Skip to main content
Erschienen in: Digestive Diseases and Sciences 1/2018

Open Access 02.12.2017 | Original Article

ASPP2 Inhibits the Profibrotic Effects of Transforming Growth Factor-β1 in Hepatic Stellate Cells by Reducing Autophagy

verfasst von: Minghua Lin, Yuan Chang, Fang Xie, Ying Shi, Lijun Pang, Dexi Chen

Erschienen in: Digestive Diseases and Sciences | Ausgabe 1/2018

Abstract

Background

Apoptosis-stimulating protein of p53-2 (ASPP2) is a damage-inducible P53-binding protein that enhances damage-induced apoptosis. Fibrosis is a wound-healing response, and hepatic stellate cells (HSCs) are key players in liver fibrogenesis. However, little is known about the relationship between ASPP2 and hepatic fibrosis.

Aims

We investigated the effects of ASPP2 overexpression in HSCs and the role of ASPP2 in mouse liver fibrogenesis.

Methods

Human HSCs (LX-2 cells) were pre-incubated with GFP adenovirus (Ad) or ASPP2 adenovirus (AdASPP2) for 24 h and then treated with or without TGF-β1. ASPP2+/− and ASPP2+/+ Balb/c mice were used to examine the effects of ASPP2 on liver fibrosis in vivo. ASPP2+/+ Balb/c mice were generated by injecting AdASPP2 into the tail vein of ASPP2 WT Balb/c mice; all mice received intraperitoneal injections of carbon tetrachloride.

Results

In this study, ASPP2 was found to markedly inhibit TGF-β1-induced fibrogenic activation of LX-2 cells. Further experiments using an autophagic flux assay confirmed that ASPP2 reduced the fibrogenic activation of LX-2 cells by inhibiting autophagy. Moreover, we found that ASPP2 overexpression attenuated the anti-apoptotic effects of TGF-β1 in LX-2 cells. The extent of liver fibrosis was markedly reduced in ASPP2+/+ mouse liver tissue compared with control mice; however, in ASPP2+/− mice, hepatic collagen deposition was significantly increased.

Conclusion

These results suggest that TGF-β1-induced autophagy is required for the fibrogenic response in LX-2 cells and that ASPP2 may both inhibit TGF-β1-induced autophagy and decrease liver fibrosis.

Introduction

Liver fibrosis, which is the excessive accumulation of extracellular matrix (ECM) proteins, severely increases the risk of developing liver failure and hepatocellular carcinoma [1]. Hepatic stellate cells (HSCs) are liver-specific mesenchymal cells that play vital roles in liver physiology and fibrogenesis [2, 3]. Transforming growth factor-β1 (TGF-β1) is involved in the regulation of many cellular processes, including cell proliferation, differentiation, and inflammation [4, 5]. During chronic liver injury, the expression of TGF-β1 significantly increases in both an autocrine and paracrine manner, thus activating hepatic stellate cells and resulting in increased secretion of ECM [68]. Autophagy is a critical lysosomal pathway that maintains cell function and survival through the degradation of cellular components [911]. Recently published data indicate that HSC activation is associated with autophagy, and studies have shown that blocking autophagy in HSCs attenuates liver fibrosis [1214].
ASPP2, also known as 53BP2L, is encoded by TP53BP2 and is a member of a new family of proteins that includes the pro-apoptotic ASPP1 and anti-apoptotic iASPP [1517]. Endogenous ASPP2 is damage-inducible and modulates physiologic damage response pathways involved in diverse cellular functions [16, 20]. Numerous studies have confirmed that ASPP2 inhibits cell growth and stimulates apoptosis [18, 19]. Moreover, low expression of ASPP2 is frequently found in a variety of human cancers, such as breast cancer, where low ASPP2 mRNA expression levels are associated with poor clinical outcomes [19, 21, 22]. However, the pathophysiologic role of ASPP2 in liver fibrogenesis has not been studied.
In this study, we explored a novel function of ASPP2 in the process of liver fibrogenesis. Understanding the pathophysiologic role of ASPP2 in this process will potentially provide new therapies that repress liver fibrosis.

Materials and Methods

Cell Culture and Treatment

Human HSCs (LX-2 cells) were grown in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% fetal bovine serum. After pre-incubation with GFP-adenovirus (Ad) or ASPP2 adenovirus (AdASPP2) at a concentration of 1 × 106 PFU/ml for 24 h, the LX-2 cells were treated with or without TGF-β1 (10 ng/ml, PeproTech).

