.
Zurück zum Zitat Yang J, Wen J, Tian T et al (2017) GLUT-1 overexpression as an unfavorable prognostic biomarker in patients with colorectal cancer. Oncotarget 8:11788–11796PubMed Yang J, Wen J, Tian T et al (2017) GLUT-1 overexpression as an unfavorable prognostic biomarker in patients with colorectal cancer. Oncotarget 8:11788–11796PubMed
6.
Zurück zum Zitat Yang H, Zhong J-T, Zhou S-H, Han H-M (2019) Roles of GLUT-1 and HK-II expression in the biological behavior of head and neck cancer. Oncotarget 10:3066–3083PubMedPubMedCentral Yang H, Zhong J-T, Zhou S-H, Han H-M (2019) Roles of GLUT-1 and HK-II expression in the biological behavior of head and neck cancer. Oncotarget 10:3066–3083PubMedPubMedCentral
7.
Zurück zum Zitat Davis-Yadley AH, Abbott AM, Pimiento JM, Chen DT, Malafa MP (2016) Increased Expression of the glucose transporter type 1 gene is associated with worse overall survival in resected pancreatic adenocarcinoma. Pancreas 45:974–979PubMedPubMedCentral Davis-Yadley AH, Abbott AM, Pimiento JM, Chen DT, Malafa MP (2016) Increased Expression of the glucose transporter type 1 gene is associated with worse overall survival in resected pancreatic adenocarcinoma. Pancreas 45:974–979PubMedPubMedCentral
8.
Zurück zum Zitat de Jong S, Itinteang T, Withers AH, Davis PF, Tan ST (2016) Does hypoxia play a role in infantile hemangioma? Arch Dermatol Res 308:219–227PubMed de Jong S, Itinteang T, Withers AH, Davis PF, Tan ST (2016) Does hypoxia play a role in infantile hemangioma? Arch Dermatol Res 308:219–227PubMed
9.
Zurück zum Zitat Chang EI, Chang EI, Thangarajah H, Hamou C, Gurtner GC (2007) Hypoxia, hormones, and endothelial progenitor cells in hemangioma. Lymphatic Res Biol 5:237–243 Chang EI, Chang EI, Thangarajah H, Hamou C, Gurtner GC (2007) Hypoxia, hormones, and endothelial progenitor cells in hemangioma. Lymphatic Res Biol 5:237–243
10.
Zurück zum Zitat Tekes A, Koshy J, Kalayci TO et al (2014) S.E. Mitchell vascular anomalies flow chart (SEMVAFC): a visual pathway combining clinical and imaging findings for classification of soft-tissue vascular anomalies. Clin Radiol 69:443–457PubMed Tekes A, Koshy J, Kalayci TO et al (2014) S.E. Mitchell vascular anomalies flow chart (SEMVAFC): a visual pathway combining clinical and imaging findings for classification of soft-tissue vascular anomalies. Clin Radiol 69:443–457PubMed
11.
Zurück zum Zitat Darrow DH, Greene AK, Mancini AJ, Nopper AJ (2015) Diagnosis and management of infantile hemangioma. Pediatrics 136:e1060–e1104PubMed Darrow DH, Greene AK, Mancini AJ, Nopper AJ (2015) Diagnosis and management of infantile hemangioma. Pediatrics 136:e1060–e1104PubMed
12.
Zurück zum Zitat Nozaki T, Nosaka S, Miyazaki O et al (2013) Syndromes associated with vascular tumors and malformations: a pictorial review. Radiographics 33:175–195PubMed Nozaki T, Nosaka S, Miyazaki O et al (2013) Syndromes associated with vascular tumors and malformations: a pictorial review. Radiographics 33:175–195PubMed
13.
Zurück zum Zitat Kim YH, Lee GH, Lee SH, Cho JH (2013) An acquired tufted angioma of the nasal cavity. Auris Nasus Larynx 40:581–583PubMed Kim YH, Lee GH, Lee SH, Cho JH (2013) An acquired tufted angioma of the nasal cavity. Auris Nasus Larynx 40:581–583PubMed
14.
Zurück zum Zitat Sabharwal A, Aguirre A, Zahid TM, Jean-Charles G, Hatton MN (2013) Acquired tufted angioma of upper lip: case report and review of the literature. Head Neck Pathol 7:291–294PubMedPubMedCentral Sabharwal A, Aguirre A, Zahid TM, Jean-Charles G, Hatton MN (2013) Acquired tufted angioma of upper lip: case report and review of the literature. Head Neck Pathol 7:291–294PubMedPubMedCentral
15.
