Skip to main content
Erschienen in: Critical Care 1/2018

Open Access 01.12.2018 | Review

Ascorbic acid, corticosteroids, and thiamine in sepsis: a review of the biologic rationale and the present state of clinical evaluation

verfasst von: Ari Moskowitz, Lars W. Andersen, David T. Huang, Katherine M. Berg, Anne V. Grossestreuer, Paul E. Marik, Robert L. Sherwin, Peter C. Hou, Lance B. Becker, Michael N. Cocchi, Pratik Doshi, Jonathan Gong, Ayan Sen, Michael W. Donnino

Erschienen in: Critical Care | Ausgabe 1/2018

Abstract

The combination of thiamine, ascorbic acid, and hydrocortisone has recently emerged as a potential adjunctive therapy to antibiotics, infectious source control, and supportive care for patients with sepsis and septic shock. In the present manuscript, we provide a comprehensive review of the pathophysiologic basis and supporting research for each element of the thiamine, ascorbic acid, and hydrocortisone drug combination in sepsis. In addition, we describe potential areas of synergy between these therapies and discuss the strengths/weaknesses of the two studies to date which have evaluated the drug combination in patients with severe infection. Finally, we describe the current state of current clinical practice as it relates to the thiamine, ascorbic acid, and hydrocortisone combination and present an overview of the randomized, placebo-controlled, multi-center Ascorbic acid, Corticosteroids, and Thiamine in Sepsis (ACTS) trial and other planned/ongoing randomized clinical trials.
Abkürzungen
ACTS
Ascorbic acid, Corticosteroids, and Thiamine in Sepsis
ICU
Intensive care unit
NOX
NADPH oxidase pathway
SOFA
Sequential organ failure assessment

Background

Sepsis is a common and highly morbid condition with an estimated 1.7 million cases occurring in the United States each year, resulting in over 270,000 deaths [1]. Despite advances in critical care practices, sepsis remains the most common cause of death in non-cardiac intensive care units (ICUs) [2, 3]. Even among sepsis patients who survive their hospital stay, residual organ dysfunction requiring ongoing treatment after discharge is common [4]. Despite this high level of mortality and morbidity, antibiotics and source control remain the only focused therapies for this condition [5]. In a small, retrospective observational study of septic ICU patients, the combination of thiamine (200 mg every 12 h), ascorbic acid (1500 mg every 6 h), and hydrocortisone (50 mg every 6 h) was associated with a dramatic improvement in organ injury, time to shock reversal, and mortality as compared to historical controls at the same hospital [6]. Each component of this combination of therapies has been recently evaluated individually in septic shock patients. A prior pilot randomized trial found that the provision of thiamine to septic shock patients with elevated lactate attenuated organ dysfunction (particularly renal dysfunction) and reduced lactate levels and potentially mortality in those patients with baseline thiamine deficiency [7, 8]. In addition, two small randomized trials of ascorbic acid vs placebo in sepsis have demonstrated improved clinical outcomes [9, 10]. Finally, while there have been mixed results with respect to the benefit of corticosteroids in septic shock generally [11, 12], the addition of corticosteroids to ascorbic acid may have a synergistic effect [6, 1315].
In the present article, we review the biologic basis for and existing data supporting the use of thiamine, ascorbic acid, and corticosteroids in sepsis. We discuss the use of this drug combination in current clinical practice and the rationale for the currently enrolling Ascorbic Acid, Corticosteroids, and Thiamine in Sepsis (ACTS) trial, as well as other clinical trials addressing this question.

Organ dysfunction in sepsis

The traditional paradigm of organ dysfunction in sepsis has focused on decreased systemic vascular resistance resulting in decreased organ perfusion, and ultimately impaired oxygen delivery [1618]. Numerous studies, however, have shown that organ dysfunction can occur during sepsis and septic shock even in the absence of decreased perfusion [1921]. Notably, histopathologic analyses of organs following death from sepsis often fail to demonstrate any substantial amount of ischemic injury, but rather reveal remarkably preserved parenchyma or a predominant pattern of apoptosis, suggesting alternative mechanisms of organ dysfunction apart from hypoperfusion and independent of cellular oxygen delivery [2123]. A number of such mechanisms have been proposed and include mitochondrial dysfunction with resultant bioenergetic failure, a direct effect of the immune response to infection (related to pathogen-associated and damage-associated molecular patterns), microvascular abnormalities, endothelial dysfunction, and inter-organ cross-talk [24, 25].

Thiamine, ascorbic acid, and corticosteroids

The current management of sepsis and septic shock largely focuses on improving oxygen delivery via a combination of intravenous fluid and vasoactive medications while treating the infection with antibiotics and source control [5]. The combination of thiamine, ascorbic acid, and corticosteroids has been suggested as a potential adjunctive therapy targeted at non-oxygen delivery-dependent mechanisms of organ dysfunction (see Fig. 1 for a summary of suggested mechanisms).

Thiamine

Thiamine (vitamin B1) is a water-soluble vitamin that is a key component of a number of cellular metabolic processes. In its phosphorylated form, thiamine pyrophosphate, thiamine acts as a cofactor for pyruvate dehydrogenase, the enzyme necessary for converting pyruvate to acetyl-coenzyme A for entry into the Krebs cycle. When thiamine levels are insufficient, pyruvate is unable to be converted to acetyl coenzyme A, resulting in impaired aerobic respiration and a compulsory shift to the anaerobic pathway, resulting in elevated serum lactate levels [2628]. Thiamine also plays a role in the metabolism of branched-chain amino acids and is a critical component of the pentose phosphate pathway, which is essential for the generation of NADPH and therefore glutathione cycling, an important anti-oxidant pathway [2931]. A thiamine deficiency syndrome, beriberi, bears a number of similarities to sepsis, including peripheral vasodilation, cardiac dysfunction, and elevated lactate levels [29].
Thiamine deficiency is not rare in critically ill populations and may be associated with increased mortality in some cases [7, 29, 32, 33]. Further, thiamine levels are depleted during the course of critical illness and the administration of thiamine during critical illness may improve organ dysfunction [3436]. In a mouse model of cardiac arrest, the provision of thiamine improved mitochondrial function, reduced histologic signs of brain injury, and improved neurologic outcomes [37]. In a canine model of septic shock, thiamine pyrophosphate improved lactate clearance, oxygen consumption, and arterial pressure irrespective of thiamine deficiency status [38]. In the only randomized trial of thiamine in human septic shock, 88 patients were selected for increased risk of symptomatic thiamine deficiency based on a serum lactate > 3 mmol/L after volume resuscitation. In that study, there was no effect overall of thiamine on the primary outcome of median lactate level at 24 h, though there was a statistically significant difference when evaluating lactate levels at serial timepoints in the first 72 h. In a pre-defined subgroup of patients with thiamine deficiency (35% of the cohort), however, the administration of thiamine reduced lactate levels and improved mortality [7]. In a post hoc analysis of that study, patients without baseline end-stage renal disease who were given thiamine had better renal outcomes than those randomized to placebo [8]. Thiamine supplementation has not been shown to be associated with significant adverse effects, even at high doses [39]. Overall, these results suggest a role for thiamine supplementation as a low-risk and potentially high reward intervention for some patients with septic shock and increased baseline risk of thiamine deficiency.