Real-Time RT-PCR

Total RNA was extracted from cultured LX-2 cells and liver tissue using an RNeasy kit (Qiagen) and reverse transcribed using the SuperScript® III First-Strand Synthesis System (Invitrogen). Real-time RT-PCR was performed in the ViiA 7DX sequence detecting system (Applied Biosystems). Relative transcript levels of target genes were normalized with 18S rRNA levels. Primers were as follows: 18S rRNA: sense, 5′-GTA ACC CGT TGA ACC CCA TT-3′; antisense, 5′-CCA TCC AAT CGG TAG TAG CG-3′. Human Col a1(I): sense, 5′-CCC CAC TCA GCC CAG TGT-3′; antisense, 5′-ACC AGA CAT GCC TCT TGT CCT T-3′. Human Col a1(III): sense, 5′-GGT TTT GCC CCG TAT TAT GGA-3′; antisense, 5′-GAA GTC ATA ATC TCA TCG GTG TTG A-3′. Human a-SMA: sense, 5′-TGC CTG ATG GGC AAG TGA T-3′; antisense, 5′-GTC TCT GGG CAG CGG AAA-3′. Human Bax: sense, 5′-AGT GGC AGC TGA CAT GT-3′; antisense, 5′-AGG GCC TTG AGC ACC AGT-3′. Human Bcl-2: sense, 5′-ATG GCG CAC GCT GGG AGA A-3′; antisense, 5′-ATG GAT GTA CTT CAG CAC TAT-3′. Mouse Col a1(I): sense, 5′-AGG GCG AGT GCT GTG CTT T-3′; antisense, 5′-CCC TCG ACT CCT ACA TCT TCT GA-3′. Mouse Col a1(III): sense, 5′-TGA AAC CCC AGC AAA ACA AAA-3′; antisense, 5′-TCA CTT GCA CTG GTT GAT AAG ATT AA-3′. Mouse α-SMA: sense, 5′-ATG CTC CCA GGG CTG TTT T-3′; antisense, 5′-TTC CAA CCA TTA CTC CCT GAT GT-3′. Mouse ASPP2: sense, 5′-AGC TGC CAT GGA GAC CAT CT-3′; antisense, 5′-ACT GTT CTC CGT ACT GGC AC-3′.

Western Blot Analysis

Western blot analysis was performed using 50 μg of protein extract obtained as described previously [15]. Antibodies against a-SMA, ASPP2, and LC3B were purchased from Sigma Aldrich; polyclonal antibodies against caspase3 were purchased from Abcam. Peroxidase-conjugated goat anti-mouse or goat anti-rabbit IgG antibodies were used as secondary antibodies. Protein expression was visualized using an enhanced chemiluminescence (ECL Plus) assay kit according to the manufacturer’s instructions. The results were normalized relative to the expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

Immunofluorescence and Immunohistochemistry

Liver samples were fixed in 4% paraformaldehyde and embedded in Tissue Tek OCT compound (Sakura Finetek USA, Inc.); 7-μm frozen sections were used for immunofluorescence. They were blocked with 2% bovine serum albumin for 1 h and then incubated with anti-α-SMA monoclonal antibody (1:500 sigma) and anti-ASPP2 polyclonal antibody(1:500 invitrogen) followed by Alexa Fluor 488- or 546-conjugated secondary antibody (Sigma-Aldrich). The sections were covered with Vectashield mounting medium containing 4,6-diamidino-2-phenylindole and observed under a confocal microscope (Leica TCS SP8, Germany). For negative controls, sections were processed as described earlier, except that incubation with the primary antibody was omitted.
LX-2 cells were fixed with 4% paraformaldehyde and permeabilized with 0.5% Triton X-100 for 15 min. Then, cells were blocked with 2% BSA for 1 h and incubated with anti-M30 monoclonal antibody (produced by our laboratory) and Alexa Fluor 546-conjugated secondary antibody. DAPI was used to stain the nuclei.
Immunohistochemical analysis with Masson stain was performed to detect hepatic collagen deposition.

RNA Interference

Small interfering RNA (siRNA) specific to human ASPP2 (target sequence: 5-AAGTTGCTGAGCAGGAGAAAC-3) and a nonspecific control were synthesized by Genepharmer. LX-2 cells of 40–50% confluency were prepared for siRNA transfection. Transient transfection of siRNA (35 nM) was performed using FuGENE HD transfection reagent (Promega, Madison, WI, USA).

Evaluation of Fluorescent LC3 Puncta

LX-2 cells cultured on coverslips were infected with Ad-tf-LC3 at 20 MOI. Twenty-four hours after adenovirus infection, the cells were washed with PBS, fixed with 4% paraformaldehyde, and viewed with a fluorescence microscope (Nikon Ti-E, Japan). The number of GFP and mRFP dots was determined by manual counting of fluorescent puncta in five fields from 30 different cells using a 40× objective. Each experiment was repeated three times. The number of dots per cell was calculated by dividing the total number of dots by the number of cells in each microscopic field.

