Skip to main content
Erschienen in: Molecular Brain 1/2016

Open Access 01.12.2016 | Research

Ca2+ in the dorsal raphe nucleus promotes wakefulness via endogenous sleep-wake regulating pathway in the rats

verfasst von: Su-Ying Cui, Sheng-Jie Li, Xiang-Yu Cui, Xue-Qiong Zhang, Bin Yu, Yuan-Li Huang, Qing Cao, Ya-Ping Xu, Guang Yang, Hui Ding, Jin-Zhi Song, Hui Ye, Zhao-Fu Sheng, Zi-Jun Wang, Yong-He Zhang

Erschienen in: Molecular Brain | Ausgabe 1/2016

Abstract

Serotonergic neurons in the dorsal raphe nucleus (DRN) are involved in the control of sleep-wake states. Our previous studies have indicated that calcium (Ca2+) modulation in the DRN plays an important role in rapid-eye-movement sleep (REMS) and non-REMS (NREMS) regulation during pentobarbital hypnosis. The present study investigated the effects of Ca2+ in the DRN on sleep-wake regulation and the related neuronal mechanism in freely moving rats. Our results showed that microinjection of CaCl2 (25 or 50 nmol) in the DRN promoted wakefulness and suppressed NREMS including slow wave sleep and REMS in freely moving rats. Application of CaCl2 (25 or 50 nmol) in the DRN significantly increased serotonin in the DRN and hypothalamus, and noradrenaline in the locus coeruleus and hypothalamus. Immunohistochemistry study indicated that application of CaCl2 (25 or 50 nmol) in the DRN significantly increased c-Fos expression ratio in wake-promoting neurons including serotonergic neurons in the DRN, noradrenergic neurons in the locus coeruleus, and orxinergic neurons in the perifornical nucleus, but decreased c-Fos expression ratio of GABAergic sleep-promoting neurons in the ventrolateral preoptic nucleus. These results suggest that Ca2+ in the DRN exert arousal effects via up-regulating serotonergic functions in the endogenous sleep-wake regulating pathways.
Begleitmaterial
Additional file 1: Figure S1. Photomicrographs of representative cannula placements in dorsal raphe nucleus (DRN). (a) Sections are according to Paxinos and Watson [41]; (b) Nissle staining in DRN section. Table S1. Details of antibody. Table S2. Effects of CaCl2 microinjection in the DRN on sleep parameters (raw data 1). Table S3. Effects of CaCl2 microinjection in the DRN on sleep parameters (raw data 2). Table S4. Effects of CaCl2 microinjection in the DRN on monoamine neurotransmitters (raw data). Table S5. Effects of CaCl2 microinjection in the DRN on neuronal activity in sleep-wake regulating nucleus (raw data). (DOCX 413 kb)
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s13041-016-0252-0) contains supplementary material, which is available to authorized users.

Introduction

Dorsal raphe nucleus (DRN) provides the majority of serotonin (5-HT) throughout the central nervous system, including the cerebral cortex, hypothalamus and brain stem [1]. Serotonergic neurons in the DRN play an important role in sleep-wake regulation [2, 3]. Most of the serotonergic neurons in the DRN fire regularly at a slow rate during wakefulness, fire considerably less during non-rapid eye movement sleep (NREMS) and even cease firing during rapid eye movement sleep (REMS) [4, 5]. 5-HT release in many brain regions occurs predominantly during wakefulness, and diminishes at its lowest level during REMS [6]. In the endogenous sleep-wake regulating pathways, the DRN promotes wakefulness via excitatory projections to the cerebral cortex and other wakefulness-promoting nuclei, and via inhibitory projections to sleep-promoting nuclei [13, 7].
Calcium (Ca2+) and Ca2+ channels express widely throughout the central nervous system and modulate neurotransmitter release and neuron excitability [8, 9]. Numerous in vitro and in vivo studies have supported that the Ca2+ current of the serotonergic neurons in the DRN is of prime importance in maintaining 5-HT levels throughout the brain [1012].
Our previous study indicated that Ca2+ modulation in the DRN plays an important role in sleep regulation [13, 14]. We found that up-regulation of Ca2+ function in the DRN could reduce NREMS and REMS, but down-regulation of Ca2+ function in the DRN could promote NREMS, especially slow wave sleep (SWS) in pentobarbital-treated rats [13]. However the precise mechanism has not been certified yet. The present study investigated the neuroanatomical mechanism of the arousal effects of Ca2+ in the DRN. At first, we microinjected CaCl2 into the DRN, and monitored sleep-wake behavior in freely moving rats for 6 hours. Then, we measured monoamine neurotransmitters and the neuronal activity in the endogenous sleep-wake regulating brain areas 3 h after CaCl2 administration.

