Skip to main content
Erschienen in: Pediatric Nephrology 7/2018

06.06.2017 | Review

Bioengineering in renal transplantation: technological advances and novel options

verfasst von: Wee-Song Yeo, Yao-Chun Zhang

Erschienen in: Pediatric Nephrology | Ausgabe 7/2018

Einloggen, um Zugang zu erhalten

Abstract

End-stage kidney disease (ESKD) is one of the most prevalent diseases in the world with significant morbidity and mortality. Current modes of renal replacement therapy include dialysis and renal transplantation. Although dialysis is an acceptable mode of renal replacement therapy, it does have its shortcomings, which include poorer life expectancy compared with renal transplantation, risk of infections and vascular thrombosis, lack of vascular access and absence of biosynthetic functions of the kidney. Renal transplantation, in contrast, is the preferred option of renal replacement therapy, with improved morbidity and mortality rates and quality of life, compared with dialysis. Renal transplantation, however, may not be available to all patients with ESKD. Some of the key factors limiting the availability and efficiency of renal transplantation include shortage of donor organs and the constant risk of rejection with complications associated with over-immunosuppression respectively. This review focuses chiefly on the potential roles of bioengineering in overcoming limitations in renal transplantation via the development of cell-based bioartificial dialysis devices as bridging options before renal transplantation, and the development of new sources of organs utilizing cell and organ engineering.
Literatur
1.
Zurück zum Zitat National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification
2.
Zurück zum Zitat United States Renal Data System 2016 (2016) USRDS annual data report: epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda United States Renal Data System 2016 (2016) USRDS annual data report: epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda
3.
Zurück zum Zitat United States Renal Data System 2015 (2015) USRDS annual data report: epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda United States Renal Data System 2015 (2015) USRDS annual data report: epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda
4.
Zurück zum Zitat ERA-EDTA Registry (2016) ERA-EDTA Registry Annual Report 2014. Academic Medical Center, Department of Medical Informatics, Amsterdam, the Netherlands ERA-EDTA Registry (2016) ERA-EDTA Registry Annual Report 2014. Academic Medical Center, Department of Medical Informatics, Amsterdam, the Netherlands
5.
Zurück zum Zitat Harambat J, van Stralen KJ, Kim JJ, Tizard EJ (2012) Epidemiology of chronic kidney disease in children. Pediatr Nephrol 27:363–373CrossRefPubMed Harambat J, van Stralen KJ, Kim JJ, Tizard EJ (2012) Epidemiology of chronic kidney disease in children. Pediatr Nephrol 27:363–373CrossRefPubMed
6.
Zurück zum Zitat Orr NI, McDonald SP, McTaggart S, Henning P, Craig JC (2009) Frequency, etiology and treatment of childhood end-stage kidney disease in Australia and New Zealand. Pediatr Nephrol 24:1719–1726CrossRefPubMed Orr NI, McDonald SP, McTaggart S, Henning P, Craig JC (2009) Frequency, etiology and treatment of childhood end-stage kidney disease in Australia and New Zealand. Pediatr Nephrol 24:1719–1726CrossRefPubMed
7.
Zurück zum Zitat Zaritsky JJ, Salusky IB, Gales B, Ramos G, Atkinson J, Allestead A, Brandt ML, Goldstein SL (2008) Vascular access complications in long-term pediatric hemodialysis patients. Pediatr Nephrol 23:2061–2065CrossRefPubMed Zaritsky JJ, Salusky IB, Gales B, Ramos G, Atkinson J, Allestead A, Brandt ML, Goldstein SL (2008) Vascular access complications in long-term pediatric hemodialysis patients. Pediatr Nephrol 23:2061–2065CrossRefPubMed
8.
