Skip to main content
Erschienen in: European Radiology 2/2022

25.08.2021 | Musculoskeletal

A deep learning–machine learning fusion approach for the classification of benign, malignant, and intermediate bone tumors

verfasst von: Renyi Liu, Derun Pan, Yuan Xu, Hui Zeng, Zilong He, Jiongbin Lin, Weixiong Zeng, Zeqi Wu, Zhendong Luo, Genggeng Qin, Weiguo Chen

Erschienen in: European Radiology | Ausgabe 2/2022

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To build and validate deep learning and machine learning fusion models to classify benign, malignant, and intermediate bone tumors based on patient clinical characteristics and conventional radiographs of the lesion.

Methods

In this retrospective study, data were collected with pathologically confirmed diagnoses of bone tumors between 2012 and 2019. Deep learning and machine learning fusion models were built to classify tumors as benign, malignant, or intermediate using conventional radiographs of the lesion and potentially relevant clinical data. Five radiologists compared diagnostic performance with and without the model. Diagnostic performance was evaluated using the area under the curve (AUC).

Results

A total of 643 patients’ (median age, 21 years; interquartile range, 12–38 years; 244 women) 982 radiographs were included. In the test set, the binary category classification task, the radiological model of classification for benign/not benign, malignant/nonmalignant, and intermediate/not intermediate had AUCs of 0.846, 0.827, and 0.820, respectively; the fusion models had an AUC of 0.898, 0.894, and 0.865, respectively. In the three-category classification task, the radiological model achieved a macro average AUC of 0.813, and the fusion model had a macro average AUC of 0.872. In the observation test, the mean macro average AUC of all radiologists was 0.819. With the three-category classification fusion model support, the macro AUC improved by 0.026.

Conclusion

We built, validated, and tested deep learning and machine learning models that classified bone tumors at a level comparable with that of senior radiologists. Model assistance may somewhat help radiologists’ differential diagnoses of bone tumors.