Zurück zum Zitat Herron MD, Coffin CM, Vanderhooft SL (2002) Tufted angiomas: variability of the clinical morphology. Pediatric Dermatol 19:394–401 Herron MD, Coffin CM, Vanderhooft SL (2002) Tufted angiomas: variability of the clinical morphology. Pediatric Dermatol 19:394–401
16.
Zurück zum Zitat Wong SN, Tay YK (2002) Tufted angioma: a report of five cases. Pediatric dermatology 19:388–393PubMed Wong SN, Tay YK (2002) Tufted angioma: a report of five cases. Pediatric dermatology 19:388–393PubMed
17.
Zurück zum Zitat Gbolahan OO, Fasina O, Adisa AO, Fasola OA (2015) Spindle cell hemangioma: unusual presentation of an uncommon tumor. J Oral Maxillofacial Pathol 19:406 Gbolahan OO, Fasina O, Adisa AO, Fasola OA (2015) Spindle cell hemangioma: unusual presentation of an uncommon tumor. J Oral Maxillofacial Pathol 19:406
18.
Zurück zum Zitat Murakami K, Yamamoto K, Sugiura T, Kirita T (2018) Spindle cell hemangioma in the mucosa of the upper lip: a case report and review of the literature. Case Rep Dent 2018:1370701 Murakami K, Yamamoto K, Sugiura T, Kirita T (2018) Spindle cell hemangioma in the mucosa of the upper lip: a case report and review of the literature. Case Rep Dent 2018:1370701
19.
Zurück zum Zitat Al-Muharraqi MA, Faqi MK, Uddin F, Ladak K, Darwish A (2011) Angiolymphoid hyperplasia with eosinophilia (epithelioid hemangioma) of the face: An unusual presentation. Int J Surg Case Rep 2:258–260PubMedPubMedCentral Al-Muharraqi MA, Faqi MK, Uddin F, Ladak K, Darwish A (2011) Angiolymphoid hyperplasia with eosinophilia (epithelioid hemangioma) of the face: An unusual presentation. Int J Surg Case Rep 2:258–260PubMedPubMedCentral
20.
Zurück zum Zitat El Sayed F, Dhaybi R, Ammoury A, Chababi M (2006) Angiolymphoid hyperplasia with eosinophilia: efficacy of isotretinoin? Head Face Med 2:32PubMedPubMedCentral El Sayed F, Dhaybi R, Ammoury A, Chababi M (2006) Angiolymphoid hyperplasia with eosinophilia: efficacy of isotretinoin? Head Face Med 2:32PubMedPubMedCentral
21.
Zurück zum Zitat Chan DK, Soong J, Koh F, Tan KK, Lieske B (2016) Predictors for outcomes after super-selective mesenteric embolization for lower gastrointestinal tract bleeding. ANZ J Surg 86:459–463PubMed Chan DK, Soong J, Koh F, Tan KK, Lieske B (2016) Predictors for outcomes after super-selective mesenteric embolization for lower gastrointestinal tract bleeding. ANZ J Surg 86:459–463PubMed
22.
Zurück zum Zitat Azari AA, Kanavi MR, Lucarelli M et al (2014) Angiolymphoid hyperplasia with eosinophilia of the orbit and ocular adnexa: report of 5 cases. JAMA Ophthalmol 132:633–636PubMedPubMedCentral Azari AA, Kanavi MR, Lucarelli M et al (2014) Angiolymphoid hyperplasia with eosinophilia of the orbit and ocular adnexa: report of 5 cases. JAMA Ophthalmol 132:633–636PubMedPubMedCentral
23.
Zurück zum Zitat Errani C, Zhang L, Panicek DM, Healey JH, Antonescu CR (2012) Epithelioid hemangioma of bone and soft tissue: a reappraisal of a controversial entity. Clin Orthop Related Res 470:1498–1506 Errani C, Zhang L, Panicek DM, Healey JH, Antonescu CR (2012) Epithelioid hemangioma of bone and soft tissue: a reappraisal of a controversial entity. Clin Orthop Related Res 470:1498–1506
24.