Results

Effects of CaCl2 microinjection in the DRN on sleep parameters

Sleep-wake behavior was monitored for 6 h (09:00–15:00) after CaCL2 (25 or 50 nmol) was microinjected in the DRN. Microinjection of CaCl2 (25 or 50 nmol) in the DRN significantly increased wakefulness (W, F 2, 27 = 10.44, p < 0.01, Fig. 1a) and the mean duration of W at dose of 50 nmol (F 2, 27 = 6.75, p < 0.01, Fig. 1d). Microinjection of CaCl2 (25 or 50 nmol) in the DRN significantly decreased total sleep (TS) time (F 2, 27 = 10.44, p < 0.01, Fig. 1a) compared with the vehicle group. Sleep latency (SL) was not influenced by intra-DRN Ca2+ administration (Fig. 1a).
The sleep episode analysis revealed that the CaCl2 (25 or 50 nmol) microinjection in the DRN significantly reduced NREMS time (F 2, 27 = 9.53, p < 0.01, Fig. 1a). Microinjection of CaCl2 (25 or 50 nmol) in the DRN decreased light sleep (LS) time (F 2, 27 = 4.34, p < 0.05, Fig. 1a) and LS bouts (F 2, 27 = 8.74, p < 0.01, Fig. 1c). Microinjection of CaCl2 (25 or 50 nmol) in the DRN decreased SWS time (F 2, 27 = 7.55, p < 0.01, Fig. 1a) and SWS bouts (F 2, 27 = 9.10, p < 0.01, Fig. 1c). Microinjection of the high dose of CaCl2 (50 nmol) significantly decreased REMS time (F 2, 27 = 3.67, p < 0.05, Fig. 1a) and REMS bouts (F 2, 27 = 4.15, p < 0.05, Fig. 1c). Microinjection of CaCl2 (25 or 50 nmol) in the DRN significantly increased the percentage of LS relative to TS (LS%, F 2, 27 = 7.57, p < 0.01, Fig. 1b) and decreased the percentage of SWS relative to TS (SWS%, F 2, 27 = 5.65, p < 0.01, Fig. 1b). The percentage of REMS relative to TS (REMS%) was not influenced by intra-DRN Ca2+ administration (Fig. 1b).
TS time was analyzed in 1-h blocks after vehicle or CaCl2 (25 or 50 nmol) was microinjected into the DRN. Results indicated TS time was significantly reduced from the 3rd 1-h period (S3) to the 6th 1-h period (S6) in CaCl2 groups (25 or 50 nmol) compared with vehicle group (S3, F 2, 27 = 6.41, p < 0.01; S4, F 2, 27 = 4.68, p < 0.05; S5, F 2, 27 = 4.89, p < 0.05; S6, F 2, 27 = 6.62, p < 0.01, Fig. 1e).

Effects of CaCl2 microinjection in the DRN on monoamine neurotransmitters

Application of CaCl2 in the DRN significantly decreased sleep time. Based on the important effects of serotonergic neurons in the DRN on sleep regulation, we hypothesized that the arousal effects of CaCl2 in the DRN might be related to the serotonergic system. Serotonergic projections from the DRN to the prefrontal cortex, hypothalamus and LC are crucial in the sleep-wake cycle [1, 1517]. Noradrenaline (NE), serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA, final metabolite of 5-HT) in the DRN, prefrontal cortex, hypothalamus and LC were detected 3 h after intra-DRN CaCl2 administration.
Microinjection of CaCl2 (25 or 50 nmol) in the DRN significantly increased 5-HT (F 2, 18 = 5.03, p < 0.05) and 5-HIAA (F 2, 18 = 5.09, p < 0.05) in the DRN (Fig. 2a), and NE (F 2, 15 = 15.96, p < 0.01) and 5-HT (F 2, 15 = 5.17, p < 0.05) in the hypothalamus (Fig. 2c). Microinjection of the high dose of CaCl2 (50 nmol) significantly increased NE in the LC (F 2, 18 = 5.56, p < 0.05, Fig. 2d). Monoamine levels in the prefrontal cortex were not influenced by intra-DRN CaCl2 (25 or 50 nmol) administration (Fig. 2b).
The DRN has the highest density of serotonergic neurons in the brain. 5-HT and 5-HIAA in the DRN were increased followed by intra-DRN CaCl2 administration. It might be direct effects of Ca2+ on serotonergic system. However the effects of intra-DRN CaCl2 administration on monoamine levels in the hypothalamus and LC might be occurred secondary to the up-regulating effects of Ca2+ on serotonergic neurons. Pearson’s correlation analysis indicated that the level of 5-HT in the DRN was positively correlated with the level of 5-HT in the hypothalamus (R = 0.617, p < 0.01, Fig. 2e) and the level of NE in the LC (R = 0.555, p < 0.05, Fig. 2f).

Effects of CaCl2 microinjection in the DRN on neuronal activity in sleep-wake regulating nucleus

Microinjection of CaCl2 (25 or 50 nmol) in the DRN suppressed sleep and augmented serotonergic functions in sleep-wake regulating brain areas including DRN, LC and hypothalamus. GABAergic neurons in the ventrolateral preoptic nucleus (VLPO) [18] and histaminergic neurons in the TMN [19] and orexinergic neurons in the perifornical nucleus (Pef) [20] are the most crucial component in the hypothalamic sleep regulation [21]. We performed double-staining immunofluorescence in the DRN, VLPO, TMN, Pef and LC to detect c-Fos expression ratio in specific neurons after 3 h intra-DRN CaCl2 application. c-Fos expression is often considered as an index of neuronal activation.
Microinjection of CaCl2 (25 or 50 nmol) in the DRN significantly increased c-Fos positive ratio of serotonergic neurons in the DRN (F 2, 14 = 13.65, p < 0.01, Fig. 3a) and c-Fos positive ratio of orexinergic neurons in the Pef (F 2, 14 = 25.02, p < 0.01, Fig. 3c), as well as c-Fos positive ratio of noradrenergic neurons in the LC (F 2, 18 = 34.20, p < 0.01, Fig. 3e). Microinjection of CaCl2 (25 or 50 nmol) in the DRN significantly decrease c-Fos positive ratio of GABAergic neurons in the VLPO (F 2, 24 = 34.64, p < 0.01, Fig. 3b). c-Fos positive ratio of histaminergic neurons in the TMN was not influenced by intra-DRN CaCl2 (25 or 50 nmol) administration (Fig. 3d).