Mouse Models

ASPP2+/− Balb/c mice were kindly provided by Dr. Lopez et al. [16]. ASPP2 wild-type (WT) Balb/c mice (Academy of Military Medical Sciences, China), and ASPP2+/+ Balb/c mice (overexpressing ASPP2) were generated from ASPP2 WT Balb/c mice by injecting ASPP2-ad (60,000 viral particles/mice) into the tail vein. Control mice were generated from ASPP2 WT by injecting Control-ad (60,000 viral particles/mice) into the tail vein. All mice received intraperitoneal injections of a carbon tetrachloride (CCl4)/olive oil (OO) mixture (1:9 v/v) twice a week (1 μl per gram body weight). Mice were killed after 6 weeks of CCl4 treatment, and tissues were harvested the day after the final administration of CCl4. All studies were approved by the Ethics Committee of the Youan Hospital Center and the hospital affiliated with Capital Medical University, Beijing. All animal care complied with applicable health guidelines.

Statistical Analysis

The results are expressed as the mean ± SEM. Statistical significance was determined using the Student’s t test. A p value < 0.05 was considered significant.

Results

ASPP2 Reduces TGF-β1-Induced Fibrogenic Activation of LX-2 Cells

The activation of HSCs plays a pivotal role in liver fibrogenesis [1]. TGF-β1 is the classic fibrogenic cytokine involved in accelerating the progression of liver fibrosis [6]. Therefore, it was of interest to investigate the effects of ASPP2 on the TGF-β1-induced fibrogenic activation of LX-2 cells. First, LX-2 cells were pre-treated with ASPP2-adenovirus (AdASPP2) or GFP-adenovirus (Ad) for 24 h and then treated with or without TGF-β1 (10 ng/ml). Next, to investigate the role of ASPP2 in the fibrogenic activation of LX-2 cells, we examined the expression of fibrotic markers [α-SMA, Colα1 (I), and Colα1 (III)]. Quantitative analysis showed that the mRNA expression of α-SMA, Colα1 (I), and Colα1(III) was significantly upregulated in TGF-β1 and Ad-treated cells compared to cells treated with Ad alone (Fig. 1A). However, the enhanced mRNA expression of α-SMA, Colα1(I), and Colα1(III) mediated by TGF-β1 was blunted by pre-incubation with AdASPP2. Likewise, TGF-β1-mediated increases in α-SMA protein levels were inhibited by AdASPP2 pre-incubation in LX-2 cells (Fig. 1B, C). We also observed that AdASPP2 treatment did not affect the viability of LX-2 cells (data not shown). In addition, we found that ASPP2 overexpression in LX-2 cells not only affects TGF-β1-induced fibrogenic activation, but also attenuates basal fibrogenic activation. To test this issue, siRNA technology was used to knock down ASPP2 expression, as shown in Fig. 1D. Infection of LX-2 cells with ASPP2 siRNA markedly increased the expression of α-SMA induced by TGF-β1 treatment. Taken together, these results suggest that ASPP2 may reduce the TGF-β1-induced fibrogenic activation of LX-2 cells.
To further confirm these results, we analyzed the changes in ASPP2 gene and protein expression during the activation of primary cultured mouse HSCs. Culture-activated HSCs expressed 2.3 times as much ASPP2 mRNA as quiescent HSCs, and ASPP2 protein levels were also clearly increased in culture-activated HSCs. (Supplementary Figure 1).

ASPP2 Inhibits the Profibrotic Effects of TGF-β1 by Reducing Autophagy in LX-2 Cells

Recent studies have shown that TGF-β1-induced autophagy is required for the fibrogenic response in human atrial myofibroblasts (hATMyofbs) [17] and that ASPP2 can inhibit autophagy through a p53-independent pathway [18]. Therefore, we speculated whether ASPP2 could decrease TGF-β1-induced profibrotic effects in LX-2 cells by inhibiting autophagy. Western blot analysis showed that α-SMA and LC3-II protein levels were markedly elevated in Ad and TGF-β1-treated cells, and this upregulation was abolished by AdASPP2 treatment (Fig. 2A). The graphical representation of this Western blotting data, including statistical analysis, is shown in Fig. 2B. To determine whether the ASPP2-mediated decrease of fibrogenic activation in LX-2 cells is associated with ASPP2-mediated inhibition of autophagy, we co-treated LX-2 cells with 3-methyladenine (3MA, an inhibitor of autophagy) and TGF-β1 for 24 h, and α-SMA and LC3-II expression was examined. The results were similar to those observed when cells were treated with both AdASPP2 and TGF-β1, as shown in Fig. 2A, B. These results support the hypothesis that ASPP2 decreases TGF-β1-induced profibrotic effects in LX-2 cells through inhibiting autophagy. To further confirm this hypothesis, we detected autophagic flux by using adenovirus harboring tf-LC3 (Ad-tf-LC3) [19, 24]. Next, the number of autophagosomes can be evaluated by determining the number of red dots that overlay green dots and appear yellow in merged images. The red dots that do not overlay green dots and appear red in merged images indicate autolysosome formation. As shown in Fig. 2C, D, the numbers of green and red dots per cell were both significantly decreased after treatment with AdASPP2 and TGF-β1 compared to Ad and TGF-β1 treatment. These results suggested that ASPP2 may reduce the fibrogenic activation of LX-2 cells by inhibiting TGF-β1-induced autophagy.