Zurück zum Zitat Hussain JA, Al Zamel H, Nawaz B (2018) Angiolymphoid hyperplasia with eosinophilia (epithelioid hemangioma) of the external auditory canal, an unusual presentation in an adult female: a case report. J Surg Case Rep 2018:rjy145PubMedPubMedCentral Hussain JA, Al Zamel H, Nawaz B (2018) Angiolymphoid hyperplasia with eosinophilia (epithelioid hemangioma) of the external auditory canal, an unusual presentation in an adult female: a case report. J Surg Case Rep 2018:rjy145PubMedPubMedCentral
25.
Zurück zum Zitat Youssef A, Hasan AR, Youssef Y, Al-Soufi L, Elshimali Y, Alshehabi Z (2018) Angiolymphoid hyperplasia with eosinophilia: a case report. J Med Case Rep 12:89PubMedPubMedCentral Youssef A, Hasan AR, Youssef Y, Al-Soufi L, Elshimali Y, Alshehabi Z (2018) Angiolymphoid hyperplasia with eosinophilia: a case report. J Med Case Rep 12:89PubMedPubMedCentral
26.
Zurück zum Zitat Schneider MH, Garcia CFV, Aleixo PB, Kiszewski AE (2019) Congenital cutaneous pyogenic granuloma: Report of two cases and review of the literature. J Cutan Pathol 46(9):691–697PubMed Schneider MH, Garcia CFV, Aleixo PB, Kiszewski AE (2019) Congenital cutaneous pyogenic granuloma: Report of two cases and review of the literature. J Cutan Pathol 46(9):691–697PubMed
27.
Zurück zum Zitat Tan IJ, Turner AW (2017) Pyogenic Granuloma of the conjunctiva. N Engl J Med 376:1667–1667PubMed Tan IJ, Turner AW (2017) Pyogenic Granuloma of the conjunctiva. N Engl J Med 376:1667–1667PubMed
28.
Zurück zum Zitat Demir Y, Demir S, Aktepe F (2004) Cutaneous lobular capillary hemangioma induced by pregnancy. J Cutan Pathol 31:77–80PubMed Demir Y, Demir S, Aktepe F (2004) Cutaneous lobular capillary hemangioma induced by pregnancy. J Cutan Pathol 31:77–80PubMed
29.
Zurück zum Zitat Cantisani V, Del Vecchio A, Fioravanti E, Romeo U, D'Ambrosio F (2014) Color-Doppler US features of a pyogenic granuloma of the upper dorsum tongue. J Ultrasound 19:67–70PubMedPubMedCentral Cantisani V, Del Vecchio A, Fioravanti E, Romeo U, D'Ambrosio F (2014) Color-Doppler US features of a pyogenic granuloma of the upper dorsum tongue. J Ultrasound 19:67–70PubMedPubMedCentral
30.
Zurück zum Zitat Loftus WK, Spurrier AJ, Voyvodic F, Neuhaus SJ, James CL (2018) Intravenous lobular capillary haemangioma (pyogenic granuloma): a case report and a review of imaging findings as reported in the literature. J Med Imaging Radiat Oncol 62:217–223PubMed Loftus WK, Spurrier AJ, Voyvodic F, Neuhaus SJ, James CL (2018) Intravenous lobular capillary haemangioma (pyogenic granuloma): a case report and a review of imaging findings as reported in the literature. J Med Imaging Radiat Oncol 62:217–223PubMed
31.
Zurück zum Zitat Navarro OM, Laffan EE, Ngan BY (2009) Pediatric soft-tissue tumors and pseudo-tumors: MR imaging features with pathologic correlation: part 1. imaging approach, pseudotumors, vascular lesions, and adipocytic tumors. Radiographics 29:887–906PubMed Navarro OM, Laffan EE, Ngan BY (2009) Pediatric soft-tissue tumors and pseudo-tumors: MR imaging features with pathologic correlation: part 1. imaging approach, pseudotumors, vascular lesions, and adipocytic tumors. Radiographics 29:887–906PubMed
32.
Zurück zum Zitat Lim YH, Bacchiocchi A, Qiu J et al (2016) GNA14 Somatic mutation causes congenital and sporadic vascular tumors by MAPK activation. Am J Hum Genet 99:443–450PubMed Lim YH, Bacchiocchi A, Qiu J et al (2016) GNA14 Somatic mutation causes congenital and sporadic vascular tumors by MAPK activation. Am J Hum Genet 99:443–450PubMed
33.