Key Points

• The deep learning model can be used to classify benign, malignant, and intermediate bone tumors.
• The machine learning model fusing information from radiographs and clinical characteristics can improve the classification capacity for bone tumors.
• The diagnostic performance of the fusion model is comparable with that of senior radiologists and is potentially useful as a complement to radiologists in a bone tumor differential diagnosis.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Gianferante DM, Mirabello L, Savage SA (2017) Germline and somatic genetics of osteosarcoma - connecting aetiology, biology and therapy. Nat Rev Endocrinol 13:480–491CrossRef Gianferante DM, Mirabello L, Savage SA (2017) Germline and somatic genetics of osteosarcoma - connecting aetiology, biology and therapy. Nat Rev Endocrinol 13:480–491CrossRef
2.
Zurück zum Zitat Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70:7–30CrossRef Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70:7–30CrossRef
3.
Zurück zum Zitat (2020) WHO Classification of Tumours Editorial Board. Soft tissue and bone tumours. Lyon (France): International Agency for Research on Cancer 2020. WHO classification of tumours series, 5th ed Vol 3 (2020) WHO Classification of Tumours Editorial Board. Soft tissue and bone tumours. Lyon (France): International Agency for Research on Cancer 2020. WHO classification of tumours series, 5th ed Vol 3
4.
Zurück zum Zitat Fritzsche H, Schaser KD, Hofbauer C (2017) Benign tumours and tumour-like lesions of the bone : general treatment principles. Orthopade 46:484–497CrossRef Fritzsche H, Schaser KD, Hofbauer C (2017) Benign tumours and tumour-like lesions of the bone : general treatment principles. Orthopade 46:484–497CrossRef
5.
Zurück zum Zitat Antropova N, Huynh BQ, Giger ML (2017) A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. Med Phys 44:5162–5171CrossRef Antropova N, Huynh BQ, Giger ML (2017) A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. Med Phys 44:5162–5171CrossRef
6.
Zurück zum Zitat Bestic JM, Wessell DE, Beaman FD et al (2020) ACR Appropriateness Criteria® Primary Bone Tumors. J Am Coll Radiol 17:S226–S238CrossRef Bestic JM, Wessell DE, Beaman FD et al (2020) ACR Appropriateness Criteria® Primary Bone Tumors. J Am Coll Radiol 17:S226–S238CrossRef
7.
Zurück zum Zitat Miller TT (2008) Bone tumors and tumorlike conditions: analysis with conventional radiography. Radiology 246:662–674CrossRef Miller TT (2008) Bone tumors and tumorlike conditions: analysis with conventional radiography. Radiology 246:662–674CrossRef
8.
Zurück zum Zitat Costelloe CM, Madewell JE (2013) Radiography in the initial diagnosis of primary bone tumors. AJR Am J Roentgenol 200:3–7CrossRef Costelloe CM, Madewell JE (2013) Radiography in the initial diagnosis of primary bone tumors. AJR Am J Roentgenol 200:3–7CrossRef
9.
Zurück zum Zitat Gemescu IN, Thierfelder KM, Rehnitz C, Weber MA (2019) Imaging features of bone tumors: conventional radiographs and MR imaging correlation. Magn Reson Imaging Clin N Am 27:753–767CrossRef Gemescu IN, Thierfelder KM, Rehnitz C, Weber MA (2019) Imaging features of bone tumors: conventional radiographs and MR imaging correlation. Magn Reson Imaging Clin N Am 27:753–767CrossRef
10.
Zurück zum Zitat Do BH, Langlotz C, Beaulieu CF (2017) Bone tumor diagnosis using a naïve Bayesian model of demographic and radiographic features. J Digit Imaging 30:640–647CrossRef Do BH, Langlotz C, Beaulieu CF (2017) Bone tumor diagnosis using a naïve Bayesian model of demographic and radiographic features. J Digit Imaging 30:640–647CrossRef
11.
Zurück zum Zitat Tomasian A, Hillen TJ, Jennings JW (2020) Bone biopsies: what radiologists need to know. AJR Am J Roentgenol 215:523–533CrossRef Tomasian A, Hillen TJ, Jennings JW (2020) Bone biopsies: what radiologists need to know. AJR Am J Roentgenol 215:523–533CrossRef
12.
Zurück zum Zitat Bruno MA, Nagy P (2014) Fundamentals of quality and safety in diagnostic radiology. J Am Coll Radiol 11:1115–1120CrossRef Bruno MA, Nagy P (2014) Fundamentals of quality and safety in diagnostic radiology. J Am Coll Radiol 11:1115–1120CrossRef
13.
Zurück zum Zitat Gore JC (2020) Artificial intelligence in medical imaging. Magn Reson Imaging 68:A1–A4CrossRef Gore JC (2020) Artificial intelligence in medical imaging. Magn Reson Imaging 68:A1–A4CrossRef
15.
Zurück zum Zitat Chea P, Mandell JC (2020) Current applications and future directions of deep learning in musculoskeletal radiology. Skelet Radiol 49:183–197CrossRef Chea P, Mandell JC (2020) Current applications and future directions of deep learning in musculoskeletal radiology. Skelet Radiol 49:183–197CrossRef
17.
