Skip to main content
Erschienen in: Neuroinformatics 3/2022

01.07.2022 | Software Original Article

3dSpAn: An interactive software for 3D segmentation and analysis of dendritic spines

verfasst von: Nirmal Das, Ewa Baczynska, Monika Bijata, Blazej Ruszczycki, Andre Zeug, Dariusz Plewczynski, Punam Kumar Saha, Evgeni Ponimaskin, Jakub Wlodarczyk, Subhadip Basu

Erschienen in: Neuroinformatics | Ausgabe 3/2022

Einloggen, um Zugang zu erhalten

Abstract

Three-dimensional segmentation and analysis of dendritic spine morphology involve two major challenges: 1) how to segment individual spines from the dendrites and 2) how to quantitatively assess the morphology of individual spines. To address these two issues, we developed software called 3dSpAn (3-dimensional Spine Analysis), based on implementing a previously published method, 3D multi-scale opening algorithm in shared intensity space. 3dSpAn consists of four modules: a) Preprocessing and Region of Interest (ROI) selection, b) Intensity thresholding and seed selection, c) Multi-scale segmentation, and d) Quantitative morphological feature extraction. In this article, we present the results of segmentation and morphological analysis for different observation methods and conditions, including in vitro and ex vivo imaging with confocal microscopy, and in vivo observations using high-resolution two-photon microscopy. In particular, we focus on software usage, the influence of adjustable parameters on the obtained results, user reproducibility, accuracy analysis, and also include a qualitative comparison with a commercial benchmark. 3dSpAn software is freely available for non-commercial use at www.​3dSpAn.​org.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Argunsah, A. O., Erdil, E., Ghani, M. U., Cortes, Y. R., Hobbiss, A. F., & Karayannis, T., Cetin, M., Israely, I., & Unay, D. (2020). SpineS: An interactive time-series analysis software for dendritic spines. bioRxiv. Argunsah, A. O., Erdil, E., Ghani, M. U., Cortes, Y. R., Hobbiss, A. F., & Karayannis, T., Cetin, M., Israely, I., & Unay, D. (2020). SpineS: An interactive time-series analysis software for dendritic spines. bioRxiv.
Zurück zum Zitat Baczynska, E., Pels, K. K., Basu, S., Włodarczyk, J., & Ruszczycki, B. (2021). Quantification of Dendritic Spines Remodeling under Physiological Stimuli and in Pathological Conditions. International Journal of Molecular Sciences, 22(8), 4053. Baczynska, E., Pels, K. K., Basu, S., Włodarczyk, J., & Ruszczycki, B. (2021). Quantification of Dendritic Spines Remodeling under Physiological Stimuli and in Pathological Conditions. International Journal of Molecular Sciences, 22(8), 4053.
Zurück zum Zitat Basu, S., Saha, P. K., Roszkowska, M., Magnowska, M., Baczynska, E., Das, N., et al. (2018). Quantitative 3-D morphometric analysis of individual dendritic spines. Scientific Reports, 8(1), 1–13. Basu, S., Saha, P. K., Roszkowska, M., Magnowska, M., Baczynska, E., Das, N., et al. (2018). Quantitative 3-D morphometric analysis of individual dendritic spines. Scientific Reports, 8(1), 1–13.
Zurück zum Zitat Berry, K. P., & Nedivi, E. (2017). Spine dynamics: are they all the same?. International Journal of Molecular Sciences, 96(1), 43-55. Berry, K. P., & Nedivi, E. (2017). Spine dynamics: are they all the same?. International Journal of Molecular Sciences, 96(1), 43-55.