Discussion

CaCl2 (25 or 50 nmol) was applied in the DRN at daytime, causing the following principal findings: (i) W time significantly increased, and this effect could attribute to increases in mean duration of episodes (Fig. 1), and (ii) LS, SWS and REMS significantly decreased, and this effect could attribute to increases in bouts of episodes (Fig. 1), and (iii) 5-HT in the DRN and hypothalamus, and NE in the LC and hypothalamus significantly increased (Fig. 2), and (iv) c-Fos expression ratio of specific neurons in wake-promoting brain areas (DRN, LC and Pef) significantly increased, but c-Fos expression ratio of GABAergic sleep-promoting neurons in the VLPO significantly decreased (Fig. 3). These results implied that Ca2+ in the DRN exerted the arousal effects via up-regulating serotonergic functions in endogenous sleep-wake regulating pathway.
Serotonergic neurons in the DRN promote wakefulness and inhibit NREMS and REMS [2, 22]. Serotonergic REM-off neurons in the DRN play suppressive roles in REMS genesis by inhibiting cholinergic REM-on neurons [3, 7]. DRN serotonergic neurons facilitate the consolidation of NREMS by receiving the GABAergic inhibitory inputs from the VLPO, which in turn disinhibits their effects on VLPO [23]. The activity of serotonergic neurons in DRN was modulated by excitatory or inhibitory neurotransmitter and/or neuromodulators from non-serotonergic neurons in the DRN and the synaptic projections derived from all over the brains, which is currently accepted as a crucial component of sleep-wake regulation [2].
Both the Ca2+-dependent release of neurotransmitters from the presynaptic membrane and the Ca2+-mediating cellular signal transduction in post-synaptic neurons are important mechanisms underneath neurons connection throughout the brain. It has been proved that the orexinergic [8] and glutamatergic [24, 25] exciting signals to the DRN serotonergic neurons were medicated by elevation of Ca2+ influx. The research from Barbosa et al. indicates that Ca2+ influx is essential for the activation of tryptophan hydroxylase, the rate-limiting enzyme in the 5-HT synthesis, and potentially increases 5-HT release [26]. All of these research provide effective evidence indicating that intra-DRN Ca2+ application could potentiate serotonergic system function. The present study shows that intra-DRN Ca2+ application increase W and suppress NREMS and REMS (Fig. 1), which is accordance with arousal effects of the DRN serotonergic neurons on sleep-wake regulation [2, 3]. We also detected significant increases in 5-HT and serotonergic neurons activity in the DRN followed by intra-DRN Ca2+ application. These results indicate that the arousal effects of Ca2+ in the DRN might be related to its up-regulating effects on serotonergic function.
Our previous research indicated that the arousal effects of Ca2+ in DRN were associated with activation of protein kinase C (PKC) and calmodulin-dependent kinase II (CaMKII) signaling pathway, since the arousal effects of Ca2+ were respectively abolished by PKC inhibitor, chelerythrine chloride, or CaMKII inhibitor, KN-93 [27, 28]. Numerous studies suggest that the Ca2+ induced PKC or CaMKII signaling cascade can potentiate the function of the serotonergic system. Based on the present results and previous studies, we hypothesized that the application of Ca2+ might potentiate serotonergic function by the activation of PKC and/or CaMKII mediated signal transduction in the DRN. Furthermore, we interestingly noticed that the potential effect of Ca2+ on serotonergic function did not only restricted in the DRN, but also stretched to other endogenous sleep-wake regulating pathway.
The sleep-wake regulating pathway in the brain is based on alternating excitation between sleep-promoting neurons and wake-promoting neurons [21, 29]. The sleep-promoting GABAergic neurons in the VLPO project to the wake-promoting neurons including serotonergic neurons in the DRN, noradrenergic neurons in the LC and histaminergic neurons in the TMN, then inhibit their release of neurotransmitters into the cortex and disinhibit their inhibitory effects on the VLPO, which facilitates the consolidation of sleep [21, 29]. The direct mutual inhibition between the VLPO and the monoaminergic cell groups forms a classic flip-flop switch, which produces sharp transitions between sleep and wakefulness. Orexinergic neurons reinforce the arousal systems, which benefit to stabilize the flip-flop switch, like a ‘finger’ on the switch that might prevent unwanted transitions into sleep [21, 29, 30]. The present study shows that the increases in monoamine levels in the hypothalamus and LC followed by intra-DRN Ca2+ application were positively correlated with the level of 5-HT in the DRN (Fig. 2). Furthermore, intra-DRN Ca2+ application not only significantly increased wake-promoting neurons activity in the DRN, Pef and LC, but also significantly decreased sleep-promoting GABAergic neurons activity in the VLPO (Fig. 3). The changes of neurotransmitters and neuronal activity in endogenous sleep-wake regulating pathway followed by intra-DRN Ca2+ application are facilitate to wakefulness, which are accordance with the arousal effects of Ca2+ (Fig. 4).
5-HT and the serotonergic neurons activity were increased followed by microinjection of CaCl2 in the DRN. It might be direct effects of Ca2+ on serotonergic system. However, the changes of monoamine levels and neuronal activity in other endogenous sleep-wake regulating pathway might be occurred secondary to the up-regulating effects of Ca2+ on serotonergic system. Serotonergic neural projection from the DRN and serotonergic receptors are detected in the hypothalamus and LC [3133], which implies the neurons in the hypothalamus and LC might be modulated by 5-HT. Electrical or chemical stimulation of the DRN led to an increased release of 5-HT in the hypothalamus and LC [34, 35] Pharmacological study shows that the agonists of 5HT1A or 5HT3 receptor respectively increase noradrenergic activity in the LC [36, 37]. GABAergic sleep-promoting neurons in the VLPO are inhibited by 5-HT and NE [38]. These research provide persuasive evidence supporting the secondary effect of Ca2+, since c-Fos expressions in the noradrenergic neurons in the LC were increased and c-Fos expression in the GABAergic neurons in the VLPO were decreased followed by up-regulating effects of Ca2+ on serotonergic system. Research from Tabuchi et al. indicated that enhancement of inhibitory serotonergic input to orexinergic neurons via 5HT1A receptor caused fragmentation of wakefulness [39]. Present study shows that intra-DRN Ca2+ application prolonged mean duration of wakefulness, which might be related to the increase of c-Fos expression in orexinergic neurons. However, it seems that the positive effect on orexinergic neurons induced by Ca2+ administration was not medicated by 5HT1A receptor at least, and other serotonergic receptors and neuromodulators should be considerate.
The present study, together with our previous reports [27, 28] demonstrate the application of Ca2+ in the DRN promotes wakefulness and suppresses both NREMS and REMS in freely moving rats. By activating PKC or CaMKII mediated signal transduction, the intra-DRN application of Ca2+ might potentiate 5-HT synthesis, which up-regulates serotonergic functions in endogenous sleep-wake regulating pathway including DRN, LC, VLPO and Pef (Fig. 4). These findings are critical for our complete understanding of the basic mechanisms of sleep-wake regulation.