Zurück zum Zitat Uno T, Ito S, Nakazawa A, Miyazaki O, Mori T, Terashima K (2015) Successful treatment of Kaposiform hemangioendothelioma with everolimus. Pediatr Blood Cancer 62:536–538 Uno T, Ito S, Nakazawa A, Miyazaki O, Mori T, Terashima K (2015) Successful treatment of Kaposiform hemangioendothelioma with everolimus. Pediatr Blood Cancer 62:536–538
34.
Zurück zum Zitat Chinello M, Di Carlo D, Olivieri F et al (2018) Successful management of kaposiform hemangioendothelioma with long-term sirolimus treatment: a case report and review of the Literature. Mediterr J Hematol Infect Dis 10:e2018043PubMedPubMedCentral Chinello M, Di Carlo D, Olivieri F et al (2018) Successful management of kaposiform hemangioendothelioma with long-term sirolimus treatment: a case report and review of the Literature. Mediterr J Hematol Infect Dis 10:e2018043PubMedPubMedCentral
35.
Zurück zum Zitat Margolin JF, Soni HM, Pimpalwar S (2014) Medical therapy for pediatric vascular anomalies. Semin Plast Surg 28:79–86 Margolin JF, Soni HM, Pimpalwar S (2014) Medical therapy for pediatric vascular anomalies. Semin Plast Surg 28:79–86
36.
Zurück zum Zitat Tamhankar AS, Vaidya A, Pai P (2015) Retiform hemangioendothelioma over forehead: a rare tumor treated with chemoradiation and a review of literature. J Cancer Res Ther 11:657PubMed Tamhankar AS, Vaidya A, Pai P (2015) Retiform hemangioendothelioma over forehead: a rare tumor treated with chemoradiation and a review of literature. J Cancer Res Ther 11:657PubMed
37.
Zurück zum Zitat Calonje E, Fletcher CD, Wilson-Jones E, Rosai J (1994) Retiform hemangioendothelioma. A distinctive form of low-grade angiosarcoma delineated in a series of 15 cases. Am J Surg Pathol 18:115–125PubMed Calonje E, Fletcher CD, Wilson-Jones E, Rosai J (1994) Retiform hemangioendothelioma. A distinctive form of low-grade angiosarcoma delineated in a series of 15 cases. Am J Surg Pathol 18:115–125PubMed
38.
Zurück zum Zitat Rawal YB, Anderson KM, Dodson TB (2016) Pseudomyogenic hemangioendothelioma: a vascular tumor previously undescribed in the oral cavity. Head Neck Pathol 11:525–530PubMedPubMedCentral Rawal YB, Anderson KM, Dodson TB (2016) Pseudomyogenic hemangioendothelioma: a vascular tumor previously undescribed in the oral cavity. Head Neck Pathol 11:525–530PubMedPubMedCentral
39.
Zurück zum Zitat Fasolis M, Iaquinta C, Montesco MC et al (2008) Composite hemangioendothelioma of the oral cavity: case report and review of the literature. Head Neck 30:974–979 Fasolis M, Iaquinta C, Montesco MC et al (2008) Composite hemangioendothelioma of the oral cavity: case report and review of the literature. Head Neck 30:974–979
40.
Zurück zum Zitat Gambarotti M, Righi A, Sbaraglia M et al (2018) Intraosseous papillary intralymphatic angioendothelioma (PILA): one new case and review of the literature. Clin Sarcoma Res 8:1. Gambarotti M, Righi A, Sbaraglia M et al (2018) Intraosseous papillary intralymphatic angioendothelioma (PILA): one new case and review of the literature. Clin Sarcoma Res 8:1.
41.
Zurück zum Zitat Li B, Li Y, Tian XY, Li Z (2013) Unusual multifocal intraosseous papillary intralymphatic angioendothelioma (Dabska tumor) of facial bones: a case report and review of literature. Diagn Pathol 8:160 Li B, Li Y, Tian XY, Li Z (2013) Unusual multifocal intraosseous papillary intralymphatic angioendothelioma (Dabska tumor) of facial bones: a case report and review of literature. Diagn Pathol 8:160
42.
Zurück zum Zitat Kaposi (1872) Idiopathisches multiples Pigmentsarkom der Haut. Arch f Dermat 4:265–273 Kaposi (1872) Idiopathisches multiples Pigmentsarkom der Haut. Arch f Dermat 4:265–273
43.
