Skip to main content
Erschienen in: Translational Neurodegeneration 1/2023

Open Access 01.12.2023 | Letter

A phase 1 open-label pilot study of low-dose interleukine-2 immunotherapy in patients with Alzheimer’s disease

verfasst von: Alireza Faridar, Abdulmunaim M. Eid, Aaron D. Thome, Weihua Zhao, David R. Beers, Maria B. Pascual, Mohammad O. Nakawah, Gustavo C. Roman, Charles S. Davis, Michael Grundman, Joseph C. Masdeu, Stanley H. Appel

Erschienen in: Translational Neurodegeneration | Ausgabe 1/2023

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Trial registration

ClinicalTrials.gov Identifier: NCT05821153, Registered April 20 2023, Retrospectively registered, https://​classic.​clinicaltrials.​gov/​ct2/​show/​NCT05821153
Regulatory T cells (Tregs) constitute a subset of T cells that play a protective role by suppressing inflammation [1]. We previously documented that the Treg immunomodulatory mechanisms are compromised in AD patients [2], resulting in an activation of peripheral monocytes, associated with upregulation of inflammatory mediators [3]. Preclinical studies have suggested variable effects of Treg modification on the neurodegenerative process. While some studies propose that the Treg population might obstruct a selective gateway for immune cell trafficking to the CNS, thereby compromising reparative immune responses [4, 5], an increasing number of preclinical studies, including ours, indicate that systemic Treg expansion through interleukine-2 (IL-2) administration or ex vivo expanded Treg administration effectively modulates neuroinflammation and alleviates AD pathology [6, 7]. IL-2, originally described as the main T-cell growth factor, has been used in standard high doses for activation of cytotoxic T cells and NK cells [8]. However, at low doses IL-2 will preferentially bind Tregs because of their constitutively expressed high-affinity IL-2 receptor complex [9]. Low-dose IL-2-induced Treg expansion has been shown to be safe in inflammatory diseases and has demonstrated preliminary indications of biological and clinical efficacy [10]. However, IL-2-induced expansion of Tregs has not been evaluated in an AD clinical setting.
This study is an open-label, phase-1 trial, designed to evaluate the safety and feasibility of low-dose IL-2 to expand Tregs in AD individuals (n = 8). Participants with elevated brain amyloid, as demonstrated either through cerebrospinal fluid or by amyloid positron emission tomography scan at screening, were eligible. The main inclusion criteria were age between 60 and 86 and Global Clinical Dementia Rating scale of 1. Baseline characteristics of the recruited individuals are presented in Additional file 1: Table S1. Written informed consent was obtained following ethics approval from the Institutional Review Board. Within 2 weeks after the screening visit, patients received a daily fixed dose of subcutaneous recombinant human IL-2 (Aldesleukin, Clinigen) (1 × 106 units/dose) injection for 5 consecutive days. This 5-day cycle was repeated three more times, on days 30–35, 60–65 and 90–95. After the last treatment cycle, all patients were followed up for safety monitoring on days 120 and 168. Blood samples were obtained serially on day 0 (before IL-2 administration) and day 8 (3 days after the last dose) of each treatment cycle as well as on days 120 and 168. MMSE was administered at baseline and every 30 days during the treatment phase, and then on days 120 and 168. Clinical Dementia Rating Scale Sum of Boxes (CDR-SB) and Alzheimer’s Disease Assessment Scale Cognitive Subscale (ADAS-Cog) were scored at baseline and on days 120 and 168. More details on outcome measures are available in the Additional file 1: methods.