ASPP2 Inhibits Anti-apoptotic Effects of TGF-β1 in LX-2 Cells

It has been shown that ASPP2 may induce tumor cell apoptosis [9]. Selective stimulation of apoptosis in stellate cells (rather than hepatocytes) may have anti-fibrotic effects [2023]. Thus, we questioned whether ASPP2 might induce apoptosis in HSCs and reduce liver fibrosis. First, we detected apoptosis by performing M30 staining, and we observed that the number of M30-positive cells was markedly increased in cells treated with AdASPP2 and TGF-β1 compared with Ad and TGF-β1-treated cells (Fig. 3A, B). Quantitative analysis of the expression of apoptosis-related genes Bax and Bcl-2 was performed by qRT-PCR. There was an approximately 2.5-fold increase in Bax mRNA (Fig. 3C) and a threefold decrease in Bcl-2 mRNA (Fig. 3D) in cells treated with AdASPP2 and TGF-β1 compared with Ad and TGF-β1-treated cells. To confirm this finding, we further analyzed apoptosis levels using immunoblotting. As shown in Fig. 3E, cleaved caspase3 fragment levels were markedly increased after ASPP2 overexpression. These data support the idea that ASPP2 may inhibit the anti-apoptotic effects of TGF-β1 in LX-2 cells.

ASPP2 Attenuates CCl4-Induced Liver Fibrosis in Mice

Finally, we analyzed the effect of ASPP2 on mouse liver fibrosis induced by CCl4. We used mice with low ASPP2 expression (ASPP2+/−) [28] and mice overexpressing ASPP2 (ASPP2+/+), which were obtained by injecting AdASPP2 into the tail vein of ASPP2 WT mice. ASPP2 mRNA levels were significantly lower in ASPP2+/− mice compared with ASPP2 WT mice after 6 weeks of CCl4 treatment; meanwhile, ASPP2 mRNA levels were significantly higher in ASPP2+/+ mice compared with Ad-treated mice (Fig. 4A). Likewise, Western blot analysis revealed a similar change in ASPP2 protein levels (Fig. 4B). In addition, we found that ASPP2 is predominantly expressed in hepatocytes and HSCs during CCl4-induced liver fibrosis (Fig. 4C). Next, we evaluated the effect of ASPP2 on hepatic collagen deposition with morphometric analysis of Masson staining and quantified any changes with digital image analysis. As shown in Fig. 4D, E, collagen deposition was significantly increased in ASPP2+/− mice compared with ASPP2 WT mice after 6 weeks of CCl4 administration (Fig. 4D-a, b, E). In contrast, collagen deposition was markedly decreased in ASPP2+/+ mouse liver tissues compared with control mouse liver tissues (Fig. 4D-c, d, E). We also examined the effect of ASPP2 on the expression of fibrosis markers [α-SMA, Colα1 (I) and Colα1 (III)] in mouse liver tissues. As shown in Fig. 4E, the levels of α-SMA, Colα1 (I), and Colα1 (III) mRNA were significantly increased in liver tissues of ASPP2+/− mice compared with WT mice. However, compared with control mice, ASPP2 overexpression (ASPP2+/+) resulted in a marked reduction in α-SMA, Colα1 (I), and Colα1 (III) mRNA levels.
To identify the effects of ASPP2 on autophagy in liver tissue of CCL4-treated mice, we performed an immunofluorescence assay to detect LC3 specks in fibrotic mouse liver tissue. LC3 specks were detected in most of the cells from ASPP2+/− mice, but few were detected in ASPP2+/+ mice (Supplementary Figure 2). Finally, analysis of biochemical parameters (alanine aminotransferase, ALT) demonstrated that ASPP2 affected the extent of inflammation and necrosis in the liver. These results indicate that ASPP2 attenuates CCl4-induced mouse liver fibrosis.