Zurück zum Zitat Brownrigg, D. R. K. (1984). The Weighted Median Filter. Communications of the ACM, 27(8), 807–818.CrossRef Brownrigg, D. R. K. (1984). The Weighted Median Filter. Communications of the ACM, 27(8), 807–818.CrossRef
Zurück zum Zitat Caroni, P., Donato, F., & Muller, D. (2012). Structural plasticity upon learning: regulation and functions. Nature Reviews Neuroscience, 13(7), 478–490.CrossRef Caroni, P., Donato, F., & Muller, D. (2012). Structural plasticity upon learning: regulation and functions. Nature Reviews Neuroscience, 13(7), 478–490.CrossRef
Zurück zum Zitat Chidambaram, S. B.,; Rathipriya, A. G., Bolla, S. R., Bhat, A., Ray, B., Mahalakshmi, A. M., Manivasagam, T., Thenmozhi, A. J., Essa, M. M., Guillemin, G. J., Chandra, R., & Sakharkar, M. K. (2019). Dendritic spines: Revisiting the physiological role. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 92, 161–193. Chidambaram, S. B.,; Rathipriya, A. G., Bolla, S. R., Bhat, A., Ray, B., Mahalakshmi, A. M., Manivasagam, T., Thenmozhi, A. J., Essa, M. M., Guillemin, G. J., Chandra, R., & Sakharkar, M. K. (2019). Dendritic spines: Revisiting the physiological role. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 92, 161–193.
Zurück zum Zitat Choi, J., Lee, S. E., Cho, E., Kashiwagi, Y., Okabe, S., Chang, S., & Jeong, W. K. (2019). Interactive dendritic spine analysis based on 3D morphological features. In 2019 IEEE Visualization Conference (VIS) (pp. 171–175). IEEE. Choi, J., Lee, S. E., Cho, E., Kashiwagi, Y., Okabe, S., Chang, S., & Jeong, W. K. (2019). Interactive dendritic spine analysis based on 3D morphological features. In 2019 IEEE Visualization Conference (VIS) (pp. 171–175). IEEE.
Zurück zum Zitat Chow, D. K., Groszer, M., Pribadi, M., Machniki, M., Carmichael, S. T., Liu, X., & Trachtenberg, J. T. (2009). Laminar and compartmental regulation of dendritic growth in mature cortex. Nature neuroscience, 12(2), 116-118. Chow, D. K., Groszer, M., Pribadi, M., Machniki, M., Carmichael, S. T., Liu, X., & Trachtenberg, J. T. (2009). Laminar and compartmental regulation of dendritic growth in mature cortex. Nature neuroscience, 12(2), 116-118.
Zurück zum Zitat Comery, T. A., Stamoudis, C. X., Irwin, S. A., & Greenough, W. T. (1996). Increased density of multiple-head dendritic spines on medium-sized spiny neurons of the striatum in rats reared in a complex environment. Neurobiology of Learning and Memory, 66(2), 93–96.CrossRef Comery, T. A., Stamoudis, C. X., Irwin, S. A., & Greenough, W. T. (1996). Increased density of multiple-head dendritic spines on medium-sized spiny neurons of the striatum in rats reared in a complex environment. Neurobiology of Learning and Memory, 66(2), 93–96.CrossRef
Zurück zum Zitat Driscoll, M. K., Welf, E. S., Jamieson, A. R., Dean, K. M., Isogai, T., Fiolka, R., & Danuser, G. (2019). Robust and automated detection of subcellular morphological motifs in 3D microscopy images. Nature methods, 16(10), 1037–1044.CrossRef Driscoll, M. K., Welf, E. S., Jamieson, A. R., Dean, K. M., Isogai, T., Fiolka, R., & Danuser, G. (2019). Robust and automated detection of subcellular morphological motifs in 3D microscopy images. Nature methods, 16(10), 1037–1044.CrossRef
Zurück zum Zitat Edril, E., Argunsah, A. O., Tasdizen, T., Unay, D., & Cetin, M. A. (2015). joint classification and segmentation approach for dendritic spine segmentation in 2-photon microscopy images in IEEE 12th International Symposium on Biomedical Imaging (ISBI), 797-800. Edril, E., Argunsah, A. O., Tasdizen, T., Unay, D., & Cetin, M. A. (2015). joint classification and segmentation approach for dendritic spine segmentation in 2-photon microscopy images in IEEE 12th International Symposium on Biomedical Imaging (ISBI), 797-800.