Ascorbic acid

Like thiamine, ascorbic acid is a water-soluble vitamin essential for a number of processes in the human body. As an anti-oxidant, ascorbic acid is an electron donor that directly scavenges free radicals, prevents the generation of new free radicals through its suppressive effects on the NADPH oxidase (NOX) pathway, and assists in the recycling of other anti-oxidants [4042]. The anti-oxidant effect of ascorbic acid results in reduced endothelial permeability, improved microvascular and macrovascular function, and attenuated cellular apoptosis in pathological states [41, 43, 44]. In addition, ascorbic acid has a number of effects on the immune system, including regulation of macrophage function, reduction of inflammatory mediators, and even a direct bacteriostatic effect at high concentrations [4547]. Lastly, ascorbic acid is essential in the generation of endogenous vasopressors and may be important in maintaining vascular vasopressor responsiveness [41, 48].
Prior studies have found that plasma and cellular levels of ascorbic acid decline rapidly during critical illness [4951]. Similar to thiamine, ascorbic acid deficiency syndrome (scurvy) bears a number of similarities to sepsis, including malaise, coagulation abnormalities, and endothelial wall breakdown [49]. While interest in ascorbic acid for the management of critical illness has recently been reinvigorated, it is not new. The potential benefit of ascorbic acid for reducing resuscitation fluid requirements in burn patients and organ dysfunction in critically ill surgical patients was suggested over a decade ago [52, 53]. More recently, small randomized trials in sepsis have shown promise. In one study, 24 septic patients were randomized in a 1:1:1 ratio to receive high dose ascorbic acid (200 mg/kg), low dose ascorbic acid (50 mg/kg), or placebo. In that study, no adverse effects were related to the ascorbic acid and patients who received ascorbic acid had more rapid reduction in measures of organ injury, inflammation, and procalcitonin. There also appeared to be a dose–response relationship, with patients who received higher dose ascorbic acid having more rapid clinical improvement [9]. In a more recent study, 28 patients with vasopressor-dependent septic shock were randomized to 25 mg/kg of ascorbic acid every 6 h or placebo [10]. Those in the ascorbic acid arm required lower vasopressor doses and had lower mortality.
While the high doses of ascorbic acid given in the above clinical studies were not associated with any identified harms specific to the drug, one theoretical concern regarding the routine use of ascorbic acid in sepsis is the potential for increased oxalate excretion and the development of oxalate renal calculi [54]. Thiamine pyrophosphate is a key co-enzyme necessary for the function of glyoxylate aminotransferase, which catalyzes the breakdown of glyoxalate to carbon dioxide instead of oxalate. Thiamine deficiency states, therefore, may predispose to increased oxalate excretion [54, 55]. It should be further noted that short-term, intravenous ascorbic acid—even at high doses—has not been found to increase the risk of renal calculi in controlled trials to date [41, 43]. Other potential adverse effects of vitamin C include abdominal pain/bloating, increased iron absorption, hemolysis in patients with G6PD enzyme deficiency, and false negative results on fecal occult blood testing [56]. At very high doses, ascorbic acid may act as a pro-oxidant, although this has not been found to be the primary effect in vivo [41, 57]. Finally, high doses of ascorbic acid may falsely elevate glucose level readings when measured with certain point-of-care glucometers employing glucose dehydrogenase-pyrroloquinoline quinone amperometric methods [58].

Corticosteroids and ascorbic acid

A number of large, randomized trials have assessed the added benefit of corticosteroids when included as part of general septic shock management. These studies have generally shown corticosteroids to improve various clinical outcomes in septic shock (e.g., time to shock reversal, ventilator-free days), but there have been mixed results with respect to mortality [5962]. Whether the routine administration of hydrocortisone to patients with septic shock should be standard remains a matter of debate [11, 12].
The biologic basis for the inclusion of hydrocortisone in the drug combination, however, is based on potential synergy between ascorbic acid and hydrocortisone. Glucocorticoid binding to glucocorticoid receptors is negatively affected by oxidizing molecules. This may be reversed by the administration of ascorbic acid, which has been shown to restore glucocorticoid receptor function [13]. The cellular uptake of ascorbic acid is mediated by the sodium-vitamin C transporter (SVCT2), which is downregulated during inflammatory states. The administration of glucocorticoids has been shown to increase expression of the transporter [14, 15]. In a study examining the barrier function of human lung microvascular epithelial cells, the combination of ascorbic acid and hydrocortisone showed a synergistic barrier-protective effect after lipopolysaccharide exposure—above the combined effect of either agent when given alone [15].

Thiamine, ascorbic acid, and corticosteroids

The combination of thiamine, ascorbic acid, and corticosteroids has been studied in two, single center, before-and-after cohort studies [6, 63]. In addition to the above-referenced study by Marik et al., a recent study performed in South Korea compared 53 patients with severe pneumonia admitted to the ICU who received the thiamine, ascorbic acid, and hydrocortisone combination to historical controls. In that study, patients who received the thiamine, ascorbic acid, and hydrocortisone combination had a substantial mortality benefit (adjusted odds ratio 0.15, 95% CI 0.04–0.56). Although there were baseline imbalances in the ‘control’ and ‘treatment’ groups wherein patients in the ‘treatment’ group were more likely to have been receiving vasopressor and renal replacement therapy, the mortality benefit persisted after propensity-adjustment and propensity-matching. While these studies were the first to explore the drug combination in severe infection, their observational methodology, inclusion of non-consecutive and non-concurrent ‘control’ arms, small sample sizes, and single center nature represent significant limitations and preclude broad conclusions regarding the efficacy of this drug combination in sepsis.