Zurück zum Zitat Hayes WN, Watson AR, Callaghan N, Wright E, Stefanidis CJ, European Pediatric Dialysis Working Group (2012) Vascular access: choice and complications in European paediatric haemodialysis units. Pediatr Nephrol 27:999–1004CrossRefPubMed Hayes WN, Watson AR, Callaghan N, Wright E, Stefanidis CJ, European Pediatric Dialysis Working Group (2012) Vascular access: choice and complications in European paediatric haemodialysis units. Pediatr Nephrol 27:999–1004CrossRefPubMed
9.
Zurück zum Zitat Schaefer F, Feneberg R, Aksu N, Donmez O, Sadikoglu B, Alexander SR, Mir S, Ha IS, Fischbach M, Simkova E, Watson AR, Moller K, von Baum H, Warady BA (2007) Worldwide variation of dialysis-associated peritonitis in children. Kidney Int 72:1374–1379CrossRefPubMed Schaefer F, Feneberg R, Aksu N, Donmez O, Sadikoglu B, Alexander SR, Mir S, Ha IS, Fischbach M, Simkova E, Watson AR, Moller K, von Baum H, Warady BA (2007) Worldwide variation of dialysis-associated peritonitis in children. Kidney Int 72:1374–1379CrossRefPubMed
10.
Zurück zum Zitat Sethna CB, Bryant K, Munshi R, Warady BA, Richardson T, Lawlor J, Newland JG, Neu A, SCOPE Investigators (2016) Risk factors for and outcomes of catheter-associated peritonitis in children: the SCOPE collaborative. Clin J Am Soc Nephrol 11:1590–1596CrossRefPubMedPubMedCentral Sethna CB, Bryant K, Munshi R, Warady BA, Richardson T, Lawlor J, Newland JG, Neu A, SCOPE Investigators (2016) Risk factors for and outcomes of catheter-associated peritonitis in children: the SCOPE collaborative. Clin J Am Soc Nephrol 11:1590–1596CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Wartman SM, Rosen D, Woo K, Gradman WS, Weaver FA, Rowe V (2014) Outcomes with arteriovenous fistulas in a pediatric population. J Vasc Surg 60:170–174CrossRefPubMed Wartman SM, Rosen D, Woo K, Gradman WS, Weaver FA, Rowe V (2014) Outcomes with arteriovenous fistulas in a pediatric population. J Vasc Surg 60:170–174CrossRefPubMed
12.
Zurück zum Zitat Regus S, Almási-Sperling V, Lang W (2016) Pediatric patients undergoing arteriovenous fistula surgery without intraoperative heparin. J Vasc Access 17:494–498CrossRefPubMed Regus S, Almási-Sperling V, Lang W (2016) Pediatric patients undergoing arteriovenous fistula surgery without intraoperative heparin. J Vasc Access 17:494–498CrossRefPubMed
13.
Zurück zum Zitat Goldstein SL, Graham N, Burwinkle T, Warady B, Farrah R, Varni JW (2006) Health-related quality of life in pediatric patients with ESRD. Pediatr Nephrol 21:846–850CrossRefPubMed Goldstein SL, Graham N, Burwinkle T, Warady B, Farrah R, Varni JW (2006) Health-related quality of life in pediatric patients with ESRD. Pediatr Nephrol 21:846–850CrossRefPubMed
14.
Zurück zum Zitat Goldstein SL, Graham N, Warady BA, Seikaly M, McDonald R, Burwinkle TM, Limbers CA, Varni JW (2008) Measuring health-related quality of life in children with ESRD: performance of the generic and ESRD-specific instrument of the Pediatric Quality of Life Inventory (PedsQL). Am J Kidney Dis 51:285–297CrossRefPubMed Goldstein SL, Graham N, Warady BA, Seikaly M, McDonald R, Burwinkle TM, Limbers CA, Varni JW (2008) Measuring health-related quality of life in children with ESRD: performance of the generic and ESRD-specific instrument of the Pediatric Quality of Life Inventory (PedsQL). Am J Kidney Dis 51:285–297CrossRefPubMed
15.
Zurück zum Zitat Riaño-Galán I, Málaga S, Rajmil L, Ariceta G, Navarro M, Loris C, Vallo A (2009) Quality of life of adolescents with end-stage renal disease and kidney transplant. Pediatr Nephrol 24:1561–1568CrossRefPubMed Riaño-Galán I, Málaga S, Rajmil L, Ariceta G, Navarro M, Loris C, Vallo A (2009) Quality of life of adolescents with end-stage renal disease and kidney transplant. Pediatr Nephrol 24:1561–1568CrossRefPubMed
16.
Zurück zum Zitat McDonald SP, Craig JC, Australian and New Zealand Paediatric Nephrology Association (2004) Long-term survival of children with end-stage renal disease. N Engl J Med 350:2654–2662CrossRefPubMed McDonald SP, Craig JC, Australian and New Zealand Paediatric Nephrology Association (2004) Long-term survival of children with end-stage renal disease. N Engl J Med 350:2654–2662CrossRefPubMed