Zurück zum Zitat Alge O, Lu L, Li Z, Hua Y, Najarian K (2020) Automated classification of osteosarcoma and benign tumors using RNA-seq and Plain X-ray2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) in conjunction with the 43rd Annual Conference of the Canadian Medical and Biological Engineering Society, Alge O, Lu L, Li Z, Hua Y, Najarian K (2020) Automated classification of osteosarcoma and benign tumors using RNA-seq and Plain X-ray2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) in conjunction with the 43rd Annual Conference of the Canadian Medical and Biological Engineering Society,
18.
Zurück zum Zitat Bandyopadhyay O, Biswas A, Bhattacharya BB (2019) Bone-cancer assessment and destruction pattern analysis in long-bone X-ray image. J Digit Imaging 32:300–313CrossRef Bandyopadhyay O, Biswas A, Bhattacharya BB (2019) Bone-cancer assessment and destruction pattern analysis in long-bone X-ray image. J Digit Imaging 32:300–313CrossRef
19.
Zurück zum Zitat He Y, Pan I, Bao B et al (2020) Deep learning-based classification of primary bone tumors on radiographs: a preliminary study. EBioMedicine:62 He Y, Pan I, Bao B et al (2020) Deep learning-based classification of primary bone tumors on radiographs: a preliminary study. EBioMedicine:62
20.
Zurück zum Zitat Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision.2818-2826 Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision.2818-2826
21.
Zurück zum Zitat Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system the 22nd ACM SIGKDD International Conference, Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system the 22nd ACM SIGKDD International Conference,
22.
Zurück zum Zitat Benndorf M, Neubauer J, Langer M, Kotter E (2017) Bayesian pretest probability estimation for primary malignant bone tumors based on the Surveillance, Epidemiology and End Results Program (SEER) database. Int J Comput Assist Radiol Surg 12:485–491CrossRef Benndorf M, Neubauer J, Langer M, Kotter E (2017) Bayesian pretest probability estimation for primary malignant bone tumors based on the Surveillance, Epidemiology and End Results Program (SEER) database. Int J Comput Assist Radiol Surg 12:485–491CrossRef
23.
Zurück zum Zitat Wülling M, Engels C, Jesse N, Werner M, Delling G, Kaiser E (2001) The nature of giant cell tumor of bone. J Cancer Res Clin Oncol 127:467–474CrossRef Wülling M, Engels C, Jesse N, Werner M, Delling G, Kaiser E (2001) The nature of giant cell tumor of bone. J Cancer Res Clin Oncol 127:467–474CrossRef
24.
Zurück zum Zitat Remotti F, Feldman F (2012) Nonneoplastic lesions that simulate primary tumors of bone. Arch Pathol Lab Med 136:772–788CrossRef Remotti F, Feldman F (2012) Nonneoplastic lesions that simulate primary tumors of bone. Arch Pathol Lab Med 136:772–788CrossRef
25.
Zurück zum Zitat Zhang X, Zhou J, Chai X et al (2018) The application of x-ray, computed tomography, and magnetic resonance imaging on 22 pediatric Langerhans cell histiocytosis patients with long bone involvement: a retrospective analysis. Medicine (Baltimore) 97:e0411CrossRef Zhang X, Zhou J, Chai X et al (2018) The application of x-ray, computed tomography, and magnetic resonance imaging on 22 pediatric Langerhans cell histiocytosis patients with long bone involvement: a retrospective analysis. Medicine (Baltimore) 97:e0411CrossRef
26.
Zurück zum Zitat Angelini A, Mavrogenis AF, Rimondi E, Rossi G, Ruggieri P (2017) Current concepts for the diagnosis and management of eosinophilic granuloma of bone. J Orthop Traumatol 18:83–90CrossRef Angelini A, Mavrogenis AF, Rimondi E, Rossi G, Ruggieri P (2017) Current concepts for the diagnosis and management of eosinophilic granuloma of bone. J Orthop Traumatol 18:83–90CrossRef
27.
Zurück zum Zitat Krooks J, Minkov M, Weatherall AG (2018) Langerhans cell histiocytosis in children: history, classification, pathobiology, clinical manifestations, and prognosis. J Am Acad Dermatol 78:1035–1044CrossRef Krooks J, Minkov M, Weatherall AG (2018) Langerhans cell histiocytosis in children: history, classification, pathobiology, clinical manifestations, and prognosis. J Am Acad Dermatol 78:1035–1044CrossRef
28.
Zurück zum Zitat Obuchowski NA, Beiden SV, Berbaum KS et al (2004) Multireader, multicase receiver operating characteristic analysis: an empirical comparison of five methods. Acad Radiol 11:980–995PubMed Obuchowski NA, Beiden SV, Berbaum KS et al (2004) Multireader, multicase receiver operating characteristic analysis: an empirical comparison of five methods. Acad Radiol 11:980–995PubMed
Metadaten
Titel
A deep learning–machine learning fusion approach for the classification of benign, malignant, and intermediate bone tumors
verfasst von
Renyi Liu
Derun Pan
Yuan Xu
Hui Zeng
Zilong He
Jiongbin Lin
Weixiong Zeng
Zeqi Wu
Zhendong Luo
Genggeng Qin
Weiguo Chen
Publikationsdatum
25.08.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 2/2022
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-021-08195-z

Weitere Artikel der Ausgabe 2/2022

European Radiology 2/2022 Zur Ausgabe

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.