Ascorbic acid, corticosteroids, and thiamine for the treatment of sepsis in current practice

As detailed above, scientific support for various elements of the thiamine, ascorbic acid, and hydrocortisone drug combination has existed for decades. Enthusiasm for this drug combination in sepsis has grown rapidly since 2016 due to the aforementioned paper by Marik et al. and the significant exposure it has received in both specialty medical blogs and the lay press [6468]. Reactions in specialty medical blogs were mixed, with some physicians supporting the incorporation of the ascorbic acid, corticosteroids, and thiamine drug combination into routine sepsis management [66] and others arguing for more rigorous testing of the drug combination [67, 68]. Arguments for more immediate uptake include the perceived low risk and relatively low cost of the intervention, biologic plausibility, and support from present literature, within the limitations that they represent. Arguments against include a long history of promising sepsis interventions that failed more rigorous scientific testing (e.g., activated protein C [69]), the unknown safety profile of high-dose ascorbic acid in critically ill populations (and in combination with corticosteroids and thiamine), and a general concern regarding the generalizability of results from single center observational studies. At present, our discussions with critical care leaders at a number of academic and community centers have found that practice patterns are mixed, with some clinicians opting for routine administration of the drug combination, others only administering the drug combination in sepsis patients who are decompensating despite traditional management, and others who do not administer the drug combination at all.

The Ascorbic Acid, Corticosteroids, and Thiamine in Sepsis (ACTS) trial and other ongoing clinical trials

The lack of adequate data exemplified by mixed practice patterns suggests a state of scientific equipoise has developed regarding the risk/benefit ratio of the routine administration of ascorbic acid, corticosteroids, and thiamine in sepsis. Randomized clinical trials are urgently needed to assess the effect of this drug combination on clinically important outcomes in sepsis. As of July 1st, 2018, a review of the World Health Organization International Clinical Trials Registry Program (which includes clinicaltrials.​gov) revealed nine ongoing or planned clinical trials of ascorbic acid, corticosteroids, and thiamine in six different countries (Table 1). These trials differ somewhat with respect to study populations (septic shock only vs sepsis or septic shock), control group interventions (the VITAMINS trial using hydrocortisone and the remainder choosing saline placebo), and primary outcomes, but all explore the intervention and daily doses proposed in the study by Marik et al [6]. Of note, the Vitamin C Infusion for Treatment in Sepsis Induced Acute Lung Injury (Citrus-ALI), a 170-patient trial of 200 mg/kg/day of ascorbic acid vs placebo in sepsis-induced acute lung injury, has completed enrollment, although results of this study are not yet available.
Table 1
Ongoing and planned clinical trials of thiamine, ascorbic acid, and corticosteroids, in sepsis
Trial name
Trial identifier
Country
Population
Primary outcome
Ascorbic acid, Corticosteroids, and Thiamine in Sepsis (ACTS) Trial
NCT03389555
USA
Septic shock
Change in SOFA score
Vitamin C, Thiamine and Steroids in Sepsis (VICTAS)
NCT03509350
USA
Sepsis with acute cardiovascular or respiratory compromise
Vasopressor- and ventilator-free days
Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Sepsis and Septic Shock (HYVCTTSSS)
NCT03258684
China
Sepsis or septic shock (Sepsis-3 Criteria)
Hospital mortality
The Effect of Vitamin C, Thiamine and Hydrocortisone on Clinical Course and Outcome in Patients With Severe Sepsis and Septic Shock
NCT03335124
Slovenia
Severe sepsis or septic shock
Hospital mortality
Metabolic Resuscitation Using Ascorbic Acid, Thiamine, and Glucocorticoids in Sepsis (ORANGES)
NCT03422159
USA
Sepsis or septic shock
Hospital mortality
The Vitamin C, Hydrocortisone and Thiamine in Patients With Septic Shock Trial (VITAMINS)
NCT03333278
Australia and New Zealand
Septic shock
Vasopressor-free days
Evaluation of Hydrocortisone, Vitamin C and Thiamine for the Treatment of Septic Shock (HYVITS)
NCT03380507
Qatar
Septic shock
Hospital mortality
Steroids, Thiamine, and Vitamin C in Septic Shock (STACSS)
CTRI/2018/04/013384
India
Septic shock
Shock reversal
Thiamine, Vitamin C and Hydrocortisone in the Treatment of Septic Shock
NCT03540628
USA
Septic shock
Mortality (as compared to the study by Marik et al. [6])
Our study, the Ascorbic Acid, Corticosteroids, and Thiamine in Sepsis (ACTS) Trial is a multi-center randomized clinical trial in the United States aimed at assessing the effect of the drug combination on organ function and other outcomes in septic shock. The ACTS trial is coordinated by the Center for Resuscitation Science at Beth Israel Deaconess Medical Center (BIDMC) in Boston, MA, USA and is currently enrolling. The trial is supported by the Open Philanthropy Project (https://​www.​openphilanthropy​.​org/​). Patients are randomized in a 1:1 ratio to receive thiamine (100 mg), ascorbic acid (1500 mg), and hydrocortisone (50 mg) or matching placebo four times daily for 4 days. The primary outcome is change in the Sequential Organ Failure Assessment (SOFA) score from baseline to 72 h, with key secondary outcomes including the incidence of renal failure and 30-day mortality. The primary outcome of 72-h SOFA score was selected to reflect the anticipated beneficial effects of thiamine, ascorbic acid, and corticosteroids on organ function. As organ dysfunction is a defining element of sepsis and a major determinant of survival, this outcome is patient centered and the attenuation of organ dysfunction may be practice changing. Further, the SOFA score can be measured early in a patient’s hospital course and is therefore less impacted by downstream elements of hospital care than overall mortality.
The ACTS trial, in combination with the other trials described above, may provide important validation of the results found by Marik et al. Should those results be replicated, the potential benefit in terms of lives saved world-wide annually from sepsis could be measured in the hundreds of thousands. Even if the results from Marik et al. are not replicated, the ACTS trial and other trials of thiamine, ascorbic acid, and corticosteroids will provide important scientific data regarding the effect of metabolic resuscitation in sepsis that may guide future studies in this area. Given concerns about reproducibility in science [70], replication of results in different patient populations is crucial to demonstrating a true, generalizable effect. The multiple ongoing trials testing this drug combination creates a rare scenario in critical care medicine research where multiple, independent investigators are exploring the effects of a single intervention in unique patient cohorts. Further, a prospectively planned patient-level metanalysis combining data from the ACTS trial and the VICTAS trial would provide increased power and an ability to better explore the effect of thiamine, ascorbic acid, and hydrocortisone in certain patient subgroups [71].