Zurück zum Zitat Palella FJ Jr, Delaney KM, Moorman AC et al (1998) Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med 338:853–860PubMed Palella FJ Jr, Delaney KM, Moorman AC et al (1998) Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med 338:853–860PubMed
44.
Zurück zum Zitat Chang Y, Cesarman E, Pessin MS et al (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266:1865-1869.PubMed Chang Y, Cesarman E, Pessin MS et al (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266:1865-1869.PubMed
45.
Zurück zum Zitat Restrepo CS, Martinez S, Lemos JA et al (2006) Imaging manifestations of Kaposi sarcoma. Radiographics 26:1169–1185PubMed Restrepo CS, Martinez S, Lemos JA et al (2006) Imaging manifestations of Kaposi sarcoma. Radiographics 26:1169–1185PubMed
46.
Zurück zum Zitat Curtiss P, Strazzulla LC, Friedman-Kien AE (2016) An Update on Kaposi's Sarcoma: Epidemiology, Pathogenesis and Treatment. Dermatol Ther (Heidelb) 6:465–470PubMedPubMedCentral Curtiss P, Strazzulla LC, Friedman-Kien AE (2016) An Update on Kaposi's Sarcoma: Epidemiology, Pathogenesis and Treatment. Dermatol Ther (Heidelb) 6:465–470PubMedPubMedCentral
47.
Zurück zum Zitat Schwartz RA (2004) Kaposi's sarcoma: an update. J Surg Oncol 87:146–151PubMed Schwartz RA (2004) Kaposi's sarcoma: an update. J Surg Oncol 87:146–151PubMed
48.
Zurück zum Zitat Engels EA (2019) Epidemiologic perspectives on immunosuppressed populations and the immunosurveillance and immunocontainment of cancer. Am J Transplant 19(12):3223–3232PubMed Engels EA (2019) Epidemiologic perspectives on immunosuppressed populations and the immunosurveillance and immunocontainment of cancer. Am J Transplant 19(12):3223–3232PubMed
49.
Zurück zum Zitat Agaimy A, Mueller SK, Harrer T, Bauer S, Thompson LDR (2018) Head and Neck Kaposi Sarcoma: Clinicopathological Analysis of 11 Cases. Head Neck Pathol 12:511–516PubMedPubMedCentral Agaimy A, Mueller SK, Harrer T, Bauer S, Thompson LDR (2018) Head and Neck Kaposi Sarcoma: Clinicopathological Analysis of 11 Cases. Head Neck Pathol 12:511–516PubMedPubMedCentral
50.
Zurück zum Zitat Ramirez-Amador V, Anaya-Saavedra G, Martinez-Mata G (2010) Kaposi's sarcoma of the head and neck: a review. Oral Oncol 46:135–145PubMed Ramirez-Amador V, Anaya-Saavedra G, Martinez-Mata G (2010) Kaposi's sarcoma of the head and neck: a review. Oral Oncol 46:135–145PubMed
51.
Zurück zum Zitat Scheschonka A, Mosch M, Krieglsteiner S, Turowski B, Zanella FE (2003) Pre- and posttreatment MR imaging in AIDS-related Kaposi sarcoma of the conjunctiva and lacrimal gland. AJNR Am J Neuroradiol 24:1327–1329 Scheschonka A, Mosch M, Krieglsteiner S, Turowski B, Zanella FE (2003) Pre- and posttreatment MR imaging in AIDS-related Kaposi sarcoma of the conjunctiva and lacrimal gland. AJNR Am J Neuroradiol 24:1327–1329
52.
Zurück zum Zitat Young RJ, Brown NJ, Reed MW, Hughes D, Woll PJ (2010) Angiosarcoma. Lancet Oncol 11:983–991PubMed Young RJ, Brown NJ, Reed MW, Hughes D, Woll PJ (2010) Angiosarcoma. Lancet Oncol 11:983–991PubMed
53.
Zurück zum Zitat Meis-Kindblom JM, Kindblom LG (1998) Angiosarcoma of soft tissue: a study of 80 cases. Am J Surg Pathol 22:683–697PubMed Meis-Kindblom JM, Kindblom LG (1998) Angiosarcoma of soft tissue: a study of 80 cases. Am J Surg Pathol 22:683–697PubMed
54.
