Skip to main content
Erschienen in: Intensive Care Medicine 7/2022

Open Access 20.05.2022 | What's New in Intensive Care

Automation to improve lung protection

verfasst von: Laura A. Buiteman-Kruizinga, Ary Serpa Neto, Marcus J. Schultz

Erschienen in: Intensive Care Medicine | Ausgabe 7/2022

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Lung protective ventilation, usually referred to as ventilation with low tidal volumes (VT) and low inspiratory pressures (Pinsp), has repeatedly been shown to reduce mortality in patients with acute lung injury [1]. Conservative oxygen supplementation, a strategy that prevents arterial hyperoxemia through restricted use of oxygen [2], could be seen as another way to protect the lungs as use of low fractions of inspired oxygen (FiO2) reduces the direct toxic effects of oxygen on pulmonary tissue. Ventilation with low driving pressure (ΔP) and less mechanical power (MP) may also improve outcomes [3, 4
Targeting low VT and low pressures is a rather simple task, as it often involves nothing more than setting VT that suits the ideal bodyweight. Conservative oxygen supplementation may also be seen as not so difficult, notwithstanding that use of low FiO2 increases the risk of arterial hypoxia. Targeting low ΔP can be more of a challenge. ΔP is simple to monitor as it requires a simple calculation at the bedside, and a reduction in ΔP can be straightforwardly achieved by limiting VT [3], that is when VT are not already low. Use of high positive end-expiratory pressure (PEEP) may decrease ΔP if it increases the size of the functional lung. However, high PEEP may not always recruit collapsed lung units, and can instead cause pulmonary overdistention, thereby increasing ΔP. Targeting less MP is by far the most complex and difficult intervention. MP is not so easy to monitor as it requires a complex formula that uses VT, Pinsp, ΔP, inspiratory flow, and also respiratory rate (RR). And with that, it is uncertain which of these elements to ‘prioritize’. Most difficult herein, surely, is that changing the one setting may require an adjustment in the other, and these actually may have opposite effects on MP—for example, limiting VT to lower MP may only be possible by increasing RR, but the latter actually will increase MP. Last but not least, the everchanging pulmonary condition makes this all even more problematic, requiring almost near-constant adjustments to keep all settings within safe limits.
With the increasing complexity of lung protective ventilation, the question can be asked who should be involved in this intervention that has a huge potential to improve patient outcomes—clearly, this cannot be done by doctors or respiratory therapists, as these healthcare workers are too little present at the bedside. And it is also not possible to have this work done by nurses who have many other things to take care of. Next, we are currently facing an unsustainable situation in medical staffing. Already in 2000 it was forecasted that demand, i.e., numbers of critically ill patients, would continue to grow, while supply, i.e., intensivists and pulmonologists, would remain near constant, yielding deficits of specialists in intensive care units (ICUs) in the United States [5]. There have been no signs that this projection was wrong, and similar prognoses can be made regarding ICU nurses and other healthcare providers within our specialty, now also in the United Kingdom [6]. The recent pandemic taught us that hospital systems, including ICUs, can easily become disrupted, perhaps most of all because of the already scarce available ICU nurses. And this is probably most often the case in countries where there are too few health care workers. Recent news regarding alarming departures of nurses from ICUs enhances the feeling of urgency.
Although it is already considered normal in our daily lives for complex or routine tasks to be taken over by robots, we see this only sporadically happening within the walls of hospitals, including in ICUs. However, the question is not if, but when the complex task of lung protective ventilation will be automated [7]. Actually, so-called ‘closed-loop’ ventilation modes have already entered the critical care arena, and are increasingly used. Examples of automated ventilation modes are presented in Fig. 1. These modes are all based on closed-loop principles, wherein proportional assist ventilation (PAV) + and Neurally Adjusted Ventilatory Assist (NAVA) deliver proportional assist and measure patient efforts, and SmartCare, Adaptive Support Ventilation (ASV) and INTELLiVENT-ASV integrate algorithms to target ventilation and oxygenation goals in accordance to changes in lung mechanics (for further details, see Fig. 1).
Evidence for benefit of using automated ventilation modes is steadily growing. Benefit are improved safety and effectiveness, and by that a better efficacy. INTELLiVENT-ASV has not only found to be safe, but also effective with regard to titration of VT and Pinsp, and indirectly ΔP and MP [8]. Compared to conventional ventilation, INTELLiVENT-ASV provides ventilation with fewer episodes of hypoxemia, and with lower ΔP and less MP [911]. PAV + has been found to decrease ΔP, by decreasing VT when the functional lung size becomes smaller, and by increasing VT only when the functional lung size increases [12]. SmartCare and PAV + have been found to decrease duration of weaning [13, 14], and to shorten duration of ventilation and stay in ICU [14], and NAVA may increase survival [14].
But benefits of automated ventilation should not only include safety, effectiveness and efficacy. Automation should also reduce workloads. We are uncertain how to measure this adequately. While use of INTELLiVENT-ASV is associated with a reduction in the number of interactions between caregivers and ventilators [15], this may not necessarily mean it reduces the workload. In addition, it may take time to implement automated ventilation, as it requires a change in the role of caregivers. Especially at first use it could be more time-consuming to ‘supervise an autopilot’ than ‘being the pilot’. Also, if alarm settings are set wrong, i.e., too tight, automated ventilation may actually increase the number of alarms, and thereby workloads. Last but not least, it takes time ‘trusting’ the new.
In conclusion, automated ventilation has a great potential to improve lung protective ventilation, and with that the outcome of critically ill patients. In the context of the growing shortages in ICU staffing, research should not only focus on safety, effectiveness and efficiency, but certainly also on workloads associated with (implementation of) automated ventilation.