Zurück zum Zitat Fiala, J. C., Spacek, J., & Harris, K. M. (2002). Dendritic spine pathology: Cause or consequence of neurological disorders? Brain Research Reviews, 39, 29–54.CrossRef Fiala, J. C., Spacek, J., & Harris, K. M. (2002). Dendritic spine pathology: Cause or consequence of neurological disorders? Brain Research Reviews, 39, 29–54.CrossRef
Zurück zum Zitat Forrest, M. P., Parnell, E., & Penzes, P. (2018). Quantitative 3-D morphometric analysis of individual dendritic spines. Nature Reviews Neuroscience, 19. Forrest, M. P., Parnell, E., & Penzes, P. (2018). Quantitative 3-D morphometric analysis of individual dendritic spines. Nature Reviews Neuroscience, 19.
Zurück zum Zitat Glausier, J. R., & Lewis, D. A. (2013). Dendritic spine pathology in schizophrenia. Neuroscience, 251, 90–107.CrossRef Glausier, J. R., & Lewis, D. A. (2013). Dendritic spine pathology in schizophrenia. Neuroscience, 251, 90–107.CrossRef
Zurück zum Zitat Gribbon, K. T., & Bailey, D. G. (2004). A novel approach to real-time bilinear interpolation. In Proceedings, DELTA 2004 - Second IEEE International Workshop on Electronic Design, Test and Applications, 126–131. Gribbon, K. T., & Bailey, D. G. (2004). A novel approach to real-time bilinear interpolation. In Proceedings, DELTA 2004 - Second IEEE International Workshop on Electronic Design, Test and Applications, 126–131.
Zurück zum Zitat Harris, K. M., & Kater, S. B. (1994). Dendritic Spines: Cellular Specializations Imparting Both Stability and Flexibility to Synaptic Function. Annual Review of Neuroscience, 17, 341–371.CrossRef Harris, K. M., & Kater, S. B. (1994). Dendritic Spines: Cellular Specializations Imparting Both Stability and Flexibility to Synaptic Function. Annual Review of Neuroscience, 17, 341–371.CrossRef
Zurück zum Zitat Hering, H., & Sheng, M. (2001). Dentritic spines: structure, dynamics and regulation. Nature Reviews Neuroscience, 2. Hering, H., & Sheng, M. (2001). Dentritic spines: structure, dynamics and regulation. Nature Reviews Neuroscience, 2.
Zurück zum Zitat Holtmaat, A., de Paola, V., Wilbrecht, L., Trachtenberg, J. T., Svoboda, K., Portera-Cailliau, C. (2001). Imaging neocortical neurons through a chronic cranial window. Cold Spring Harbor Protocols, 2012, pdb–prot069617. Holtmaat, A., de Paola, V., Wilbrecht, L., Trachtenberg, J. T., Svoboda, K., Portera-Cailliau, C. (2001). Imaging neocortical neurons through a chronic cranial window. Cold Spring Harbor Protocols, 2012, pdb–prot069617.
Zurück zum Zitat Kashiwagi, Y., Higashi, T., Obashi, K., Sato, Y., Komiyama, N. H., Grant, S. G. N., & Okabe, S. (2019). Computational geometry analysis of dendritic spines by structured illumination microscopy. Nature communications, 10, 14. Kashiwagi, Y., Higashi, T., Obashi, K., Sato, Y., Komiyama, N. H., Grant, S. G. N., & Okabe, S. (2019). Computational geometry analysis of dendritic spines by structured illumination microscopy. Nature communications, 10, 14.