Zurück zum Zitat Almogy G, Lieberman S, Gips M et al (2004) Clinical outcomes of surgical resections for primary liver sarcoma in adults: results from a single centre. Eur J Surg Oncol 30:421–427 Almogy G, Lieberman S, Gips M et al (2004) Clinical outcomes of surgical resections for primary liver sarcoma in adults: results from a single centre. Eur J Surg Oncol 30:421–427
55.
Zurück zum Zitat Huang J, Mackillop WJ (2001) Increased risk of soft tissue sarcoma after radiotherapy in women with breast carcinoma. Cancer 92:172–180PubMed Huang J, Mackillop WJ (2001) Increased risk of soft tissue sarcoma after radiotherapy in women with breast carcinoma. Cancer 92:172–180PubMed
56.
Zurück zum Zitat Razek AA, Huang BY (2011) Soft tissue tumors of the head and neck: imaging-based review of the WHO classification. Radiographics 31:1923–1954PubMed Razek AA, Huang BY (2011) Soft tissue tumors of the head and neck: imaging-based review of the WHO classification. Radiographics 31:1923–1954PubMed
57.
Zurück zum Zitat Walker EA, Salesky JS, Fenton ME, Murphey MD (2011) Magnetic resonance imaging of malignant soft tissue neoplasms in the adult. Radiol Clin North Am 49(1219-1234):vi Walker EA, Salesky JS, Fenton ME, Murphey MD (2011) Magnetic resonance imaging of malignant soft tissue neoplasms in the adult. Radiol Clin North Am 49(1219-1234):vi
58.
Zurück zum Zitat Weiss SW, Enzinger FM (1982) Epithelioid hemangioendothelioma: a vascular tumor often mistaken for a carcinoma. Cancer 50:970–981 Weiss SW, Enzinger FM (1982) Epithelioid hemangioendothelioma: a vascular tumor often mistaken for a carcinoma. Cancer 50:970–981
59.
Zurück zum Zitat Sardaro A, Bardoscia L, Petruzzelli MF, Portaluri M (2014) Epithelioid hemangioendothelioma: an overview and update on a rare vascular tumor. Oncol Rev 8:259PubMedPubMedCentral Sardaro A, Bardoscia L, Petruzzelli MF, Portaluri M (2014) Epithelioid hemangioendothelioma: an overview and update on a rare vascular tumor. Oncol Rev 8:259PubMedPubMedCentral
60.
Zurück zum Zitat Mehrabi A, Kashfi A, Fonouni H et al (2006) Primary malignant hepatic epithelioid hemangioendothelioma: a comprehensive review of the literature with emphasis on the surgical therapy. Cancer 107:2108–2121PubMed Mehrabi A, Kashfi A, Fonouni H et al (2006) Primary malignant hepatic epithelioid hemangioendothelioma: a comprehensive review of the literature with emphasis on the surgical therapy. Cancer 107:2108–2121PubMed
61.
Zurück zum Zitat Griauzde J, Srinivasan A (2015) Imaging of vascular lesions of the head and neck. Radiol Clin North Am 53:197–213PubMed Griauzde J, Srinivasan A (2015) Imaging of vascular lesions of the head and neck. Radiol Clin North Am 53:197–213PubMed
62.
Zurück zum Zitat Cho BC, Kim JB, Lee JW et al (2016) Cervicofacial Lymphatic malformations: a retrospective Review of 40 cases. Arch Plast Surg 43:10–18PubMedPubMedCentral Cho BC, Kim JB, Lee JW et al (2016) Cervicofacial Lymphatic malformations: a retrospective Review of 40 cases. Arch Plast Surg 43:10–18PubMedPubMedCentral
63.
Zurück zum Zitat Kulungowski AM, Fishman SJ (2011) Management of combined vascular malformations. Clin Plast Surg 38:107–120PubMed Kulungowski AM, Fishman SJ (2011) Management of combined vascular malformations. Clin Plast Surg 38:107–120PubMed
64.
Zurück zum Zitat Ponzo L, Dell'Aversana Orabona G, Iaconetta G et al (2017) Multidisciplinary approach in the management of head and neck vascular malformations. J Vasc Med Surg 05 Ponzo L, Dell'Aversana Orabona G, Iaconetta G et al (2017) Multidisciplinary approach in the management of head and neck vascular malformations. J Vasc Med Surg 05
65.