All 8 patients completed the four-month treatment phase as well as the 2-month post-treatment follow-up phase. There were no serious adverse events reported following IL-2 administration. The most common adverse events were injection site irritation/redness (37.5%), mild leukopenia (37.5%), flu-like symptoms (12.5%), dizziness (12.5%) and nausea (12.5%). The percentage and immunophenotype of peripheral immune populations were assessed by flow cytometry. For the secondary endpoint, the CD4+FoxP3+CD25highTreg percentage of total CD4 T cells increased from the baseline value of 4.55% ± 0.70% to 8.68% ± 1.06% on day 98, a difference of 4.13% ± 0.65% (P = 0.0004). More generally, the Treg percentage increased to 1.8–2.2 folds after each IL-2 treatment cycle and returned to baseline before the next cycle (Fig. 1a). Whether the IL-2 treatment increased the number and/or function of polyclonal or antigen-specific Treg subsets in AD individuals will require further investigation at the single cell levels. In contrast to Tregs, the percentages of CD4+CD25lowT responders (Tresps) were reduced after IL-2 administration (Additional file 1: Fig. S1a). Like Treg percentage, the CD25 mean fluorescence intensity (MFI) in the Treg population was amplified following IL-2 administration (Fig. 1c). FoxP3 MFI increased only after the first cycle of IL-2 administration (Additional file 1: Fig. S1b). No changes were noted in CD8+T cell or CD56+ natural killer populations (Additional file 1: Fig. S1c, d). Tregs and Tresps were also co-cultured at a Treg:Tresp ratio of 1:1 or 1/2:1. The Treg suppression of Tresp proliferation, at baseline, was 46.6% and 29.8% at 1:1 and 1/2:1 Treg:Tresp ratios, respectively. The suppressive function of Tregs at both ratios was increased on day 8, day 38, day 60, day 68 and day 98 of IL-2 treatment phase (Fig. 1b). Peripheral monocytes were also isolated from the same blood samples and IL-1β, TNF and IL-6 transcripts were analyzed using RT-PCR. The expression of pro-inflammatory cytokine transcripts was down-regulated in the monocyte population throughout the 4-month IL-2 treatment phase (Fig. 1d). The plasma levels of 45 selected chemokines and cytokines were measured longitudinally using the Olink® Target Cytokine Panel. The level of the pro-inflammatory cytokine IL-15 decreased following each IL-2 treatment cycle and returned toward baseline level before subsequent treatment (Fig. 1e). A decreasing trend or statistically significant attenuation of the plasma levels of macrophage/microglial activation chemokines C–C motif ligand (CCL)-2, CCL4 and CCL11 (Fig. 1f–h) was also noted following IL-2 administration. A similar pattern was observed in the longitudinal analysis of dendritic growth factor, FLT3LG (Fig. 1i). The pro-inflammatory cytokine TNF also trended downward through the IL-2 treatment phase and was significantly reduced on days 30 and 38 of treatment phase (Fig. 1j). No changes were noted in the longitudinal analyses of other measured plasma immune markers. There were improvements in MMSE scores on days 30, 60, and 90 during the IL-2 treatment phase, and the MMSE score returned toward baseline after discontinuation of the treatment (Fig. 1k). A trend toward improvement was observed for CDR-SB on day 120 which was reversed on day 168 (Fig. 1l). The ADAS-Cog scores on days 120 and 168 were comparable to the baseline levels (Fig. 1m).
The recently approved anti-amyloid immunotherapies offer partially effective treatment for a relatively small subset of the vast and expanding AD population [11]. There is a major need to diversify the drug development pipeline in AD clinical setting. Treg expansion strategy has been translated into the clinical setting for neurodegenerative disorders [12]. In the current study, low-dose IL-2 administration safely expanded the Treg population, suppressed peripheral pro-inflammatory monocytes and reduced plasma myeloid activating chemokines in AD subjects. Improvements were observed on some clinical assessments (MMSE) following IL-2 administration; however, interpretation of this finding is limited by the lack of a placebo group, the small sample size, and the short duration of treatment. To confirm and expand on our findings, we are presently conducting a phase 2a double-blinded, randomized, placebo-controlled clinical trial to assess low-dose IL-2 immunotherapy in subjects with AD. In this proof-of-concept trial, the impact of IL-2 immunotherapy on established AD biomarkers, cognitive and functional endpoints are being assessed. Additionally, we will investigate whether the IL-2-induced peripheral Treg expansion will modify neuroinflammation in AD individuals.

Acknowledgements

The authors appreciate the assistance of Jennifer M. Garrett, Rejani R. Nair, Jinghong Wang and Shixiang Wen of the Houston Methodist Neurological Institute and the Nantz National Alzheimer Center. We are grateful to the Nantz National Alzheimer Center patients and families for making this research possible.