Zurück zum Zitat Kim, B. G., Dai, H., McAtee, M., Vicini, S., & Bregman, B. S. (2007). Labeling of dendritic spines with the carbocyanine dye DiI for confocal microscopic imaging in lightly fixed cortical slices. Journal of neuroscience methods, 162, 237–243.CrossRef Kim, B. G., Dai, H., McAtee, M., Vicini, S., & Bregman, B. S. (2007). Labeling of dendritic spines with the carbocyanine dye DiI for confocal microscopic imaging in lightly fixed cortical slices. Journal of neuroscience methods, 162, 237–243.CrossRef
Zurück zum Zitat Krzystyniak, A., Baczynska, E., Magnowska, M., Antoniuk, S., Roszkowska, M., Zareba-Koziol, M., et al. (2019). Prophylactic Ketamine Treatment Promotes Resilience to Chronic Stress and Accelerates Recovery: Correlation with Changes in Synaptic Plasticity in the CA3 Subregion of the Hippocampus. International Journal of Molecular Sciences, 20, 1726.CrossRef Krzystyniak, A., Baczynska, E., Magnowska, M., Antoniuk, S., Roszkowska, M., Zareba-Koziol, M., et al. (2019). Prophylactic Ketamine Treatment Promotes Resilience to Chronic Stress and Accelerates Recovery: Correlation with Changes in Synaptic Plasticity in the CA3 Subregion of the Hippocampus. International Journal of Molecular Sciences, 20, 1726.CrossRef
Zurück zum Zitat Lee, K. F. H., Cary, S., & Béïque, J. C. (2012). Examining form and function of dendritic spines. In Neural Plasticity: Hindawi Publishing Corporation.CrossRef Lee, K. F. H., Cary, S., & Béïque, J. C. (2012). Examining form and function of dendritic spines. In Neural Plasticity: Hindawi Publishing Corporation.CrossRef
Zurück zum Zitat Łukasiewicz, K., Robacha, M., Bożycki, Ł, Radwanska, K., & Czajkowski, R. (2016). Simultaneous two-photon in vivo imaging of synaptic inputs and postsynaptic targets in the mouse retrosplenial cortex. Journal of Visualized Experiments, 109, e53528. Łukasiewicz, K., Robacha, M., Bożycki, Ł, Radwanska, K., & Czajkowski, R. (2016). Simultaneous two-photon in vivo imaging of synaptic inputs and postsynaptic targets in the mouse retrosplenial cortex. Journal of Visualized Experiments, 109, e53528.
Zurück zum Zitat Magnowska, M., Gorkiewicz, T., Suska, A., Wawrzyniak, M., Rutkowska-Wlodarczyk, I., Kaczmarek, L., & Wlodarczyk, J. (2016). Transient ECM protease activity promotes synaptic plasticity. Scientific reports, 6, 27757.CrossRef Magnowska, M., Gorkiewicz, T., Suska, A., Wawrzyniak, M., Rutkowska-Wlodarczyk, I., Kaczmarek, L., & Wlodarczyk, J. (2016). Transient ECM protease activity promotes synaptic plasticity. Scientific reports, 6, 27757.CrossRef
Zurück zum Zitat Mancuso, J. J., Cheng, J., Yin, Z., Gilliam, J. C., Xia, X., Li, X., & Wong, S. T. C. (2014). Integration of multiscale dendritic spine structure andfunction data into systems biology models. Frontiers in Neuroanatomy, 8, 130.CrossRef Mancuso, J. J., Cheng, J., Yin, Z., Gilliam, J. C., Xia, X., Li, X., & Wong, S. T. C. (2014). Integration of multiscale dendritic spine structure andfunction data into systems biology models. Frontiers in Neuroanatomy, 8, 130.CrossRef
Zurück zum Zitat Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. R., & Kasai, H. (2004). Structural basis of long-term potentiation in single dendritic spines. Nature, 429, 761–766. Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. R., & Kasai, H. (2004). Structural basis of long-term potentiation in single dendritic spines. Nature, 429, 761–766.
Zurück zum Zitat Okabe, S. (2020). Recent advances in computational methods for measurement of dendritic spines imaged by light microscopy. Microscopy, 69, 196-213. Okabe, S. (2020). Recent advances in computational methods for measurement of dendritic spines imaged by light microscopy. Microscopy, 69, 196-213.
Zurück zum Zitat Richards, D. A., Mateos, J. M., Hugel, S., de Paola, V., Caroni, P., Gähwiler, B. H., & McKinney, R. A. (2005). Glutamate induces the rapid formation of spine head protrusions in hippocampal slice cultures. Proceedings of the National Academy of Sciences, 102. Richards, D. A., Mateos, J. M., Hugel, S., de Paola, V., Caroni, P., Gähwiler, B. H., & McKinney, R. A. (2005). Glutamate induces the rapid formation of spine head protrusions in hippocampal slice cultures. Proceedings of the National Academy of Sciences, 102.