Methods

Animals

Male Sprague–Dawley rats (220–240 g, Grade I, purchased from the Animal Center of Peking University, Beijing, China) were used. The rats were individually housed in plastic cages and maintained under an artificial 12 h/12 h light/dark cycle (lights on 09:00 to 21:00) at 23 ± 1 °C and 50 ± 10 % humidity. The rats had ad libitum access to food and water. All of the experiments were conducted in accordance with the European Community guidelines for the use of experimental animals and approved by the Peking University Committee on Animal Care and Use.

Surgery

Surgical procedure details were described previously [40]. The animals were implanted chronically with stainless steel screws over the frontal-parietal cortex and a pair of wire electrodes through the nuchal muscles for recording of electroencephalogram (EEG) and electromyogram (EMG), respectively. Additionally, a guide cannula (26 gauge) was implanted 1 mm above the DRN at coordinates, AP = −8.0; L = 0.0 and DV = −5.8 [41].

Drugs and drug administration

CaCl2 was purchased from Sigma-Aldrich (Louis, MO, USA). CaCl2 was dissolved in saline and the pH of the solution was adjusted to 7.3. CaCl2 was microinjected into the DRN at 09:00. CaCl2 or saline was injected into the rat DRN with an injection cannula (29 gauge), which extended 1 mm beyond the guide, in a 0.2 μl volume over a 2 min period. Histological verification of cannula/injection sites was carried out at the end of the experiments. All the data presented in the present study are derived from animals whose injection site was within the limits of DRN. The location of cannula/injection is shown in Additional file 1: Figure S1 online.

EEG and EMG recordings and analysis

For the electrophysiological recordings, all of the rats were placed in an electrically shielded box in a noise-attenuated environment with a light-weight shielded cable plugged into the connector on the rat’s head and attached to a counterbalanced swivel. The signals were routed to an electroencephalograph (model MP 150, BIOPAC Systems, CA, USA).
Recordings were performed for 6 h, beginning at 09:00, immediately after CaCl2 or vehicle intra-DRN application. The signals were amplified and filtered (EEG, 0.5-30 Hz; EMG, 10–100 Hz) and then digitized at a sampling rate of 128 Hz and recorded using AcqKnowledge software (BIOPAC Systems). The EEG/EMG recordings were analyzed using SleepSign 2.0 software (Kissei, Japan), with the following criteria: W (low-amplitude EEG activity and high-voltage EMG activity), REMS (Fast-fourier transform [FFT] theta ratio of EEG ≥ 60 %, desynchronized EEG, absence of tonic EMG, and occasional body twitches while maintaining a recumbent sleep posture), SWS (FFT delta ratio of EEG ≥ 70 %, large-amplitude, synchronous EEG with sleep spindles present, greatly diminished tonic EMG, eyes closed, small eye movement potentials, and recumbent posture), and LS (FFT delta ratio of EEG < 70 %, high-amplitude slow or spindle EEG activity, and low-amplitude EMG activity). As a final step, the defined sleep-wake stages were examined and corrected according to the visual observation of the animal which was recorded by video camera. NREMS time was equal to SWS time + LS time. TS time was equal to NREMS time + REMS time.

High-performance liquid chromatography with electrochemical detection

The rats were decapitated 3 h after CaCl2 intra-DRN administration (12:00). The DRN, LC, hypothalamus, and prefrontal cortex were dissected and extracted with 0.2 M perchloric acid by ultrasonic homogenation. Details of the neurotransmitter analysis procedure were described previously [42]. High-performance liquid chromatography with electrochemical detection (HPLC-ECD) was used to determine NE, 5-HT and 5-HIAA levels under the following conditions: flow rate (0.60 ml/min), temperature (40 °C), column (Shiseido Capcell Pak C18 MG F90816 column; 3.0 mm inner diameter, 75 mm length, 3 μm pore size), injection volume (20 μl partial loop), mobile phase (0.1 M NaH2PO4, 0.85 mM OSA, 0.05 mM Na2EDTA, 11 % CH3OH, pH 3.25 with H3PO4), detector and conditions (analytical cell: 5011A, E1 = − 175 mV, E2 = + 200 mV; guard cell: 5020, EGC = + 250 mV).