Declarations

The study was reviewed and approved by HMRI Institutional Review Board, and all subjects signed an informed consent form.
Not applicable.

Competing interests

DRB declares a conflict of interest as a consultant with Implicit Bioscience and Coya Therapeutics, Inc. ADT declares a conflict of interest as a consultant with Coya Therapeutics, Inc. SHA declares a conflict of interest as a consultant with Implicit Bioscience and scientific advisory board chair of Coya Therapeutics, Inc. The remaining authors have no conflict of interest.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Literatur
1.
Zurück zum Zitat Othy S, Jairaman A, Dynes JL, Dong TX, Tune C, Yeromin AV, et al. Regulatory T cells suppress Th17 cell Ca(2+) signaling in the spinal cord during murine autoimmune neuroinflammation. Proc Natl Acad Sci U S A. 2020;117(33):20088–99.CrossRefPubMedPubMedCentral Othy S, Jairaman A, Dynes JL, Dong TX, Tune C, Yeromin AV, et al. Regulatory T cells suppress Th17 cell Ca(2+) signaling in the spinal cord during murine autoimmune neuroinflammation. Proc Natl Acad Sci U S A. 2020;117(33):20088–99.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Faridar A, Thome AD, Zhao W, Thonhoff JR, Beers DR, Pascual B, et al. Restoring regulatory T-cell dysfunction in Alzheimer’s disease through ex vivo expansion. Brain Commun. 2020;2(2):fcaa112.CrossRefPubMedPubMedCentral Faridar A, Thome AD, Zhao W, Thonhoff JR, Beers DR, Pascual B, et al. Restoring regulatory T-cell dysfunction in Alzheimer’s disease through ex vivo expansion. Brain Commun. 2020;2(2):fcaa112.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Thome AD, Faridar A, Beers DR, Thonhoff JR, Zhao W, Wen S, et al. Functional alterations of myeloid cells during the course of Alzheimer’s disease. Mol Neurodegener. 2018;13(1):61.CrossRefPubMedPubMedCentral Thome AD, Faridar A, Beers DR, Thonhoff JR, Zhao W, Wen S, et al. Functional alterations of myeloid cells during the course of Alzheimer’s disease. Mol Neurodegener. 2018;13(1):61.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Baruch K, Rosenzweig N, Kertser A, Deczkowska A, Sharif AM, Spinrad A, et al. Breaking immune tolerance by targeting Foxp3(+) regulatory T cells mitigates Alzheimer’s disease pathology. Nat Commun. 2015;6:7967.CrossRefPubMed Baruch K, Rosenzweig N, Kertser A, Deczkowska A, Sharif AM, Spinrad A, et al. Breaking immune tolerance by targeting Foxp3(+) regulatory T cells mitigates Alzheimer’s disease pathology. Nat Commun. 2015;6:7967.CrossRefPubMed
5.
Zurück zum Zitat Rosenzweig N, Dvir-Szternfeld R, Tsitsou-Kampeli A, Keren-Shaul H, Ben-Yehuda H, Weill-Raynal P, et al. PD-1/PD-L1 checkpoint blockade harnesses monocyte-derived macrophages to combat cognitive impairment in a tauopathy mouse model. Nat Commun. 2019;10(1):465.CrossRefPubMedPubMedCentral Rosenzweig N, Dvir-Szternfeld R, Tsitsou-Kampeli A, Keren-Shaul H, Ben-Yehuda H, Weill-Raynal P, et al. PD-1/PD-L1 checkpoint blockade harnesses monocyte-derived macrophages to combat cognitive impairment in a tauopathy mouse model. Nat Commun. 2019;10(1):465.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Faridar A, Vasquez M, Thome AD, Yin Z, Xuan H, Wang JH, et al. Ex vivo expanded human regulatory T cells modify neuroinflammation in a preclinical model of Alzheimer’s disease. Acta Neuropathol Commun. 