Discussion

Liver fibrosis, characterized by an accumulation of extracellular matrix, is the final common symptom of chronic liver disease [1, 24]. Experimental and clinical reports published in the last decade have suggested that both the removal of etiology as well as effective therapy can result in significant regression of liver fibrosis, particularly in animal models [2532]. However, the mechanisms of this regression have not been fully clarified.
Autophagy is a critical lysosomal pathway that maintains cell function and survival through the degradation of cellular components. The liver depends on autophagy to both maintain normal function and prevent the development of disease states. However, Hernández-Gea et al. [13] suggest that autophagy promotes the development of hepatic fibrosis. Our results also support this conclusion. TGF-β1 is an important profibrotic factor that markedly increases during liver fibrosis, ultimately causing the acceleration of liver fibrosis. Our in vitro experiments revealed that TGF-β1 may significantly increase the fibrogenic activation of LX-2 cells by promoting autophagy. These results are consistent with studies by Ghavami et al. [17]. The suppression of autophagy in hepatic stellate cells may be a novel antifibrotic strategy.
ASPP2 is a tumor suppressor that stimulates P53-mediated apoptosis [33, 34]. Recently, ASPP2 has been reported to regulate autophagy. Wang et al. [18] suggest that ASPP2 may inhibit autophagy. Conversely, Liu et al. [35] show that ASPP2 may induce autophagy. The reason for such discrepancies is not clear, although one explanation may be that these studies utilized different cell types. Our previous findings indicated that ASPP2 mRNA expression is upregulated after 7 days of CCL4 administration. After 7 days, these increases continue in a way that is negatively correlated with the progression of liver fibrosis. Maximal ASPP2 mRNA levels are achieved after 6 weeks of CCL4 treatment. Therefore, we questioned whether ASPP2 may reduce liver fibrosis by inhibiting autophagy in HSCs. In this study, we showed that TGF-β1 may significantly increase the fibrogenic activation of LX-2 cells by promoting their autophagy. However, using adenovirus technology, we demonstrated that ASPP2 overexpression markedly reduces the TGF-β1-induced fibrogenic activation of LX-2 cells, leading to decreased expression of fibrogenic genes α-SMA, Colα1(I), and Colα1(III). More importantly, our data indicate that ASPP2 overexpression may inhibit TGF-β1-induced autophagy in LX-2 cells. In addition, our studies also show that ASPP2 overexpression inhibits the anti-apoptotic effects of TGF-β1 in LX-2 cells.
In vivo, we observed a relationship between ASPP2 levels and the degree of liver fibrosis using ASPP2+/−, ASPP2 WT, CON-Ad, and ASPP2+/+ mice treated with CCL4. We observed that collagen deposition was significantly increased in ASPP2+/− mice compared with ASPP2 WT mice after 6 weeks of CCl4 administration. In contrast, collagen deposition was markedly decreased in ASPP2+/+ mouse liver tissues compared with control mouse liver tissues. Lopez et al. demonstrated that endogenous ASPP2 is damage-inducible and that a biologic function of endogenous ASPP2 is to modulate physiologic damage response pathways [16]. In our fibrotic mouse model, the administration of CCL4 led to mouse liver injury and the upregulation of ASPP2. However, it was unclear whether the beneficial effects of ASPP2 were from HSCs or hepatocytes. We isolated the mouse primary hepatocytes, but the experiment could not be completed for various reasons. Therefore, we used HepG2 cells induced by LPS; the results indicated that ASPP2 overexpression may effectively prevent the LPS damage to HepG2 cells and reduce apoptosis (data not shown). The above results are consistent with our previous article—ASPP2 attenuates triglycerides to protect against hepatocyte injury by reducing autophagy in a cell and mouse model of nonalcoholic fatty liver disease [36]. Here, we only want to investigate the role of ASPP2 overexpression in TGF-induced hepatic stellate cell activation, with hepatic stellate cells as target cells. Taken together, these data suggest that TGF-β1-induced autophagy is required for the fibrogenic response in LX-2 cells, whereas ASPP2 may inhibit TGF-β1-induced autophagy and decrease liver fibrosis.
In conclusion, this study describes an additional function for ASPP2: it participates in the wound-healing response in the liver. We provide new clues to the molecular mechanisms underlying liver fibrosis regression, which may reveal new perspectives for the pharmacologic treatment of liver fibrosis.

Acknowledgments

This study was financially supported by the National Natural and Science Foundation of China (81672026); Basics—Clinical Research Cooperation Fund of Capital Medical University, China (15JL-L05); Beijing Municipal Institute of Public Medical Research Development and Reform pilot project (JING YI YAN 2016-2); Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no competing financial interests related to this work.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

e.Med Allgemeinmedizin

Kombi-Abonnement

Mit e.Med Allgemeinmedizin erhalten Sie Zugang zu allen CME-Fortbildungen und Premium-Inhalten der allgemeinmedizinischen Zeitschriften, inklusive einer gedruckten Allgemeinmedizin-Zeitschrift Ihrer Wahl.