Zurück zum Zitat Rodriguez, A., Ehlenberger, D. B., Hof, P. R., Wearne, S. L. (2019). Rayburst sampling, an algorithm for automated three-dimensional shape analysis from laser scanning microscopy images. Nature Protocols, 2152-2161. Rodriguez, A., Ehlenberger, D. B., Hof, P. R., Wearne, S. L. (2019). Rayburst sampling, an algorithm for automated three-dimensional shape analysis from laser scanning microscopy images. Nature Protocols, 2152-2161.
Zurück zum Zitat Rodriguez, A., Ehlenberger, D. B., Dickstein, D. L., Hof, P. R., & Wearne, S. L. (2019). Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. Plos One, 3, e1997. Rodriguez, A., Ehlenberger, D. B., Dickstein, D. L., Hof, P. R., & Wearne, S. L. (2019). Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. Plos One, 3, e1997.
Zurück zum Zitat Ruszczycki, B., Szepesi, Z., Wilczynski, G. M., Bijata, M., Kalita, K., Kaczmarek, L., & Wlodarczyk, J. (2012). Sampling issues in quantitative analysis of dendritic spines morphology. BMC Bioinformatics, 13. Ruszczycki, B., Szepesi, Z., Wilczynski, G. M., Bijata, M., Kalita, K., Kaczmarek, L., & Wlodarczyk, J. (2012). Sampling issues in quantitative analysis of dendritic spines morphology. BMC Bioinformatics, 13.
Zurück zum Zitat Ruszczycki, B., Bijata, M., Walczak, A., Wilczynski, G., & Wodarczyk, J. (2013). Contemporary Problems in Quantitative Image Analysis inStructural Neuronal Plasticity. InAdvanced Computational Approaches to Biomedical Engineering; Saha, P.K., Maulik, U.,Basu, S., Eds.;Springer: Berlin/Heidelberg, Germany. pp. 159-175. Ruszczycki, B., Bijata, M., Walczak, A., Wilczynski, G., & Wodarczyk, J. (2013). Contemporary Problems in Quantitative Image Analysis inStructural Neuronal Plasticity. InAdvanced Computational Approaches to Biomedical Engineering; Saha, P.K., Maulik, U.,Basu, S., Eds.;Springer: Berlin/Heidelberg, Germany. pp. 159-175.
Zurück zum Zitat Saha, P. K., Basu, S., & Hoffman, E. A. (2016). Multiscale Opening of Conjoined Fuzzy Objects: Theory and Applications. IEEE Transactions on Fuzzy Systems, 24, 1121–1133.CrossRef Saha, P. K., Basu, S., & Hoffman, E. A. (2016). Multiscale Opening of Conjoined Fuzzy Objects: Theory and Applications. IEEE Transactions on Fuzzy Systems, 24, 1121–1133.CrossRef
Zurück zum Zitat Sala, C., & Segal, M. (2014). Dendritic Spines: The Locus of Structural and Functional Plasticity. Physiological Reviews, 94, 141–188.CrossRef Sala, C., & Segal, M. (2014). Dendritic Spines: The Locus of Structural and Functional Plasticity. Physiological Reviews, 94, 141–188.CrossRef
Zurück zum Zitat Singh, P. K., Hernandez-Herrera, P., Labate, D., & Papadakis, M. (2017). Automated 3-D detection of dendritic spines from in vivo two-photon image stacks. Neuroinformatics, 15(4), 303–319.CrossRef Singh, P. K., Hernandez-Herrera, P., Labate, D., & Papadakis, M. (2017). Automated 3-D detection of dendritic spines from in vivo two-photon image stacks. Neuroinformatics, 15(4), 303–319.CrossRef
Zurück zum Zitat Smirnov, M. S., Garrett, T. R., & Yasuda, R. (2018). An open-source tool for analysis and automatic identification of dendritic spines using machine learning. PLoS One, 13(7). Smirnov, M. S., Garrett, T. R., & Yasuda, R. (2018). An open-source tool for analysis and automatic identification of dendritic spines using machine learning. PLoS One13(7).