Conclusions

The combination of thiamine, ascorbic acid, and corticosteroids is a promising new therapy for sepsis resuscitation but currently lacks robust evidence to support its widespread use. The potential effectiveness of this medication combination is rooted in biologic plausibility and supported by small clinical trials of the various individual components. Randomized data to confirm or refute the observational evidence for the drug combination are needed, and several clinical trials are ongoing or planned in the near future. We therefore anticipate a timely answer to the question of whether thiamine, ascorbic acid, and corticosteroids will play a role in the evolution of sepsis therapies.

Acknowledgements

ACTS Clinical Trial Investigators (not listed on main author line).
Dr. Ronny Otero.
Dr. Junior Uduman.
Dr. Jessica B. McCannon.
Dr. Mark Hershey.
Dr. Maksim Korotun.
Dr. Ayelet Hilewitz.
Dr. Hyung K. Kim.

Funding

The ACTS trial is supported by a grant from the Open Philanthropy Project. Dr. Cocchi is funded by a grant from the American Heart Association (15SDG22420010). Dr. Moskowitz and Dr. Berg are supported by grants from the National Institutes of Health (K23GM128005–01 & 1K23HL128814–01, respectively). Dr. Grossestreuer is supported by a KL2/Catalyst Medical Research Investigator Training award (an appointed KL2 award) from Harvard Catalyst |The Harvard Clinical and Translational Science Center (National Center for Research Resources and the National Center for Advancing Translational Sciences, National Institutes of Health Award KL2 TR001100) Dr. Hou is supported by a grant from the National Institutes of Health (UO1HL122989–03).

Availability of data and materials

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.
Not applicable.
Not applicable.