Immunohistochemistry

The rats were sacrificed 3 h after CaCl2 intra-DRN administration (12:00). Under deep anesthesia with chloral hydrate (300 mg/kg, i.p.), the rats were first perfused with 500 ml of 4 % paraformaldehyde. Whole brains were immediately removed and postfixed in the same fixative at 4 °C for 24 h, and then immersed in 30 % sucrose at 4 °C for cryoprotection. The brains were rapidly frozen on liquid n-hexane that was cooled with a mixture of solid carbon dioxide and ethanol. Coronal sections that encompassed the VLPO (bregma −0.4 mm ~ −0.8 mm), Pef (bregma −2.8 mm ~ −3.4 mm), TMN (bregma −3.8 mm ~ −4.3 mm), DRN (bregma −7.6 mm ~ −8.3 mm) and LC (bregma −9.7 mm ~ −10.2 mm) [41] were freeze-cut into 20 μm thicknesses with a cryostat (Leica CM1850, Leica Microsystems UK, Milton Keynes, UK).
Each section was immunostained both for nucleus-specific neurotransmitter marker (Additional file 1: Table) and c-Fos. Sections were washed in PBS (3 × 5 min), then incubated in cold acetone for 30 min, followed by washing in PBS (3 × 5 min). Antigen retrieval was conducted in citrate buffer (pH = 6.0) via microwave. After sections returned to room temperature naturally, sections were immersed in PBS containing 5 % donkey non-specific serum and 0.3 % Triton X-100 for 30 min. Sections were incubated in the appropriate primary antibodies for specific neurotransmitter markers and c-Fos diluted in PBS containing 1.5 % donkey non-specific serum, 0.3 % Triton X-100 for 12–16 h at 4 °C. After washing in PBS (3 × 5 min), sections were incubated with fluorophore-conjugated donkey anti-rabbit/goat/mouse immunoglobulin G (secondary antibodies) for 120 min at room temperature, washed 3 × 5 min in PBS. At last, the sections were mounted with fluorescent mounting medium with 4′,6-diamidino-2-phenylindole (DAPI). Details of antibodies are summarized in Additional file 1: Table S1 online.
The sections were examined in a confocal microscope (TCS SP8, Leica). Confocal images were processed using Leica LAS AF. The brightness and contrast of captured images were adjusted in Photoshop (Adobe Systems). The nucleus-specific neurotransmitter markers were labeled by green, c-Fos was labeled by red and DAPI was labeled by blue.
In each section, c-Fos positive ratio was counted (the number of c-Fos [+]-nucleus-specific neurotransmitter marker [+] cells divided by the number c-Fos [±]-nucleus-specific neurotransmitter marker [+] cells and then multiply 100 %). Immunoreactive nuclei were counted bilaterally (except for DRN) using at least three serial sections for each area, data were then averaged in order to produce the mean of each group.

Statistical analysis

The data were analyzed using SPSS 17.0 software and are expressed as mean ± SEM. Multiple comparisons data were analyzed using one-way analysis of variance (ANOVA) followed by the Student-Newman-Keuls post hoc test. Pearson’s correlation analysis was performed on pooled data, from both controls and CaCl2-treated rats. In all of the tests, p < 0.05 was considered statistically significant.

Abbreviations

5-HIAA, 5-hydroxyindoleacetic acid; 5-HT, serotonin; Ca2+, calcium; CaMKII, calmodulin-dependent kinase II; DRN, dorsal raphe nucleus; EEG, electroencephalogram; EMG, electromyogram; FFT, fast Fourier transform; LC, locus coeruleus; LS, light sleep; NE, noradrenaline; NREMS, non-rapid eye movement sleep; Pef, perifornical nucleus; PKC, protein kinase C; REMS, rapid eye movement sleep; SL, Sleep latency; SWS, slow wave sleep; TMN, tuberomammillary nucleus; TS, total sleep; VLPO, ventrolateral preoptic nucleus; W, wakefulness

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81173031, 81202511, 81302746 and 81573407).

Funding

This study was funded by grants from the National Natural Science Foundation of China (No. 81173031, 81202511, 81302746 and 81573407).

Availability of data and materials

The datasets supporting the conclusions of this article are included within the article and its supplementary file.

Authors’ contributions

SYC and YHZ designed the experiments. SYC, SJL, BY, YLH, QC, YPX, GY, XQZ, ZFS and HD performed the experiments. SYC, SJL, HY, XYC, JZS and ZJW analyzed the data, SYC and YHZ wrote the manuscript. All authors approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.
Not applicable.
All of the experiments were conducted in accordance with the European Communities Council Directive (2010/63/EU) for the use of experiment animals and approved by the Peking University Committee on Animal Care and Use.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

e.Med Neurologie

Kombi-Abonnement

Mit e.Med Neurologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes, den Premium-Inhalten der neurologischen Fachzeitschriften, inklusive einer gedruckten Neurologie-Zeitschrift Ihrer Wahl.