Zurück zum Zitat Spires, T. L., Meyer-Luehmann, M., Stern, E. A., McLean, P. J., Skoch, J., Nguyen, P. T., et al. (2005). Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. Journal of Neuroscience, 25, 7278–7287.CrossRef Spires, T. L., Meyer-Luehmann, M., Stern, E. A., McLean, P. J., Skoch, J., Nguyen, P. T., et al. (2005). Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. Journal of Neuroscience, 25, 7278–7287.CrossRef
Zurück zum Zitat Swanger, S. A., Yao, X., Gross, C., & Bassell, G. J. (2011). Automated 4D analysis of dendritic spine morphology: applications to stimulus-induced spine remodeling and pharmacological rescue in a disease model. Molecular Brain, 4, 38.CrossRef Swanger, S. A., Yao, X., Gross, C., & Bassell, G. J. (2011). Automated 4D analysis of dendritic spine morphology: applications to stimulus-induced spine remodeling and pharmacological rescue in a disease model. Molecular Brain, 4, 38.CrossRef
Zurück zum Zitat Szepesi, Z., Bijata, M., Ruszczycki, B., Kaczmarek, L., & Wlodarczyk, J. (2013). Matrix metalloproteinases regulate the formation of dendritic spine head protrusions during chemically induced long-term potentiation. PLoS One, 8, 63314.CrossRef Szepesi, Z., Bijata, M., Ruszczycki, B., Kaczmarek, L., & Wlodarczyk, J. (2013). Matrix metalloproteinases regulate the formation of dendritic spine head protrusions during chemically induced long-term potentiation. PLoS One, 8, 63314.CrossRef
Zurück zum Zitat Trachtenberg, J. T., Chen, B. E., Knott, G. W., Feng, G., Sanes, J. R., Welker, E., & Svoboda, K. (2002). Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature, 420, 788.CrossRef Trachtenberg, J. T., Chen, B. E., Knott, G. W., Feng, G., Sanes, J. R., Welker, E., & Svoboda, K. (2002). Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature, 420, 788.CrossRef
Zurück zum Zitat Xiao, X., Djurisic, M., Hoogi, A., Sapp, R. W., Shatz, C. J., & Rubin, D. L. (2018). Automated dendritic spine detection using convolutional neural networks on maximum intensity projected microscopic volumes. Journal of neuroscience methods, 309, 25–34.CrossRef Xiao, X., Djurisic, M., Hoogi, A., Sapp, R. W., Shatz, C. J., & Rubin, D. L. (2018). Automated dendritic spine detection using convolutional neural networks on maximum intensity projected microscopic volumes. Journal of neuroscience methods, 309, 25–34.CrossRef
Zurück zum Zitat Xiao, C., Li, W., Deng, H., Chen, X., Yang, Y., Xie, Q., & Han, H. (2018). Effective automated pipeline for 3D reconstruction of synapses based on deep learning. BMC bioinformatics, 19(1), 263.CrossRef Xiao, C., Li, W., Deng, H., Chen, X., Yang, Y., Xie, Q., & Han, H. (2018). Effective automated pipeline for 3D reconstruction of synapses based on deep learning. BMC bioinformatics, 19(1), 263.CrossRef
Zurück zum Zitat Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., & Gerig, G. (2006). User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage, 31, 1053–8119.CrossRef Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., & Gerig, G. (2006). User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage, 31, 1053–8119.CrossRef
Metadaten
Titel
3dSpAn: An interactive software for 3D segmentation and analysis of dendritic spines
verfasst von
Nirmal Das
Ewa Baczynska
Monika Bijata
Blazej Ruszczycki
Andre Zeug
Dariusz Plewczynski
Punam Kumar Saha
Evgeni Ponimaskin
Jakub Wlodarczyk
Subhadip Basu
Publikationsdatum
01.07.2022
Verlag
Springer US
Erschienen in
Neuroinformatics / Ausgabe 3/2022
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-021-09549-0

Weitere Artikel der Ausgabe 3/2022

Neuroinformatics 3/2022 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.