2022;10(1):144.CrossRefPubMedPubMedCentral Faridar A, Vasquez M, Thome AD, Yin Z, Xuan H, Wang JH, et al. Ex vivo expanded human regulatory T cells modify neuroinflammation in a preclinical model of Alzheimer’s disease. Acta Neuropathol Commun. 2022;10(1):144.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Dansokho C, Ait Ahmed D, Aid S, Toly-Ndour C, Chaigneau T, Calle V, et al. Regulatory T cells delay disease progression in Alzheimer-like pathology. Brain. 2016;139(Pt 4):1237–51.CrossRefPubMed Dansokho C, Ait Ahmed D, Aid S, Toly-Ndour C, Chaigneau T, Calle V, et al. Regulatory T cells delay disease progression in Alzheimer-like pathology. Brain. 2016;139(Pt 4):1237–51.CrossRefPubMed
9.
Zurück zum Zitat Chinen T, Kannan AK, Levine AG, Fan X, Klein U, Zheng Y, et al. An essential role for the IL-2 receptor in T(reg) cell function. Nat Immunol. 2016;17(11):1322–33.CrossRefPubMedPubMedCentral Chinen T, Kannan AK, Levine AG, Fan X, Klein U, Zheng Y, et al. An essential role for the IL-2 receptor in T(reg) cell function. Nat Immunol. 2016;17(11):1322–33.CrossRefPubMedPubMedCentral
10.
11.
Zurück zum Zitat Cummings J, Zhou Y, Lee G, Zhong K, Fonseca J, Cheng F. Alzheimer’s disease drug development pipeline: 2023. Alzheimers Dement (NY). 2023;9(2): e12385.CrossRef Cummings J, Zhou Y, Lee G, Zhong K, Fonseca J, Cheng F. Alzheimer’s disease drug development pipeline: 2023. Alzheimers Dement (NY). 2023;9(2): e12385.CrossRef
12.
Zurück zum Zitat Thonhoff JR, Beers DR, Zhao W, Pleitez M, Simpson EP, Berry JD, et al. Expanded autologous regulatory T-lymphocyte infusions in ALS: a phase I, first-in-human study. Neurol Neuroimmunol Neuroinflamm. 2018;5(4): e465.CrossRefPubMedPubMedCentral Thonhoff JR, Beers DR, Zhao W, Pleitez M, Simpson EP, Berry JD, et al. Expanded autologous regulatory T-lymphocyte infusions in ALS: a phase I, first-in-human study. Neurol Neuroimmunol Neuroinflamm. 2018;5(4): e465.CrossRefPubMedPubMedCentral
Metadaten
Titel
A phase 1 open-label pilot study of low-dose interleukine-2 immunotherapy in patients with Alzheimer’s disease
verfasst von
Alireza Faridar
Abdulmunaim M. Eid
Aaron D. Thome
Weihua Zhao
David R. Beers
Maria B. Pascual
Mohammad O. Nakawah
Gustavo C. Roman
Charles S. Davis
Michael Grundman
Joseph C. Masdeu
Stanley H. Appel
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
Translational Neurodegeneration / Ausgabe 1/2023
Elektronische ISSN: 2047-9158
DOI
https://doi.org/10.1186/s40035-023-00387-5

Weitere Artikel der Ausgabe 1/2023

Translational Neurodegeneration 1/2023 Zur Ausgabe

Neu in den Fachgebieten Neurologie und Psychiatrie

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

ADHS-Medikation erhöht das kardiovaskuläre Risiko

16.05.2024 Herzinsuffizienz Nachrichten

Erwachsene, die Medikamente gegen das Aufmerksamkeitsdefizit-Hyperaktivitätssyndrom einnehmen, laufen offenbar erhöhte Gefahr, an Herzschwäche zu erkranken oder einen Schlaganfall zu erleiden. Es scheint eine Dosis-Wirkungs-Beziehung zu bestehen.

Delir bei kritisch Kranken – Antipsychotika versus Placebo

16.05.2024 Delir Nachrichten

Um die Langzeitfolgen eines Delirs bei kritisch Kranken zu mildern, wird vielerorts auf eine Akuttherapie mit Antipsychotika gesetzt. Eine US-amerikanische Forschungsgruppe äußert jetzt erhebliche Vorbehalte gegen dieses Vorgehen. Denn es gibt neue Daten zum Langzeiteffekt von Haloperidol bzw. Ziprasidon versus Placebo.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.