Declarations

Conflicts of interest

LAB-K visited Hamilton Medical in 2021 to take part in an advisory board meeting and to give lectures. The expenses for lodging were covered, she had her travel expenses reimbursed and received an advisory- and speaker’s fee of € 1500. MJS attended a workshop organized by Hamilton in 2018. The expenses for lodging were covered for the invited experts, and participants from abroad had their travel expenses reimbursed. Additionally, speakers received a speaker’s fee of CHF 800. He is the Team Leader of Medical Affairs at Hamilton Medical AG, Switzerland, since 2022. ASN received personal speaker fees from Dräger.
Open AccessThis article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by-nc/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
download
DOWNLOAD
print
DRUCKEN

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

e.Med Anästhesiologie

Kombi-Abonnement

Mit e.Med Anästhesiologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes AINS, den Premium-Inhalten der AINS-Fachzeitschriften, inklusive einer gedruckten AINS-Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat MacIntyre N, Rackley C, Khusid F (2021) Fifty years of mechanical ventilation-1970s to 2020. Crit Care Med 49(4):558–574CrossRef MacIntyre N, Rackley C, Khusid F (2021) Fifty years of mechanical ventilation-1970s to 2020. Crit Care Med 49(4):558–574CrossRef
2.
Zurück zum Zitat Damiani E, Adrario E, Girardis M, Romano R, Pelaia P, Singer M et al (2014) Arterial hyperoxia and mortality in critically ill patients: a systematic review and meta-analysis. Crit Care 18(6):711CrossRef Damiani E, Adrario E, Girardis M, Romano R, Pelaia P, Singer M et al (2014) Arterial hyperoxia and mortality in critically ill patients: a systematic review and meta-analysis. Crit Care 18(6):711CrossRef
3.
Zurück zum Zitat Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA et al (2015) Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 372(8):747–755CrossRef Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA et al (2015) Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 372(8):747–755CrossRef
4.
Zurück zum Zitat Urner M, Jüni P, Hansen B, Wettstein MS, Ferguson ND, Fan E (2020) Time-varying intensity of mechanical ventilation and mortality in patients with acute respiratory failure: a registry-based, prospective cohort study. Lancet Respir Med 8(9):905–913CrossRef Urner M, Jüni P, Hansen B, Wettstein MS, Ferguson ND, Fan E (2020) Time-varying intensity of mechanical ventilation and mortality in patients with acute respiratory failure: a registry-based, prospective cohort study. Lancet Respir Med 8(9):905–913CrossRef
5.
Zurück zum Zitat Angus DC, Kelley MA, Schmitz RJ, White A, Popovich J Jr (2000) Caring for the critically ill patient. Current and projected workforce requirements for care of the critically ill and patients with pulmonary disease: can we meet the requirements of an aging population? JAMA 284(21):2762–2770CrossRef Angus DC, Kelley MA, Schmitz RJ, White A, Popovich J Jr (2000) Caring for the critically ill patient. Current and projected workforce requirements for care of the critically ill and patients with pulmonary disease: can we meet the requirements of an aging population? JAMA 284(21):2762–2770CrossRef
6.
Zurück zum Zitat British Medical Association (2021) Medical staffing in England: a defining moment for doctors and patients. BMA House, London British Medical Association (2021) Medical staffing in England: a defining moment for doctors and patients. BMA House, London
7.
Zurück zum Zitat Mamdani M, Slutsky AS (2021) Artificial intelligence in intensive care medicine. Intensive Care Med 47(2):147–149CrossRef Mamdani M, Slutsky AS (2021) Artificial intelligence in intensive care medicine. Intensive Care Med 47(2):147–149CrossRef
8.
Zurück zum Zitat Botta M, Wenstedt EFE, Tsonas AM, Buiteman-Kruizinga LA, van Meenen DMP, Korsten HHM et al (2021) Effectiveness, safety and efficacy of INTELLiVENT-adaptive support ventilation, a closed-loop ventilation mode for use in ICU patients—a systematic review. Expert Rev Respir Med 15(11):1403–1413CrossRef Botta M, Wenstedt EFE, Tsonas AM, Buiteman-Kruizinga LA, van Meenen DMP, Korsten HHM et al (2021) Effectiveness, safety and efficacy of INTELLiVENT-adaptive support ventilation, a closed-loop ventilation mode for use in ICU patients—a systematic review. Expert Rev Respir Med 15(11):1403–1413CrossRef
9.