Competing interests

The authors are currently conducting the Ascorbic Acid, Corticosteroids, and Thiamine in Sepsis (ACTS) clinical trial.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Rhee C, Dantes R, Epstein L, Murphy DJ, Seymour CW, Iwashyna TJ, et al. Incidence and trends of sepsis in US hospitals using clinical vs claims data, 2009-2014. JAMA. 2017;318(13):1241–9.CrossRefPubMedPubMedCentral Rhee C, Dantes R, Epstein L, Murphy DJ, Seymour CW, Iwashyna TJ, et al. Incidence and trends of sepsis in US hospitals using clinical vs claims data, 2009-2014. JAMA. 2017;318(13):1241–9.CrossRefPubMedPubMedCentral
2.
3.
Zurück zum Zitat Stevenson EK, Rubenstein AR, Radin GT, Wiener RS, Walkey AJ. Two decades of mortality trends among patients with severe sepsis: a comparative meta-analysis. Crit Care Med. 2014;42(3):625–31.CrossRefPubMedPubMedCentral Stevenson EK, Rubenstein AR, Radin GT, Wiener RS, Walkey AJ. Two decades of mortality trends among patients with severe sepsis: a comparative meta-analysis. Crit Care Med. 2014;42(3):625–31.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving Sepsis Campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med. 2017;45(3):486–552.CrossRefPubMed Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving Sepsis Campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med. 2017;45(3):486–552.CrossRefPubMed
6.
Zurück zum Zitat Marik PE, Khangoora V, Rivera R, Hooper MH, Catravas J. Hydrocortisone, vitamin C and thiamine for the treatment of severe sepsis and septic shock: a retrospective before-after study. Chest. 2017;151(6):1229–38.CrossRefPubMed Marik PE, Khangoora V, Rivera R, Hooper MH, Catravas J. Hydrocortisone, vitamin C and thiamine for the treatment of severe sepsis and septic shock: a retrospective before-after study. Chest. 2017;151(6):1229–38.CrossRefPubMed
7.
Zurück zum Zitat Donnino MW, Andersen LW, Chase M, Berg KM, Tidswell M, Giberson T, et al. Randomized, double-blind, placebo-controlled trial of thiamine as a metabolic resuscitator in septic shock: a pilot study. Crit Care Med. 2016;44(2):360–7.CrossRefPubMedPubMedCentral Donnino MW, Andersen LW, Chase M, Berg KM, Tidswell M, Giberson T, et al. Randomized, double-blind, placebo-controlled trial of thiamine as a metabolic resuscitator in septic shock: a pilot study. Crit Care Med. 2016;44(2):360–7.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Moskowitz A, Andersen LW, Cocchi MN, Karlsson M, Patel PV, Donnino MW. Thiamine as a renal protective agent in septic shock. a secondary analysis of a randomized, double-blind, placebo-controlled trial. Ann Am Thorac Soc. 2017;14(5):737–41.CrossRefPubMedPubMedCentral Moskowitz A, Andersen LW, Cocchi MN, Karlsson M, Patel PV, Donnino MW. Thiamine as a renal protective agent in septic shock. a secondary analysis of a randomized, double-blind, placebo-controlled trial. Ann Am Thorac Soc. 2017;14(5):737–41.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Fowler AA 3rd, Syed AA, Knowlson S, Sculthorpe R, Farthing D, DeWilde C, et al. Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis. J Transl Med. 2014;12:32.CrossRefPubMedPubMedCentral Fowler AA 3rd, Syed AA, Knowlson S, Sculthorpe R, Farthing D, DeWilde C, et al. Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis. J Transl Med. 2014;12:32.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Zabet MH, Mohammadi M, Ramezani M, Khalili H. Effect of high-dose Ascorbic acid on vasopressor's requirement in septic shock. J Res Pharm Pract. 2016;5(2):94–100.CrossRefPubMedPubMedCentral Zabet MH, Mohammadi M, Ramezani M, Khalili H. Effect of high-dose Ascorbic acid on vasopressor's requirement in septic shock. J Res Pharm Pract. 2016;5(2):94–100.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Rochwerg B, Oczkowski SJ, Siemieniuk RAC, Agoritsas T, Belley-Cote E, D'Aragon F, et al. Corticosteroids in sepsis: an updated systematic review and meta-analysis. Crit Care Med. 2018;46(9):1411–20.CrossRefPubMed Rochwerg B, Oczkowski SJ, Siemieniuk RAC, Agoritsas T, Belley-Cote E, D'Aragon F, et al. Corticosteroids in sepsis: an updated systematic review and meta-analysis. Crit Care Med. 2018;46(9):1411–20.CrossRefPubMed
12.
Zurück zum Zitat Rygard SL, Butler E, Granholm A, Moller MH, Cohen J, Finfer S, et al. Low-dose corticosteroids for adult patients with septic shock: a systematic review with meta-analysis and trial sequential analysis. Intensive Care Med. 2018;44(7):1003–16.CrossRefPubMed Rygard SL, Butler E, Granholm A, Moller MH, Cohen J, Finfer S, et al. Low-dose corticosteroids for adult patients with septic shock: a systematic review with meta-analysis and trial sequential analysis. Intensive Care Med. 2018;44(7):1003–16.CrossRefPubMed
13.
Zurück zum Zitat Okamoto K, Tanaka H, Makino Y, Makino I. Restoration of the glucocorticoid receptor function by the phosphodiester compound of vitamins C and E, EPC-K1 (L-ascorbic acid 2-[3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-1-benzopyran-6 -yl hydrogen phosphate] potassium salt), via a redox-dependent mechanism. Biochem Pharmacol. 1998;56(1):79–86.CrossRefPubMed Okamoto K, Tanaka H, Makino Y, Makino I. Restoration of the glucocorticoid receptor function by the phosphodiester compound of vitamins C and E, EPC-K1 (L-ascorbic acid 2-[3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-1-benzopyran-6 -yl hydrogen phosphate] potassium salt), via a redox-dependent mechanism. Biochem Pharmacol. 1998;56(1):79–86.CrossRefPubMed
14.
Zurück zum Zitat Fujita I, Hirano J, Itoh N, Nakanishi T, Tanaka K. Dexamethasone induces sodium-dependant vitamin C transporter in a mouse osteoblastic cell line MC3T3-E1. Br J Nutr. 2001;86(2):145–9.CrossRefPubMed Fujita I, Hirano J, Itoh N, Nakanishi T, Tanaka K. Dexamethasone induces sodium-dependant vitamin C transporter in a mouse osteoblastic cell line MC3T3-E1. Br J Nutr. 2001;86(2):145–9.CrossRefPubMed
15.
Zurück zum Zitat Barabutis N, Khangoora V, Marik PE, Catravas JD. Hydrocortisone and ascorbic acid synergistically prevent and repair lipopolysaccharide-induced pulmonary endothelial barrier dysfunction. Chest. 2017;152(5):954–62.CrossRefPubMedPubMedCentral Barabutis N, Khangoora V, Marik PE, Catravas JD. Hydrocortisone and ascorbic acid synergistically prevent and repair lipopolysaccharide-induced pulmonary endothelial barrier dysfunction. Chest. 2017;152(5):954–62.CrossRefPubMedPubMedCentral