Literatur
2.
4.
Zurück zum Zitat Kajdaniuk D, Marek B, Borgiel-Marek H, et al. Transforming growth factor beta1 (TGFbeta1) in physiology and pathology. Endokrynol Pol. 2013;64:384–396.CrossRefPubMed Kajdaniuk D, Marek B, Borgiel-Marek H, et al. Transforming growth factor beta1 (TGFbeta1) in physiology and pathology. Endokrynol Pol. 2013;64:384–396.CrossRefPubMed
5.
Zurück zum Zitat Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med. 2000;342:1350–1358.CrossRefPubMed Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med. 2000;342:1350–1358.CrossRefPubMed
6.
7.
Zurück zum Zitat Breitkopf K, Godoy P, Ciuclan L, et al. TGF-beta/Smad signaling in the injured liver. Z Gastroenterol. 2006;44:57–66.CrossRefPubMed Breitkopf K, Godoy P, Ciuclan L, et al. TGF-beta/Smad signaling in the injured liver. Z Gastroenterol. 2006;44:57–66.CrossRefPubMed
8.
Zurück zum Zitat Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. FASEB J. 2004;18:816–827.CrossRefPubMed Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. FASEB J. 2004;18:816–827.CrossRefPubMed
10.
Zurück zum Zitat Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6:463–477.CrossRefPubMed Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6:463–477.CrossRefPubMed
12.
Zurück zum Zitat Thoen LF, Guimarães EL, Dollé L, et al. A role for autophagy during hepatic stellate cell activation. J Hepatol. 2011;55:1353–1360.CrossRefPubMed Thoen LF, Guimarães EL, Dollé L, et al. A role for autophagy during hepatic stellate cell activation. J Hepatol. 2011;55:1353–1360.CrossRefPubMed
13.
Zurück zum Zitat Hernández-Gea V, Ghiassi-Nejad Z, Rozenfeld R, et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology. 2012;142:938–946.CrossRefPubMedPubMedCentral Hernández-Gea V, Ghiassi-Nejad Z, Rozenfeld R, et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology. 2012;142:938–946.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Thoen LF, Guimaraes EL, Grunsven LA. Autophagy: a new player in hepatic stellate cell activation. Autophagy. 2012;8:126–128.CrossRefPubMed Thoen LF, Guimaraes EL, Grunsven LA. Autophagy: a new player in hepatic stellate cell activation. Autophagy. 2012;8:126–128.CrossRefPubMed
15.
Zurück zum Zitat Shi Y, Han Y, Xie F, et al. ASPP2 enhances oxaliplatin (L-OHP)-induced colorectal cancer cell apoptosis in a p53-independent manner by inhibiting cell autophagy. J Cell Mol Med. 2015;19:535–543.CrossRefPubMed Shi Y, Han Y, Xie F, et al. ASPP2 enhances oxaliplatin (L-OHP)-induced colorectal cancer cell apoptosis in a p53-independent manner by inhibiting cell autophagy. J Cell Mol Med. 2015;19:535–543.CrossRefPubMed
16.
Zurück zum Zitat Lopez CD, Ao Y, Rohde LH, et al. Proapoptotic p53-interacting protein 53BP2 is induced by UV irradiation but suppressed by p53. Mol Cell Biol. 2000;20:8018–8025.CrossRefPubMedPubMedCentral Lopez CD, Ao Y, Rohde LH, et al. Proapoptotic p53-interacting protein 53BP2 is induced by UV irradiation but suppressed by p53. Mol Cell Biol. 2000;20:8018–8025.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Ghavami S, Cunnington RH, Gupta S, et al. Autophagy is a regulator of TGF-beta1-induced fibrogenesis in primary human atrial myofibroblasts. Cell Death Dis. 2015;6:e1696.CrossRefPubMedPubMedCentral Ghavami S, Cunnington RH, Gupta S, et al. Autophagy is a regulator of TGF-beta1-induced fibrogenesis in primary human atrial myofibroblasts. Cell Death Dis. 2015;6:e1696.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Wang Y, Wang XD, Lapi E, et al. Autophagic activity dictates the cellular response to oncogenic RAS. Proc Natl Acad Sci USA. 2012;109:13325–13330.CrossRefPubMedPubMedCentral Wang Y, Wang XD, Lapi E, et al. Autophagic activity dictates the cellular response to oncogenic RAS. Proc Natl Acad Sci USA. 2012;109:13325–13330.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Rubinsztein DC, Cuervo AM, Ravikumar B, et al. In search of an “autophagomometer”. Autophagy. 2009;5:585–589.CrossRefPubMed Rubinsztein DC, Cuervo AM, Ravikumar B, et al. In search of an “autophagomometer”. Autophagy. 2009;5:585–589.CrossRefPubMed
20.
Zurück zum Zitat Iredale JP. Hepatic stellate cell behavior during resolution of liver injury. Semin Liver Dis. 2001;21:427–436.CrossRefPubMed Iredale JP. Hepatic stellate cell behavior during resolution of liver injury. Semin Liver Dis. 2001;21:427–436.CrossRefPubMed
21.
Zurück zum Zitat Iredale JP, Benyon RC, Pickering J, et al. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest. 1998;102:538–549.CrossRefPubMedPubMedCentral Iredale JP, Benyon RC, Pickering J, et al. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest. 1998;102:538–549.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Wright MC, Issa R, Smart DE, et al. Gliotoxin stimulates the apoptosis of human and rat hepatic stellate cells and enhances the resolution of liver fibrosis in rats. Gastroenterology. 2001;121:685–698.CrossRefPubMed Wright MC, Issa R, Smart DE, et al. Gliotoxin stimulates the apoptosis of human and rat hepatic stellate cells and enhances the resolution of liver fibrosis in rats. Gastroenterology. 2001;121:685–698.CrossRefPubMed
23.
Zurück zum Zitat Oakley F, Meso M, Iredale JP, et al. Inhibition of inhibitor of kappaB kinases stimulates hepatic stellate cell apoptosis and accelerated recovery from rat liver fibrosis. Gastroenterology. 2005;128:108–120.CrossRefPubMed Oakley F, Meso M, Iredale JP, et al. Inhibition of inhibitor of kappaB kinases stimulates hepatic stellate cell apoptosis and accelerated recovery from rat liver fibrosis. Gastroenterology. 2005;128:108–120.CrossRefPubMed