Zurück zum Zitat De Bie AJR, Neto AS, van Meenen DM, Bouwman AR, Roos AN, Lameijer JR et al (2020) Fully automated postoperative ventilation in cardiac surgery patients: a randomised clinical trial. Br J Anaesth 125(5):739–749CrossRef De Bie AJR, Neto AS, van Meenen DM, Bouwman AR, Roos AN, Lameijer JR et al (2020) Fully automated postoperative ventilation in cardiac surgery patients: a randomised clinical trial. Br J Anaesth 125(5):739–749CrossRef
10.
Zurück zum Zitat Buiteman-Kruizinga LA, Mkadmi HE, Schultz MJ, Tangkau PL, van der Heiden PLJ (2021) Comparison of mechanical power during adaptive support ventilation versus nonautomated pressure-controlled ventilation-a pilot study. Crit Care Explor 3(2):e0335CrossRef Buiteman-Kruizinga LA, Mkadmi HE, Schultz MJ, Tangkau PL, van der Heiden PLJ (2021) Comparison of mechanical power during adaptive support ventilation versus nonautomated pressure-controlled ventilation-a pilot study. Crit Care Explor 3(2):e0335CrossRef
11.
Zurück zum Zitat Buiteman-Kruizinga LA, Mkadmi HE, Serpa Neto A, Kruizinga MD, Botta M, Schultz MJ et al (2021) Effect of INTELLiVENT-ASV versus conventional ventilation on ventilation intensity in patients with COVID-19 ARDS-An observational study. J Clin Med 10(22):5409CrossRef Buiteman-Kruizinga LA, Mkadmi HE, Serpa Neto A, Kruizinga MD, Botta M, Schultz MJ et al (2021) Effect of INTELLiVENT-ASV versus conventional ventilation on ventilation intensity in patients with COVID-19 ARDS-An observational study. J Clin Med 10(22):5409CrossRef
12.
Zurück zum Zitat Georgopoulos D, Xirouchaki N, Tzanakis N, Younes M (2016) Data on respiratory variables in critically ill patients with acute respiratory failure placed on proportional assist ventilation with load adjustable gain factors (PAV+). Data Brief 8:484–493CrossRef Georgopoulos D, Xirouchaki N, Tzanakis N, Younes M (2016) Data on respiratory variables in critically ill patients with acute respiratory failure placed on proportional assist ventilation with load adjustable gain factors (PAV+). Data Brief 8:484–493CrossRef
13.
Zurück zum Zitat Burns KE, Lellouche F, Nisenbaum R, Lessard MR, Friedrich JO (2014) Automated weaning and SBT systems versus non-automated weaning strategies for weaning time in invasively ventilated critically ill adults. Cochrane Database Syst Rev 2014(9):Cd008638PubMedCentral Burns KE, Lellouche F, Nisenbaum R, Lessard MR, Friedrich JO (2014) Automated weaning and SBT systems versus non-automated weaning strategies for weaning time in invasively ventilated critically ill adults. Cochrane Database Syst Rev 2014(9):Cd008638PubMedCentral
14.
Zurück zum Zitat Kampolis CF, Mermiri M, Mavrovounis G, Koutsoukou A, Loukeri AA, Pantazopoulos I (2021) Comparison of advanced closed-loop ventilation modes with pressure support ventilation for weaning from mechanical ventilation in adults: a systematic review and meta-analysis. J Crit Care 68:1–9CrossRef Kampolis CF, Mermiri M, Mavrovounis G, Koutsoukou A, Loukeri AA, Pantazopoulos I (2021) Comparison of advanced closed-loop ventilation modes with pressure support ventilation for weaning from mechanical ventilation in adults: a systematic review and meta-analysis. J Crit Care 68:1–9CrossRef
15.
Zurück zum Zitat Bialais E, Wittebole X, Vignaux L, Roeseler J, Wysocki M, Meyer J et al (2016) Closed-loop ventilation mode (IntelliVent®-ASV) in intensive care unit: a randomized trial. Minerva Anestesiol 82(6):657–668PubMed Bialais E, Wittebole X, Vignaux L, Roeseler J, Wysocki M, Meyer J et al (2016) Closed-loop ventilation mode (IntelliVent®-ASV) in intensive care unit: a randomized trial. Minerva Anestesiol 82(6):657–668PubMed
Metadaten
Titel
Automation to improve lung protection
verfasst von
Laura A. Buiteman-Kruizinga
Ary Serpa Neto
Marcus J. Schultz
Publikationsdatum
20.05.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Intensive Care Medicine / Ausgabe 7/2022
Print ISSN: 0342-4642
Elektronische ISSN: 1432-1238
DOI
https://doi.org/10.1007/s00134-022-06719-9

Weitere Artikel der Ausgabe 7/2022

Intensive Care Medicine 7/2022 Zur Ausgabe

Tipps für den Umgang mit Behandlungsfehlern

01.05.2024 DGIM 2024 Kongressbericht

Es ist nur eine Frage der Zeit, bis es zu einem Zwischenfall kommt und ein Behandlungsfehler passiert. Doch wenn Ärztinnen und Ärzte gut vorbereitet sind, schaffen es alle Beteiligten den Umständen entsprechend gut durch diese Krise. 

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.