Anhänge

Additional file

Additional file 1: Figure S1. Photomicrographs of representative cannula placements in dorsal raphe nucleus (DRN). (a) Sections are according to Paxinos and Watson [41]; (b) Nissle staining in DRN section. Table S1. Details of antibody. Table S2. Effects of CaCl2 microinjection in the DRN on sleep parameters (raw data 1). Table S3. Effects of CaCl2 microinjection in the DRN on sleep parameters (raw data 2). Table S4. Effects of CaCl2 microinjection in the DRN on monoamine neurotransmitters (raw data). Table S5. Effects of CaCl2 microinjection in the DRN on neuronal activity in sleep-wake regulating nucleus (raw data). (DOCX 413 kb)
Literatur
1.
Zurück zum Zitat Monti JM. The structure of the dorsal raphe nucleus and its relevance to the regulation of sleep and wakefulness. Sleep Med Rev. 2010;14:307–17.CrossRefPubMed Monti JM. The structure of the dorsal raphe nucleus and its relevance to the regulation of sleep and wakefulness. Sleep Med Rev. 2010;14:307–17.CrossRefPubMed
2.
Zurück zum Zitat Monti JM. The role of dorsal raphe nucleus serotonergic and non-serotonergic neurons, and of their receptors, in regulating waking and rapid eye movement (REM) sleep. Sleep Med Rev. 2010;14:319–27.CrossRefPubMed Monti JM. The role of dorsal raphe nucleus serotonergic and non-serotonergic neurons, and of their receptors, in regulating waking and rapid eye movement (REM) sleep. Sleep Med Rev. 2010;14:319–27.CrossRefPubMed
3.
4.
Zurück zum Zitat Sakai K. Sleep-waking discharge profiles of dorsal raphe nucleus neurons in mice. Neuroscience. 2011;197:200–4.CrossRefPubMed Sakai K. Sleep-waking discharge profiles of dorsal raphe nucleus neurons in mice. Neuroscience. 2011;197:200–4.CrossRefPubMed
5.
Zurück zum Zitat Trulson ME, Jacobs BL. Raphe unit activity in freely moving cats: correlation with level of behavioral arousal. Brain Res. 1979;163:135–50.CrossRefPubMed Trulson ME, Jacobs BL. Raphe unit activity in freely moving cats: correlation with level of behavioral arousal. Brain Res. 1979;163:135–50.CrossRefPubMed
6.
Zurück zum Zitat Portas CM, Bjorvatn B, Ursin R. Serotonin and the sleep/wake cycle: special emphasis on microdialysis studies. Prog Neurobiol. 2000;60:13–35.CrossRefPubMed Portas CM, Bjorvatn B, Ursin R. Serotonin and the sleep/wake cycle: special emphasis on microdialysis studies. Prog Neurobiol. 2000;60:13–35.CrossRefPubMed
8.
Zurück zum Zitat Ghosh A, Greenberg ME. Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science. 1995;268:239–47.CrossRefPubMed Ghosh A, Greenberg ME. Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science. 1995;268:239–47.CrossRefPubMed
10.
Zurück zum Zitat Kohlmeier KA, Inoue T, Leonard CS. Hypocretin/orexin peptide signaling in the ascending arousal system: elevation of intracellular calcium in the mouse dorsal raphe and laterodorsal tegmentum. J Neurophysiol. 2004;92:221–35.CrossRefPubMed Kohlmeier KA, Inoue T, Leonard CS. Hypocretin/orexin peptide signaling in the ascending arousal system: elevation of intracellular calcium in the mouse dorsal raphe and laterodorsal tegmentum. J Neurophysiol. 2004;92:221–35.CrossRefPubMed
11.
Zurück zum Zitat Tuckwell HC. Biophysical properties and computational modeling of calcium spikes in serotonergic neurons of the dorsal raphe nucleus. Biosystems. 2013;112:204–13.CrossRefPubMed Tuckwell HC. Biophysical properties and computational modeling of calcium spikes in serotonergic neurons of the dorsal raphe nucleus. Biosystems. 2013;112:204–13.CrossRefPubMed
12.
Zurück zum Zitat Tuckwell HC, Penington NJ. Computational modeling of spike generation in serotonergic neurons of the dorsal raphe nucleus. Prog Neurobiol. 2014;118:59–101.CrossRefPubMed Tuckwell HC, Penington NJ. Computational modeling of spike generation in serotonergic neurons of the dorsal raphe nucleus. Prog Neurobiol. 2014;118:59–101.CrossRefPubMed
13.
Zurück zum Zitat Cui SY, Cui XY, Zhang J, Wang ZJ, Yu B, Sheng ZF, et al. Ca2+ modulation in dorsal raphe plays an important role in NREM and REM sleep regulation during pentobarbital hypnosis. Brain Res. 2011;1403:12–8.CrossRefPubMed Cui SY, Cui XY, Zhang J, Wang ZJ, Yu B, Sheng ZF, et al. Ca2+ modulation in dorsal raphe plays an important role in NREM and REM sleep regulation during pentobarbital hypnosis. Brain Res. 2011;1403:12–8.CrossRefPubMed
14.
Zurück zum Zitat Cui SY, Cui XY, Zhang J, Wang ZJ, Yu B, Sheng ZF, et al. Diltiazem potentiates pentobarbital-induced hypnosis via 5-HT1A and 5-HT2A/2C receptors: role for dorsal raphe nucleus. Pharmacol Biochem Behav. 2011;99:566–72.CrossRefPubMed Cui SY, Cui XY, Zhang J, Wang ZJ, Yu B, Sheng ZF, et al. Diltiazem potentiates pentobarbital-induced hypnosis via 5-HT1A and 5-HT2A/2C receptors: role for dorsal raphe nucleus. Pharmacol Biochem Behav. 2011;99:566–72.CrossRefPubMed
15.
Zurück zum Zitat Del Cid-Pellitero E, Garzón M. Medial prefrontal cortex receives input from dorsal raphe nucleus neurons targeted by hypocretin1/orexinA-containing axons. Neuroscience. 2011;172:30–43.CrossRefPubMed Del Cid-Pellitero E, Garzón M. Medial prefrontal cortex receives input from dorsal raphe nucleus neurons targeted by hypocretin1/orexinA-containing axons. Neuroscience. 2011;172:30–43.CrossRefPubMed
16.