17.
Zurück zum Zitat Groothoff JW (2005) Long-term outcomes of children with end-stage renal disease. Pediatr Nephrol 20:849–853CrossRefPubMed Groothoff JW (2005) Long-term outcomes of children with end-stage renal disease. Pediatr Nephrol 20:849–853CrossRefPubMed
18.
Zurück zum Zitat Mitsnefes MM (2008) Cardiovascular complications of pediatric chronic kidney disease. Pediatr Nephrol 23:27–39CrossRefPubMed Mitsnefes MM (2008) Cardiovascular complications of pediatric chronic kidney disease. Pediatr Nephrol 23:27–39CrossRefPubMed
19.
Zurück zum Zitat Laupacis A, Keown P, Pus N, Krueger H, Ferguson B, Wong C, Muirhead N (1996) A study of the quality of life and cost-utility of renal transplantation. Kidney Int 50:235–242CrossRefPubMed Laupacis A, Keown P, Pus N, Krueger H, Ferguson B, Wong C, Muirhead N (1996) A study of the quality of life and cost-utility of renal transplantation. Kidney Int 50:235–242CrossRefPubMed
20.
Zurück zum Zitat Loubeau PR, Loubeau JM, Jantzen R (2001) The economics of kidney transplantation versus hemodialysis. Prog Transplant 11:291–297CrossRefPubMed Loubeau PR, Loubeau JM, Jantzen R (2001) The economics of kidney transplantation versus hemodialysis. Prog Transplant 11:291–297CrossRefPubMed
21.
Zurück zum Zitat Wolfe RA, Roys EC, Merion RM (2010) Trends in organ donation and transplantation in the United States, 1999–2008. Am J Transplant 10:961–972CrossRefPubMed Wolfe RA, Roys EC, Merion RM (2010) Trends in organ donation and transplantation in the United States, 1999–2008. Am J Transplant 10:961–972CrossRefPubMed
23.
Zurück zum Zitat Fletcher JT, Nankivell BJ, Alexander SI (2009) Chronic allograft nephropathy. Pediatr Nephrol 24:1465–1471CrossRefPubMed Fletcher JT, Nankivell BJ, Alexander SI (2009) Chronic allograft nephropathy. Pediatr Nephrol 24:1465–1471CrossRefPubMed
24.
Zurück zum Zitat Smith JM, Dharnidharka VR (2015) Viral surveillance and subclinical viral infection in pediatric kidney transplantation. Pediatr Nephrol 30:741–748CrossRefPubMed Smith JM, Dharnidharka VR (2015) Viral surveillance and subclinical viral infection in pediatric kidney transplantation. Pediatr Nephrol 30:741–748CrossRefPubMed
25.
Zurück zum Zitat Mynarek M, Hussein K, Kreipe HH, Maecker-Kolhoff B (2014) Malignancies after pediatric kidney transplantation: more than PTLD? Pediatr Nephrol 29:1517–1528CrossRefPubMed Mynarek M, Hussein K, Kreipe HH, Maecker-Kolhoff B (2014) Malignancies after pediatric kidney transplantation: more than PTLD? Pediatr Nephrol 29:1517–1528CrossRefPubMed
26.
Zurück zum Zitat Garro R, Warshaw B, Felner E (2015) New-onset diabetes after kidney transplant in children. Pediatr Nephrol 30:405–416CrossRefPubMed Garro R, Warshaw B, Felner E (2015) New-onset diabetes after kidney transplant in children. Pediatr Nephrol 30:405–416CrossRefPubMed
27.
Zurück zum Zitat Kolff WJ, Berk HTJ (1943) De kunstmatige nier. Een dialysator met groot oppervlak. Ned Tijdschr Geneeskd 87:1684 Kolff WJ, Berk HTJ (1943) De kunstmatige nier. Een dialysator met groot oppervlak. Ned Tijdschr Geneeskd 87:1684
28.
Zurück zum Zitat Broers H (2006) Inventor for life, the story of W. J. Kolff, father of artificial organs. B&Vmedia, Kampen Broers H (2006) Inventor for life, the story of W. J. Kolff, father of artificial organs. B&Vmedia, Kampen
29.
Zurück zum Zitat Kolff W (1946) De kunstmatige nier. Kok, Kampen Kolff W (1946) De kunstmatige nier. Kok, Kampen
30.
Zurück zum Zitat Vienken J (2009) “Bioengineering for life”: a tribute to Willem Johan Kolff. Nephrol Dial Transplant 24:2299–2301CrossRefPubMed Vienken J (2009) “Bioengineering for life”: a tribute to Willem Johan Kolff. Nephrol Dial Transplant 24:2299–2301CrossRefPubMed
31.