24.
25.
Zurück zum Zitat Povero D, Busletta C, Novo E, et al. Liver fibrosis: a dynamic and potentially reversible process. Histol Histopathol. 2010;25:1075–1091.PubMed Povero D, Busletta C, Novo E, et al. Liver fibrosis: a dynamic and potentially reversible process. Histol Histopathol. 2010;25:1075–1091.PubMed
26.
Zurück zum Zitat Issa R, Zhou X, Constandinou CM, et al. Spontaneous recovery from micronodular cirrhosis: evidence for incomplete resolution associated with matrix cross-linking. Gastroenterology. 2004;126:1795–1808.CrossRefPubMed Issa R, Zhou X, Constandinou CM, et al. Spontaneous recovery from micronodular cirrhosis: evidence for incomplete resolution associated with matrix cross-linking. Gastroenterology. 2004;126:1795–1808.CrossRefPubMed
27.
Zurück zum Zitat Tugues S, Fernandez-Varo G, Muñoz-Luque J, et al. Antiangiogenic treatment with sunitinib ameliorates inflammatory infiltrate, fibrosis, and portal pressure in cirrhotic rats. Hepatology. 2007;46:1919–1926.CrossRefPubMed Tugues S, Fernandez-Varo G, Muñoz-Luque J, et al. Antiangiogenic treatment with sunitinib ameliorates inflammatory infiltrate, fibrosis, and portal pressure in cirrhotic rats. Hepatology. 2007;46:1919–1926.CrossRefPubMed
28.
Zurück zum Zitat Julien B, Grenard P, Teixeira-Clerc F, et al. Antifibrogenic role of the cannabinoid receptor CB2 in the liver. Gastroenterology. 2005;128:742–755.CrossRefPubMed Julien B, Grenard P, Teixeira-Clerc F, et al. Antifibrogenic role of the cannabinoid receptor CB2 in the liver. Gastroenterology. 2005;128:742–755.CrossRefPubMed
29.
Zurück zum Zitat Dienstag JL, Goldin RD, Heathcote EJ, et al. Histological outcome during long-term lamivudine therapy. Gastroenterology. 2003;124:105–117.CrossRefPubMed Dienstag JL, Goldin RD, Heathcote EJ, et al. Histological outcome during long-term lamivudine therapy. Gastroenterology. 2003;124:105–117.CrossRefPubMed
30.
Zurück zum Zitat Poynard T, McHutchison J, Manns M, et al. Impact of pegylated interferon alfa-2b and ribavirin on liver fibrosis in patients with chronic hepatitis C. Gastroenterology. 2002;122:1303–1313.CrossRefPubMed Poynard T, McHutchison J, Manns M, et al. Impact of pegylated interferon alfa-2b and ribavirin on liver fibrosis in patients with chronic hepatitis C. Gastroenterology. 2002;122:1303–1313.CrossRefPubMed
31.
Zurück zum Zitat Murphy FR, Issa R, Zhou X, et al. Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition—implications for reversibility of liver fibrosis. J Biol Chem. 2002;277:11069–11076.CrossRefPubMed Murphy FR, Issa R, Zhou X, et al. Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition—implications for reversibility of liver fibrosis. J Biol Chem. 2002;277:11069–11076.CrossRefPubMed
32.
Zurück zum Zitat Hammel P, Couvelard A, O'Toole D, et al. Regression of liver fibrosis after biliary drainage in patients with chronic pancreatitis and stenosis of the common bile duct. N Engl J Med. 2001;344:418–423.CrossRefPubMed Hammel P, Couvelard A, O'Toole D, et al. Regression of liver fibrosis after biliary drainage in patients with chronic pancreatitis and stenosis of the common bile duct. N Engl J Med. 2001;344:418–423.CrossRefPubMed
33.
Zurück zum Zitat Tordella L, Koch S, Salter V, et al. ASPP2 suppresses squamous cell carcinoma via RelA/p65-mediated repression of p63. Proc Natl Acad Sci USA. 2013;110:17969–17974.CrossRefPubMedPubMedCentral Tordella L, Koch S, Salter V, et al. ASPP2 suppresses squamous cell carcinoma via RelA/p65-mediated repression of p63. Proc Natl Acad Sci USA. 2013;110:17969–17974.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Kampa KM, Acoba JD, Chen D, et al. Apoptosis-stimulating protein of p53 (ASPP2) heterozygous mice are tumor-prone and have attenuated cellular damage-response thresholds. Proc Natl Acad Sci USA. 2009;106:4390–4395.CrossRefPubMedPubMedCentral Kampa KM, Acoba JD, Chen D, et al. Apoptosis-stimulating protein of p53 (ASPP2) heterozygous mice are tumor-prone and have attenuated cellular damage-response thresholds. Proc Natl Acad Sci USA. 2009;106:4390–4395.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Liu K, Shi Y, Guo X, et al. CHOP mediates ASPP2-induced autophagic apoptosis in hepatoma cells by releasing Beclin-1 from Bcl-2 and inducing nuclear translocation of Bcl-2. Cell Death Dis. 2014;5:e1323.CrossRefPubMedPubMedCentral Liu K, Shi Y, Guo X, et al. CHOP mediates ASPP2-induced autophagic apoptosis in hepatoma cells by releasing Beclin-1 from Bcl-2 and inducing nuclear translocation of Bcl-2. Cell Death Dis. 2014;5:e1323.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Xie F, Jia L, Lin M, et al. ASPP2 attenuates triglycerides to protect against hepatocyte injury reducing autophagy in a cell and mouse model of non-alcoholic fatty liver disease. J Cell Mol Med. 2015;19:155–164.CrossRefPubMed Xie F, Jia L, Lin M, et al. ASPP2 attenuates triglycerides to protect against hepatocyte injury reducing autophagy in a cell and mouse model of non-alcoholic fatty liver disease. J Cell Mol Med. 2015;19:155–164.CrossRefPubMed
Metadaten
Titel
ASPP2 Inhibits the Profibrotic Effects of Transforming Growth Factor-β1 in Hepatic Stellate Cells by Reducing Autophagy
verfasst von
Minghua Lin
Yuan Chang
Fang Xie
Ying Shi
Lijun Pang
Dexi Chen
Publikationsdatum
02.12.2017
Verlag
Springer US
Erschienen in
Digestive Diseases and Sciences / Ausgabe 1/2018
Print ISSN: 0163-2116
Elektronische ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-017-4816-3