16.
17.
Zurück zum Zitat Landry DW, Oliver JA. The pathogenesis of vasodilatory shock. N Engl J Med. 2001;345(8):588–95.CrossRefPubMed Landry DW, Oliver JA. The pathogenesis of vasodilatory shock. N Engl J Med. 2001;345(8):588–95.CrossRefPubMed
18.
Zurück zum Zitat Honore PM, Jacobs R, De Waele E, Diltoer M, Spapen HD. Renal blood flow and acute kidney injury in septic shock: an arduous conflict that smolders intrarenally? Kidney Int. 2016;90(1):22–4.CrossRefPubMed Honore PM, Jacobs R, De Waele E, Diltoer M, Spapen HD. Renal blood flow and acute kidney injury in septic shock: an arduous conflict that smolders intrarenally? Kidney Int. 2016;90(1):22–4.CrossRefPubMed
19.
Zurück zum Zitat Legrand M, Dupuis C, Simon C, Gayat E, Mateo J, Lukaszewicz AC, et al. Association between systemic hemodynamics and septic acute kidney injury in critically ill patients: a retrospective observational study. Crit Care. 2013;17(6):R278.CrossRefPubMedPubMedCentral Legrand M, Dupuis C, Simon C, Gayat E, Mateo J, Lukaszewicz AC, et al. Association between systemic hemodynamics and septic acute kidney injury in critically ill patients: a retrospective observational study. Crit Care. 2013;17(6):R278.CrossRefPubMedPubMedCentral
20.
21.
Zurück zum Zitat Maiden MJ, Otto S, Brealey JK, Finnis ME, Chapman MJ, Kuchel TR, et al. Structure and function of the kidney in septic shock. A prospective controlled experimental study. Am J Respir Crit Care Med. 2016;194(6):692–700.CrossRefPubMed Maiden MJ, Otto S, Brealey JK, Finnis ME, Chapman MJ, Kuchel TR, et al. Structure and function of the kidney in septic shock. A prospective controlled experimental study. Am J Respir Crit Care Med. 2016;194(6):692–700.CrossRefPubMed
22.
Zurück zum Zitat Takasu O, Gaut JP, Watanabe E, To K, Fagley RE, Sato B, et al. Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. Am J Respir Crit Care Med. 2013;187(5):509–17.CrossRefPubMedPubMedCentral Takasu O, Gaut JP, Watanabe E, To K, Fagley RE, Sato B, et al. Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. Am J Respir Crit Care Med. 2013;187(5):509–17.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Kosaka J, Lankadeva YR, May CN, Bellomo R. Histopathology of septic acute kidney injury: a systematic review of experimental data. Crit Care Med. 2016;44(9):e897–903.CrossRefPubMed Kosaka J, Lankadeva YR, May CN, Bellomo R. Histopathology of septic acute kidney injury: a systematic review of experimental data. Crit Care Med. 2016;44(9):e897–903.CrossRefPubMed
24.
Zurück zum Zitat Lelubre C, Vincent JL. Mechanisms and treatment of organ failure in sepsis. Nat Rev Nephrol. 2018;14(7):417–27.CrossRefPubMed Lelubre C, Vincent JL. Mechanisms and treatment of organ failure in sepsis. Nat Rev Nephrol. 2018;14(7):417–27.CrossRefPubMed
25.
Zurück zum Zitat Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 2002;360(9328):219–23.CrossRefPubMed Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 2002;360(9328):219–23.CrossRefPubMed
26.
Zurück zum Zitat Manzanares W, Hardy G. Thiamine supplementation in the critically ill. Curr Opin Clin Nutr Metab Care. 2011;14(6):610–7.CrossRefPubMed Manzanares W, Hardy G. Thiamine supplementation in the critically ill. Curr Opin Clin Nutr Metab Care. 2011;14(6):610–7.CrossRefPubMed
27.
Zurück zum Zitat Frank RA, Leeper FJ, Luisi BF. Structure, mechanism and catalytic duality of thiamine-dependent enzymes. Cell Mol Life Sci. 2007;64(7–8):892–905.CrossRefPubMed Frank RA, Leeper FJ, Luisi BF. Structure, mechanism and catalytic duality of thiamine-dependent enzymes. Cell Mol Life Sci. 2007;64(7–8):892–905.CrossRefPubMed
28.
Zurück zum Zitat Andersen LW, Holmberg MJ, Berg KM, Chase M, Cocchi MN, Sulmonte C, et al. Thiamine as an adjunctive therapy in cardiac surgery: a randomized, double-blind, placebo-controlled, phase II trial. Crit Care. 2016;20:92.CrossRefPubMedPubMedCentral Andersen LW, Holmberg MJ, Berg KM, Chase M, Cocchi MN, Sulmonte C, et al. Thiamine as an adjunctive therapy in cardiac surgery: a randomized, double-blind, placebo-controlled, phase II trial. Crit Care. 2016;20:92.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Gioda CR, de Oliveira Barreto T, Primola-Gomes TN, de Lima DC, Campos PP, Capettini Ldos S, et al. Cardiac oxidative stress is involved in heart failure induced by thiamine deprivation in rats. Am J Physiol Heart Circ Physiol. 2010;298(6):H2039–45.CrossRefPubMed Gioda CR, de Oliveira Barreto T, Primola-Gomes TN, de Lima DC, Campos PP, Capettini Ldos S, et al. Cardiac oxidative stress is involved in heart failure induced by thiamine deprivation in rats. Am J Physiol Heart Circ Physiol. 2010;298(6):H2039–45.CrossRefPubMed
31.
Zurück zum Zitat Pacal L, Tomandl J, Svojanovsky J, Krusova D, Stepankova S, Rehorova J, et al. Role of thiamine status and genetic variability in transketolase and other pentose phosphate cycle enzymes in the progression of diabetic nephropathy. Nephrol Dial Transplant. 2011;26(4):1229–36.CrossRefPubMed Pacal L, Tomandl J, Svojanovsky J, Krusova D, Stepankova S, Rehorova J, et al. Role of thiamine status and genetic variability in transketolase and other pentose phosphate cycle enzymes in the progression of diabetic nephropathy. Nephrol Dial Transplant. 2011;26(4):1229–36.CrossRefPubMed
32.
Zurück zum Zitat Cruickshank AM, Telfer AB, Shenkin A. Thiamine deficiency in the critically ill. Intensive Care Med. 1988;14(4):384–7.CrossRefPubMed Cruickshank AM, Telfer AB, Shenkin A. Thiamine deficiency in the critically ill. Intensive Care Med. 1988;14(4):384–7.CrossRefPubMed
33.
Zurück zum Zitat Corcoran TB, O'Neill MA, Webb SA, Ho KM. Prevalence of vitamin deficiencies on admission: relationship to hospital mortality in critically ill patients. Anaesth Intensive Care. 2009;37(2):254–60.PubMed Corcoran TB, O'Neill MA, Webb SA, Ho KM. Prevalence of vitamin deficiencies on admission: relationship to hospital mortality in critically ill patients. Anaesth Intensive Care. 2009;37(2):254–60.PubMed
34.