Zurück zum Zitat Lee HS, Kim MA, Waterhouse BD. Retrograde double-labeling study of common afferent projections to the dorsal raphe and the nuclear core of the locus coeruleus in the rat. J Comp Neurol. 2005;481:179–93.CrossRefPubMed Lee HS, Kim MA, Waterhouse BD. Retrograde double-labeling study of common afferent projections to the dorsal raphe and the nuclear core of the locus coeruleus in the rat. J Comp Neurol. 2005;481:179–93.CrossRefPubMed
17.
Zurück zum Zitat Samuels ER, Szabadi E. Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organisation. Curr Neuropharmacol. 2008;6:235–53.CrossRefPubMedPubMedCentral Samuels ER, Szabadi E. Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organisation. Curr Neuropharmacol. 2008;6:235–53.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Sherin JE, Shiromani PJ, McCarley RW, Saper CB. Activation of ventrolateral preoptic neurons during sleep. Science. 1996;271:216–9.CrossRefPubMed Sherin JE, Shiromani PJ, McCarley RW, Saper CB. Activation of ventrolateral preoptic neurons during sleep. Science. 1996;271:216–9.CrossRefPubMed
19.
20.
Zurück zum Zitat Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X, et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell. 1999;98:365–76.CrossRefPubMed Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X, et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell. 1999;98:365–76.CrossRefPubMed
22.
Zurück zum Zitat Ito H, Yanase M, Yamashita A, Kitabatake C, Hamada A, Suhara Y, et al. Analysis of sleep disorders under pain using an optogenetic tool: possible involvement of the activation of dorsal raphe nucleus-serotonergic neurons. Mol Brain. 2013;6:59.CrossRefPubMedPubMedCentral Ito H, Yanase M, Yamashita A, Kitabatake C, Hamada A, Suhara Y, et al. Analysis of sleep disorders under pain using an optogenetic tool: possible involvement of the activation of dorsal raphe nucleus-serotonergic neurons. Mol Brain. 2013;6:59.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Nelson LE, Guo TZ, Lu J, Saper CB, Franks NP, Maze M. The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway. Nat Neurosci. 2002;5:979–84.CrossRefPubMed Nelson LE, Guo TZ, Lu J, Saper CB, Franks NP, Maze M. The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway. Nat Neurosci. 2002;5:979–84.CrossRefPubMed
24.
Zurück zum Zitat Celada P, Puig MV, Casanovas JM, Guillazo G, Artigas F. Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: Involvement of serotonin-1A, GABA(A), and glutamate receptors. J Neurosci. 2001;21:9917–29.PubMed Celada P, Puig MV, Casanovas JM, Guillazo G, Artigas F. Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: Involvement of serotonin-1A, GABA(A), and glutamate receptors. J Neurosci. 2001;21:9917–29.PubMed
25.
Zurück zum Zitat de Kock CP, Cornelisse LN, Burnashev N, Lodder JC, Timmerman AJ, Couey JJ, et al. NMDA receptors trigger neurosecretion of 5-HT within dorsal raphe nucleus of the rat in the absence of action potential firing. J Physiol. 2006;577:891–905.CrossRefPubMedPubMedCentral de Kock CP, Cornelisse LN, Burnashev N, Lodder JC, Timmerman AJ, Couey JJ, et al. NMDA receptors trigger neurosecretion of 5-HT within dorsal raphe nucleus of the rat in the absence of action potential firing. J Physiol. 2006;577:891–905.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Barbosa R, Scialfa JH, Terra IM, Cipolla-Neto J, Simonneaux V, Afeche SC. Tryptophan hydroxylase is modulated by L-type calcium channels in the rat pineal gland. Life Sci. 2008;82:529–35.CrossRefPubMed Barbosa R, Scialfa JH, Terra IM, Cipolla-Neto J, Simonneaux V, Afeche SC. Tryptophan hydroxylase is modulated by L-type calcium channels in the rat pineal gland. Life Sci. 2008;82:529–35.CrossRefPubMed
27.
Zurück zum Zitat Li SJ, Cui SY, Zhang XQ, Yu B, Sheng ZF, Huang YL, et al. PKC in rat dorsal raphe nucleus plays a key role in sleep-wake regulation. Prog Neuropsychopharmacol Biol Psychiatry. 2015;63:47–53.CrossRefPubMed Li SJ, Cui SY, Zhang XQ, Yu B, Sheng ZF, Huang YL, et al. PKC in rat dorsal raphe nucleus plays a key role in sleep-wake regulation. Prog Neuropsychopharmacol Biol Psychiatry. 2015;63:47–53.CrossRefPubMed
28.
Zurück zum Zitat Cui SY, Li SJ, Cui XY, Zhang XQ, Yu B, Sheng ZF, et al. Phosphorylation of CaMKII in the rat dorsal raphe nucleus plays an important role in sleep-wake regulation. J Neurochem. 2016;136:609–19.CrossRefPubMed Cui SY, Li SJ, Cui XY, Zhang XQ, Yu B, Sheng ZF, et al. Phosphorylation of CaMKII in the rat dorsal raphe nucleus plays an important role in sleep-wake regulation. J Neurochem. 2016;136:609–19.CrossRefPubMed
29.
Zurück zum Zitat Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature. 2005;437:1257–63.CrossRefPubMed Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature. 2005;437:1257–63.CrossRefPubMed
30.
Zurück zum Zitat Marston OJ, Williams RH, Canal MM, Samuels RE, Upton N, Piggins HD. Circadian and dark-pulse activation of orexin/hypocretin neurons. Mol Brain. 2008;1:19.CrossRefPubMedPubMedCentral Marston OJ, Williams RH, Canal MM, Samuels RE, Upton N, Piggins HD. Circadian and dark-pulse activation of orexin/hypocretin neurons. Mol Brain. 2008;1:19.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Jacobs BL, Azmitia EC. Structure and function of the brain serotonin system. Physiol Rev. 1992;72:165–229.PubMed Jacobs BL, Azmitia EC. Structure and function of the brain serotonin system. Physiol Rev. 1992;72:165–229.PubMed
32.