Weitere Artikel der Ausgabe 1/2018

Digestive Diseases and Sciences 1/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

RAS-Blocker bei Hyperkaliämie möglichst nicht sofort absetzen

14.05.2024 Hyperkaliämie Nachrichten

Bei ausgeprägter Nierenfunktionsstörung steigen unter der Einnahme von Renin-Angiotensin-System(RAS)-Hemmstoffen nicht selten die Serumkaliumspiegel. Was in diesem Fall zu tun ist, erklärte Prof. Jürgen Floege beim diesjährigen Allgemeinmedizin-Update-Seminar.

Gestationsdiabetes: In der zweiten Schwangerschaft folgenreicher als in der ersten

13.05.2024 Gestationsdiabetes Nachrichten

Das Risiko, nach einem Gestationsdiabetes einen Typ-2-Diabetes zu entwickeln, hängt nicht nur von der Zahl, sondern auch von der Reihenfolge der betroffenen Schwangerschaften ab.

Labor, CT-Anthropometrie zeigen Risiko für Pankreaskrebs

13.05.2024 Pankreaskarzinom Nachrichten

Gerade bei aggressiven Malignomen wie dem duktalen Adenokarzinom des Pankreas könnte Früherkennung die Therapiechancen verbessern. Noch jedoch klafft hier eine Lücke. Ein Studienteam hat einen Weg gesucht, sie zu schließen.

Battle of Experts: Sport vs. Spritze bei Adipositas und Typ-2-Diabetes

11.05.2024 DDG-Jahrestagung 2024 Kongressbericht

Im Battle of Experts traten zwei Experten auf dem Diabeteskongress gegeneinander an: Die eine vertrat die Auffassung „Sport statt Spritze“ bei Adipositas und Typ-2-Diabetes, der andere forderte „Spritze statt Sport!“ Am Ende waren sie sich aber einig: Die Kombination aus beidem erzielt die besten Ergebnisse.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.