Zurück zum Zitat Mantelli F, Bruscolini A, La Cava M, Abdolrahimzadeh S, Lambiase A (2016) Ocular manifestations of Sturge-Weber syndrome: pathogenesis, diagnosis, and management. Clin Ophthalmol 10:871–878 Mantelli F, Bruscolini A, La Cava M, Abdolrahimzadeh S, Lambiase A (2016) Ocular manifestations of Sturge-Weber syndrome: pathogenesis, diagnosis, and management. Clin Ophthalmol 10:871–878
66.
Zurück zum Zitat Shirley MD, Tang H, Gallione CJ et al (2013) Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N Engl J Med 368:1971–1979PubMed Shirley MD, Tang H, Gallione CJ et al (2013) Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N Engl J Med 368:1971–1979PubMed
67.
Zurück zum Zitat Rodriguez-Laguna L, Ibanez K, Gordo G et al (2018) CLAPO syndrome: identification of somatic activating PIK3CA mutations and delineation of the natural history and phenotype. Genet Med 20:882–889PubMed Rodriguez-Laguna L, Ibanez K, Gordo G et al (2018) CLAPO syndrome: identification of somatic activating PIK3CA mutations and delineation of the natural history and phenotype. Genet Med 20:882–889PubMed
68.
Zurück zum Zitat Lopez-Gutierrez JC, Lapunzina P (2008) Capillary malformation of the lower lip, lymphatic malformation of the face and neck, asymmetry and partial/generalized overgrowth (CLAPO): report of six cases of a new syndrome/association. Am J Med Genet A 146a:2583–2588PubMed Lopez-Gutierrez JC, Lapunzina P (2008) Capillary malformation of the lower lip, lymphatic malformation of the face and neck, asymmetry and partial/generalized overgrowth (CLAPO): report of six cases of a new syndrome/association. Am J Med Genet A 146a:2583–2588PubMed
69.
Zurück zum Zitat Mirzaa G, Conway R, Graham JM Jr, Dobyns WB (1993) PIK3CA-related segmental overgrowth. In: Adam MP, Ardinger HH, Pagon RA et al (Eds) GeneReviews((R)). University of Washington, Seattle. Mirzaa G, Conway R, Graham JM Jr, Dobyns WB (1993) PIK3CA-related segmental overgrowth. In: Adam MP, Ardinger HH, Pagon RA et al (Eds) GeneReviews((R)). University of Washington, Seattle.
70.
Zurück zum Zitat Alomari AI (2009) Characterization of a distinct syndrome that associates complex truncal overgrowth, vascular, and acral anomalies: a descriptive study of 18 cases of CLOVES syndrome. Clin Dysmorphol 18:1–7PubMed Alomari AI (2009) Characterization of a distinct syndrome that associates complex truncal overgrowth, vascular, and acral anomalies: a descriptive study of 18 cases of CLOVES syndrome. Clin Dysmorphol 18:1–7PubMed
71.
Zurück zum Zitat Lynch NE, Lynch SA, McMenamin J, Webb D (2009) Bannayan-Riley-Ruvalcaba syndrome: a cause of extreme macrocephaly and neurodevelopmental delay. Arch Dis Child 94:553–554PubMed Lynch NE, Lynch SA, McMenamin J, Webb D (2009) Bannayan-Riley-Ruvalcaba syndrome: a cause of extreme macrocephaly and neurodevelopmental delay. Arch Dis Child 94:553–554PubMed
72.
Zurück zum Zitat El-Sobky TA, Elsayed SM, El Mikkawy DME (2015) Orthopaedic manifestations of Proteus syndrome in a child with literature update. Bone Rep 3:104–108PubMedPubMedCentral El-Sobky TA, Elsayed SM, El Mikkawy DME (2015) Orthopaedic manifestations of Proteus syndrome in a child with literature update. Bone Rep 3:104–108PubMedPubMedCentral
Metadaten
Titel
Vascular lesions of the head and neck: an update on classification and imaging review
verfasst von
Akshaar N. Brahmbhatt
Kamila A. Skalski
Alok A. Bhatt
Publikationsdatum
01.12.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Insights into Imaging / Ausgabe 1/2020
Elektronische ISSN: 1869-4101
DOI
https://doi.org/10.1186/s13244-019-0818-3

Weitere Artikel der Ausgabe 1/2020

Insights into Imaging 1/2020 Zur Ausgabe

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.