Zurück zum Zitat Monti JM, Jantos H. The role of serotonin 5-HT7 receptor in regulating sleep and wakefulness. Rev Neurosci. 2014;25:429–37.CrossRefPubMed Monti JM, Jantos H. The role of serotonin 5-HT7 receptor in regulating sleep and wakefulness. Rev Neurosci. 2014;25:429–37.CrossRefPubMed
33.
Zurück zum Zitat Giulietti M, Vivenzio V, Piva F, Principato G, Bellantuono C, Nardi B. How much do we know about the coupling of G-proteins to serotonin receptors? Mol Brain. 2014;7:49.CrossRefPubMedPubMedCentral Giulietti M, Vivenzio V, Piva F, Principato G, Bellantuono C, Nardi B. How much do we know about the coupling of G-proteins to serotonin receptors? Mol Brain. 2014;7:49.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Petersen SL, Hartman RD, Barraclough CA. An analysis of serotonin secretion in hypothalamic regions based on 5-hydroxytryptophan accumulation or push-pull perfusion. Effects of mesencephalic raphe or locus coeruleus stimulation and correlated changes in plasma luteinizing hormone. Brain Res. 1989;495:9–19.CrossRefPubMed Petersen SL, Hartman RD, Barraclough CA. An analysis of serotonin secretion in hypothalamic regions based on 5-hydroxytryptophan accumulation or push-pull perfusion. Effects of mesencephalic raphe or locus coeruleus stimulation and correlated changes in plasma luteinizing hormone. Brain Res. 1989;495:9–19.CrossRefPubMed
35.
Zurück zum Zitat Kaehler ST, Singewald N, Philippu A. Dependence of serotonin release in the locus coeruleus on dorsal raphe neuronal activity. Naunyn Schmiedebergs Arch Pharmacol. 1999;359:386–93.CrossRefPubMed Kaehler ST, Singewald N, Philippu A. Dependence of serotonin release in the locus coeruleus on dorsal raphe neuronal activity. Naunyn Schmiedebergs Arch Pharmacol. 1999;359:386–93.CrossRefPubMed
36.
Zurück zum Zitat Hamamura T, Lee Y, Fujiwara Y, Kuroda S. Serotonin1A receptor agonists induce Fos protein expression in the locus coeruleus of the conscious rat. Brain Res. 1997;759:156–9.CrossRefPubMed Hamamura T, Lee Y, Fujiwara Y, Kuroda S. Serotonin1A receptor agonists induce Fos protein expression in the locus coeruleus of the conscious rat. Brain Res. 1997;759:156–9.CrossRefPubMed
37.
Zurück zum Zitat Ortega JE, Mendiguren A, Pineda J, Meana JJ. Regulation of central noradrenergic activity by 5-HT(3) receptors located in the locus coeruleus of the rat. Neuropharmacology. 2012;62:2472–9.CrossRefPubMed Ortega JE, Mendiguren A, Pineda J, Meana JJ. Regulation of central noradrenergic activity by 5-HT(3) receptors located in the locus coeruleus of the rat. Neuropharmacology. 2012;62:2472–9.CrossRefPubMed
38.
Zurück zum Zitat Gallopin T, Fort P, Eggermann E, Cauli B, Luppi PH, Rossier J, et al. Identification of sleep-promoting neurons in vitro. Nature. 2000;404:992–5.CrossRefPubMed Gallopin T, Fort P, Eggermann E, Cauli B, Luppi PH, Rossier J, et al. Identification of sleep-promoting neurons in vitro. Nature. 2000;404:992–5.CrossRefPubMed
39.
Zurück zum Zitat Tabuchi S, Tsunematsu T, Kilduff TS, Sugio S, Xu M, Tanaka KF, et al. Influence of inhibitory serotonergic inputs to orexin/hypocretin neurons on the diurnal rhythm of sleep and wakefulness. Sleep. 2013;36:1391–404.PubMedPubMedCentral Tabuchi S, Tsunematsu T, Kilduff TS, Sugio S, Xu M, Tanaka KF, et al. Influence of inhibitory serotonergic inputs to orexin/hypocretin neurons on the diurnal rhythm of sleep and wakefulness. Sleep. 2013;36:1391–404.PubMedPubMedCentral
40.
Zurück zum Zitat Wang ZJ, Zhang XQ, Cui XY, Cui SY, Yu B, Sheng ZF, et al. Glucocorticoid receptors in the locus coeruleus mediate sleep disorders caused by repeated corticosterone treatment. Sci Rep. 2015;5:9442.CrossRefPubMedPubMedCentral Wang ZJ, Zhang XQ, Cui XY, Cui SY, Yu B, Sheng ZF, et al. Glucocorticoid receptors in the locus coeruleus mediate sleep disorders caused by repeated corticosterone treatment. Sci Rep. 2015;5:9442.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. 4th ed. San Diego: Academic; 1986. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. 4th ed. San Diego: Academic; 1986.
42.
Zurück zum Zitat Zhang J, Yu B, Zhang XQ, Sheng ZF, Li SJ, Wang ZJ, et al. Tetrandrine, an antihypertensive alkaloid, improves the sleep state of spontaneously hypertensive rats (SHRs). J Ethnopharmacol. 2014;151:729–32.CrossRefPubMed Zhang J, Yu B, Zhang XQ, Sheng ZF, Li SJ, Wang ZJ, et al. Tetrandrine, an antihypertensive alkaloid, improves the sleep state of spontaneously hypertensive rats (SHRs). J Ethnopharmacol. 2014;151:729–32.CrossRefPubMed
Metadaten
Titel
Ca2+ in the dorsal raphe nucleus promotes wakefulness via endogenous sleep-wake regulating pathway in the rats
verfasst von
Su-Ying Cui
Sheng-Jie Li
Xiang-Yu Cui
Xue-Qiong Zhang
Bin Yu
Yuan-Li Huang
Qing Cao
Ya-Ping Xu
Guang Yang
Hui Ding
Jin-Zhi Song
Hui Ye
Zhao-Fu Sheng
Zi-Jun Wang
Yong-He Zhang
Publikationsdatum
01.12.2016
Verlag
BioMed Central
Erschienen in
Molecular Brain / Ausgabe 1/2016
Elektronische ISSN: 1756-6606
DOI
https://doi.org/10.1186/s13041-016-0252-0

Weitere Artikel der Ausgabe 1/2016

Molecular Brain 1/2016 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.

Schützt Olivenöl vor dem Tod durch Demenz?

10.05.2024 Morbus Alzheimer Nachrichten

Konsumieren Menschen täglich 7 Gramm Olivenöl, ist ihr Risiko, an einer Demenz zu sterben, um mehr als ein Viertel reduziert – und dies weitgehend unabhängig von ihrer sonstigen Ernährung. Dafür sprechen Auswertungen zweier großer US-Studien.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.