Zurück zum Zitat Donnino MW, Carney E, Cocchi MN, Barbash I, Chase M, Joyce N, et al. Thiamine deficiency in critically ill patients with sepsis. J Crit Care. 2010;25(4):576–81.CrossRefPubMed Donnino MW, Carney E, Cocchi MN, Barbash I, Chase M, Joyce N, et al. Thiamine deficiency in critically ill patients with sepsis. J Crit Care. 2010;25(4):576–81.CrossRefPubMed
35.
Zurück zum Zitat Nuzzo E, Berg KM, Andersen LW, Balkema J, Montissol S, Cocchi MN, et al. Pyruvate dehydrogenase activity is decreased in the peripheral blood mononuclear cells of patients with sepsis. A prospective observational trial. Ann Am Thorac Soc. 2015;12(11):1662–6.PubMedPubMedCentral Nuzzo E, Berg KM, Andersen LW, Balkema J, Montissol S, Cocchi MN, et al. Pyruvate dehydrogenase activity is decreased in the peripheral blood mononuclear cells of patients with sepsis. A prospective observational trial. Ann Am Thorac Soc. 2015;12(11):1662–6.PubMedPubMedCentral
36.
Zurück zum Zitat Donnino MW, Cocchi MN, Smithline H, Carney E, Chou PP, Salciccioli J. Coronary artery bypass graft surgery depletes plasma thiamine levels. Nutrition. 2010;26(1):133–6.CrossRefPubMedPubMedCentral Donnino MW, Cocchi MN, Smithline H, Carney E, Chou PP, Salciccioli J. Coronary artery bypass graft surgery depletes plasma thiamine levels. Nutrition. 2010;26(1):133–6.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Ikeda K, Liu X, Kida K, Marutani E, Hirai S, Sakaguchi M, et al. Thiamine as a neuroprotective agent after cardiac arrest. Resuscitation. 2016;105:138–44.CrossRefPubMed Ikeda K, Liu X, Kida K, Marutani E, Hirai S, Sakaguchi M, et al. Thiamine as a neuroprotective agent after cardiac arrest. Resuscitation. 2016;105:138–44.CrossRefPubMed
38.
Zurück zum Zitat Lindenbaum GA, Larrieu AJ, Carroll SF, Kapusnick RA. Effect of cocarboxylase in dogs subjected to experimental septic shock. Crit Care Med. 1989;17(10):1036–40.CrossRefPubMed Lindenbaum GA, Larrieu AJ, Carroll SF, Kapusnick RA. Effect of cocarboxylase in dogs subjected to experimental septic shock. Crit Care Med. 1989;17(10):1036–40.CrossRefPubMed
39.
Zurück zum Zitat Donnino MW, Vega J, Miller J, Walsh M. Myths and misconceptions of Wernicke's encephalopathy: what every emergency physician should know. Ann Emerg Med. 2007;50(6):715–21.CrossRefPubMed Donnino MW, Vega J, Miller J, Walsh M. Myths and misconceptions of Wernicke's encephalopathy: what every emergency physician should know. Ann Emerg Med. 2007;50(6):715–21.CrossRefPubMed
40.
Zurück zum Zitat Mortensen A, Lykkesfeldt J. Does vitamin C enhance nitric oxide bioavailability in a tetrahydrobiopterin-dependent manner? In vitro, in vivo and clinical studies. Nitric Oxide. 2014;36:51–7.CrossRefPubMed Mortensen A, Lykkesfeldt J. Does vitamin C enhance nitric oxide bioavailability in a tetrahydrobiopterin-dependent manner? In vitro, in vivo and clinical studies. Nitric Oxide. 2014;36:51–7.CrossRefPubMed
42.
Zurück zum Zitat Wu F, Tyml K, Wilson JX. iNOS expression requires NADPH oxidase-dependent redox signaling in microvascular endothelial cells. J Cell Physiol. 2008;217(1):207–14.CrossRefPubMedPubMedCentral Wu F, Tyml K, Wilson JX. iNOS expression requires NADPH oxidase-dependent redox signaling in microvascular endothelial cells. J Cell Physiol. 2008;217(1):207–14.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Amrein K, Oudemans-van Straaten HM, Berger MM. Vitamin therapy in critically ill patients: focus on thiamine, vitamin C, and vitamin D. Intensive Care Med. 2018. Amrein K, Oudemans-van Straaten HM, Berger MM. Vitamin therapy in critically ill patients: focus on thiamine, vitamin C, and vitamin D. Intensive Care Med. 2018.
44.
Zurück zum Zitat Kc S, Carcamo JM, Golde DW. Vitamin C enters mitochondria via facilitative glucose transporter 1 (Glut1) and confers mitochondrial protection against oxidative injury. FASEB J. 2005;19(12):1657–67.CrossRefPubMed Kc S, Carcamo JM, Golde DW. Vitamin C enters mitochondria via facilitative glucose transporter 1 (Glut1) and confers mitochondrial protection against oxidative injury. FASEB J. 2005;19(12):1657–67.CrossRefPubMed
45.
Zurück zum Zitat Victor VV, Guayerbas N, Puerto M, Medina S, De la Fuente M. Ascorbic acid modulates in vitro the function of macrophages from mice with endotoxic shock. Immunopharmacology. 2000;46(1):89–101.CrossRefPubMed Victor VV, Guayerbas N, Puerto M, Medina S, De la Fuente M. Ascorbic acid modulates in vitro the function of macrophages from mice with endotoxic shock. Immunopharmacology. 2000;46(1):89–101.CrossRefPubMed
46.
Zurück zum Zitat Armour J, Tyml K, Lidington D, Wilson JX. Ascorbate prevents microvascular dysfunction in the skeletal muscle of the septic rat. J Appl Physiol. 2001;90(3):795–803.CrossRefPubMed Armour J, Tyml K, Lidington D, Wilson JX. Ascorbate prevents microvascular dysfunction in the skeletal muscle of the septic rat. J Appl Physiol. 2001;90(3):795–803.CrossRefPubMed
47.
Zurück zum Zitat Carcamo JM, Pedraza A, Borquez-Ojeda O, Golde DW. Vitamin C suppresses TNF alpha-induced NF kappa B activation by inhibiting I kappa B alpha phosphorylation. Biochemistry. 2002;41(43):12995–3002.CrossRefPubMed Carcamo JM, Pedraza A, Borquez-Ojeda O, Golde DW. Vitamin C suppresses TNF alpha-induced NF kappa B activation by inhibiting I kappa B alpha phosphorylation. Biochemistry. 2002;41(43):12995–3002.CrossRefPubMed
48.
Zurück zum Zitat Carr AC, Shaw GM, Fowler AA, Natarajan R. Ascorbate-dependent vasopressor synthesis: a rationale for vitamin C administration in severe sepsis and septic shock? Crit Care. 2015;19:418.CrossRefPubMedPubMedCentral Carr AC, Shaw GM, Fowler AA, Natarajan R. Ascorbate-dependent vasopressor synthesis: a rationale for vitamin C administration in severe sepsis and septic shock? Crit Care. 2015;19:418.CrossRefPubMedPubMedCentral
50.
51.
Zurück zum Zitat Carr AC, Rosengrave PC, Bayer S, Chambers S, Mehrtens J, Shaw GM. Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes. Crit Care. 2017;21(1):300.CrossRefPubMedPubMedCentral Carr AC, Rosengrave PC, Bayer S, Chambers S, Mehrtens J, Shaw GM. Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes. Crit Care. 2017;21(1):300.CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Tanaka H, Matsuda T, Miyagantani Y, Yukioka T, Matsuda H, Shimazaki S. Reduction of resuscitation fluid volumes in severely burned patients using ascorbic acid administration: a randomized, prospective study. Arch Surg. 2000;135(3):326–31.CrossRefPubMed Tanaka H, Matsuda T, Miyagantani Y, Yukioka T, Matsuda H, Shimazaki S. Reduction of resuscitation fluid volumes in severely burned patients using ascorbic acid administration: a randomized, prospective study. Arch Surg. 2000;135(3):326–31.CrossRefPubMed
53.
Zurück zum Zitat Nathens AB, Neff MJ, Jurkovich GJ, Klotz P, Farver K, Ruzinski JT, et al. Randomized, prospective trial of antioxidant supplementation in critically ill surgical patients. Ann Surg. 2002;236(6):814–22.CrossRefPubMedPubMedCentral Nathens AB, Neff MJ, Jurkovich GJ, Klotz P, Farver K, Ruzinski JT, et al. Randomized, prospective trial of antioxidant supplementation in critically ill surgical patients. Ann Surg. 2002;236(6):814–22.CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Marik PE. Vitamin C for the treatment of sepsis: the scientific rationale. Pharmacol Ther. 2018;189:63–70.CrossRefPubMed Marik PE. Vitamin C for the treatment of sepsis: the scientific rationale. Pharmacol Ther. 2018;189:63–70.CrossRefPubMed
56.
Zurück zum Zitat Levine M, Rumsey SC, Daruwala R, Park JB, Wang Y. Criteria and recommendations for vitamin C intake. JAMA. 1999;281(15):1415–23.CrossRefPubMed Levine M, Rumsey SC, Daruwala R, Park JB, Wang Y. Criteria and recommendations for vitamin C intake. JAMA. 1999;281(15):1415–23.CrossRefPubMed
57.
58.
Zurück zum Zitat Flannery AH, Bastin MLT, Magee CA, Bensadoun ES. Vitamin C in sepsis: when it seems too sweet, it might (literally) be. Chest. 2017;152(2):450–1.CrossRefPubMed Flannery AH, Bastin MLT, Magee CA, Bensadoun ES. Vitamin C in sepsis: when it seems too sweet, it might (literally) be. Chest. 2017;152(2):450–1.CrossRefPubMed
59.
Zurück zum Zitat Venkatesh B, Finfer S, Cohen J, Rajbhandari D, Arabi Y, Bellomo R, et al. Adjunctive glucocorticoid therapy in patients with septic shock. N Engl J Med. 2018;378(9):797–808.CrossRefPubMed Venkatesh B, Finfer S, Cohen J, Rajbhandari D, Arabi Y, Bellomo R, et al. Adjunctive glucocorticoid therapy in patients with septic shock. N Engl J Med. 2018;378(9):797–808.CrossRefPubMed
60.
Zurück zum Zitat Annane D, Sebille V, Charpentier C, Bollaert PE, Francois B, Korach JM, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA. 2002;288(7):862–71.CrossRefPubMed Annane D, Sebille V, Charpentier C, Bollaert PE, Francois B, Korach JM, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA. 2002;288(7):862–71.CrossRefPubMed
61.
Zurück zum Zitat Annane D, Renault A, Brun-Buisson C, Megarbane B, Quenot JP, Siami S, et al. Hydrocortisone plus fludrocortisone for adults with septic shock. N Engl J Med. 2018;378(9):809–18.CrossRefPubMed Annane D, Renault A, Brun-Buisson C, Megarbane B, Quenot JP, Siami S, et al. Hydrocortisone plus fludrocortisone for adults with septic shock. N Engl J Med. 2018;378(9):809–18.CrossRefPubMed
62.
Zurück zum Zitat Sprung CL, Annane D, Keh D, Moreno R, Singer M, Freivogel K, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008;358(2):111–24.CrossRefPubMed Sprung CL, Annane D, Keh D, Moreno R, Singer M, Freivogel K, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008;358(2):111–24.CrossRefPubMed
63.
Zurück zum Zitat Kim W-Y, Jo E-J, Eom JS, Mok J, Kim M-H, Kim KU, et al. Combined vitamin C, hydrocortisone, and thiamine therapy for patients with severe pneumonia who were admitted to the intensive care unit: Propensity score-based analysis of a before-after cohort study. J Crit Care. 2018;47:211–8.CrossRefPubMed Kim W-Y, Jo E-J, Eom JS, Mok J, Kim M-H, Kim KU, et al. Combined vitamin C, hydrocortisone, and thiamine therapy for patients with severe pneumonia who were admitted to the intensive care unit: Propensity score-based analysis of a before-after cohort study. J Crit Care. 2018;47:211–8.CrossRefPubMed
69.
Zurück zum Zitat Ranieri VM, Thompson BT, Barie PS, Dhainaut JF, Douglas IS, Finfer S, et al. Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med. 2012;366(22):2055–64.CrossRefPubMed Ranieri VM, Thompson BT, Barie PS, Dhainaut JF, Douglas IS, Finfer S, et al. Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med. 2012;366(22):2055–64.CrossRefPubMed
71.
Zurück zum Zitat Reade MC, Delaney A, Bailey MJ, Harrison DA, Yealy DM, Jones PG, et al. Prospective meta-analysis using individual patient data in intensive care medicine. Intensive Care Med. 2010;36(1):11–21.CrossRefPubMed Reade MC, Delaney A, Bailey MJ, Harrison DA, Yealy DM, Jones PG, et al. Prospective meta-analysis using individual patient data in intensive care medicine. Intensive Care Med. 2010;36(1):11–21.CrossRefPubMed
Metadaten
Titel
Ascorbic acid, corticosteroids, and thiamine in sepsis: a review of the biologic rationale and the present state of clinical evaluation
verfasst von
Ari Moskowitz
Lars W. Andersen
David T. Huang
Katherine M. Berg
Anne V. Grossestreuer
Paul E. Marik
Robert L. Sherwin
Peter C. Hou
Lance B. Becker
Michael N. Cocchi
Pratik Doshi
Jonathan Gong
Ayan Sen
Michael W. Donnino
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
Critical Care / Ausgabe 1/2018
Elektronische ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-018-2217-4

Weitere Artikel der Ausgabe 1/2018

Critical Care 1/2018 Zur Ausgabe

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Hinter dieser Appendizitis steckte ein Erreger

23.04.2024 Appendizitis Nachrichten

Schmerzen im Unterbauch, aber sonst nicht viel, was auf eine Appendizitis hindeutete: Ein junger Mann hatte Glück, dass trotzdem eine Laparoskopie mit Appendektomie durchgeführt und der Wurmfortsatz histologisch untersucht wurde.

Ärztliche Empathie hilft gegen Rückenschmerzen

23.04.2024 Leitsymptom Rückenschmerzen Nachrichten

Personen mit chronischen Rückenschmerzen, die von einfühlsamen Ärzten und Ärztinnen betreut werden, berichten über weniger Beschwerden und eine bessere Lebensqualität.

Mehr Schaden als Nutzen durch präoperatives Aussetzen von GLP-1-Agonisten?

23.04.2024 Operationsvorbereitung Nachrichten

Derzeit wird empfohlen, eine Therapie mit GLP-1-Rezeptoragonisten präoperativ zu unterbrechen. Eine neue Studie nährt jedoch Zweifel an der Notwendigkeit der Maßnahme.

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.