Zurück zum Zitat Arai Y, Kanda E, Kikuchi H, Yamamura C, Hirasawa S, Aki S, Inaba N, Aoyagi M, Tanaka H, Tamura T, Sasaki S (2014) Decreased mobility after starting dialysis is an independent risk factor for short-term mortality after initiation of dialysis. Nephrology (Carlton) 19:227–233CrossRef Arai Y, Kanda E, Kikuchi H, Yamamura C, Hirasawa S, Aki S, Inaba N, Aoyagi M, Tanaka H, Tamura T, Sasaki S (2014) Decreased mobility after starting dialysis is an independent risk factor for short-term mortality after initiation of dialysis. Nephrology (Carlton) 19:227–233CrossRef
32.
Zurück zum Zitat Humes HD, Buffington DA, MacKay SM, Funke AJ, Weitzel WF (1999) Replacement of renal function in uremic animals with a tissue-engineered kidney. Nat Biotechnol 17:451–455CrossRefPubMed Humes HD, Buffington DA, MacKay SM, Funke AJ, Weitzel WF (1999) Replacement of renal function in uremic animals with a tissue-engineered kidney. Nat Biotechnol 17:451–455CrossRefPubMed
33.
Zurück zum Zitat Tumlin J, Wali R, Williams W, Murray P, Tolwani AJ, Vinnikova AK, Szerlip HM, Ye J, Paganini EP, Dworkin L, Finkel KW, Kraus MA, Humes HD (2008) Efficacy and safety of renal tubule cell therapy for acute renal failure. J Am Soc Nephrol 19:1034–1040CrossRefPubMedPubMedCentral Tumlin J, Wali R, Williams W, Murray P, Tolwani AJ, Vinnikova AK, Szerlip HM, Ye J, Paganini EP, Dworkin L, Finkel KW, Kraus MA, Humes HD (2008) Efficacy and safety of renal tubule cell therapy for acute renal failure. J Am Soc Nephrol 19:1034–1040CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Pino CJ, Yevzlin AS, Tumlin J, Humes HD (2012) Cell-based strategies for the treatment of kidney dysfunction: a review. Blood Purif 34:117–123CrossRefPubMed Pino CJ, Yevzlin AS, Tumlin J, Humes HD (2012) Cell-based strategies for the treatment of kidney dysfunction: a review. Blood Purif 34:117–123CrossRefPubMed
35.
Zurück zum Zitat Fissell WH, Fleischman AJ, Humes HD, Roy S (2007) Development of continuous implantable renal replacement: past and future. Transl Res 150:327–336CrossRefPubMed Fissell WH, Fleischman AJ, Humes HD, Roy S (2007) Development of continuous implantable renal replacement: past and future. Transl Res 150:327–336CrossRefPubMed
36.
Zurück zum Zitat Fissell WH, Dubnisheva A, Eldridge AN, Fleischman AJ, Zydney AL, Roy S (2009) High-performance silicon nanopore hemofiltration membranes. J Memb Sci 326:58–63CrossRefPubMedPubMedCentral Fissell WH, Dubnisheva A, Eldridge AN, Fleischman AJ, Zydney AL, Roy S (2009) High-performance silicon nanopore hemofiltration membranes. J Memb Sci 326:58–63CrossRefPubMedPubMedCentral
38.
39.
Zurück zum Zitat Fissell WH, Manley S, Westover A, Humes HD, Fleischman AJ, Roy S (2006) Differentiated growth of human renal tubule cells on thin-film and nanostructured materials. ASAIO J 52:221–227CrossRefPubMed Fissell WH, Manley S, Westover A, Humes HD, Fleischman AJ, Roy S (2006) Differentiated growth of human renal tubule cells on thin-film and nanostructured materials. ASAIO J 52:221–227CrossRefPubMed
40.
Zurück zum Zitat Kanani DM, Fissell WH, Roy S, Dubnisheva A, Fleischman A, Zydney AL (2010) Permeability—selectivity analysis for ultrafiltration: effect of pore geometry. J Memb Sci 349:405CrossRefPubMedPubMedCentral Kanani DM, Fissell WH, Roy S, Dubnisheva A, Fleischman A, Zydney AL (2010) Permeability—selectivity analysis for ultrafiltration: effect of pore geometry. J Memb Sci 349:405CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Kensinger C, Karp S, Kant R, Chui BW, Goldman K, Yeager T, Gould ER, Buck A, Laneve DC, Groszek JJ, Roy S, Fissell WH (2016) First implantation of silicon nanopore membrane hemofilters. ASAIO J 62:491–495CrossRefPubMedPubMedCentral Kensinger C, Karp S, Kant R, Chui BW, Goldman K, Yeager T, Gould ER, Buck A, Laneve DC, Groszek JJ, Roy S, Fissell WH (2016) First implantation of silicon nanopore membrane hemofilters. ASAIO J 62:491–495CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Buffington DA, Pino CJ, Chen L, Westover AJ, Hageman G, Humes HD (2012) Bioartificial renal epithelial cell system (BRECS): a compact, cryopreservable extracorporeal renal replacement device. Cell Med 4:33–43CrossRefPubMedPubMedCentral Buffington DA, Pino CJ, Chen L, Westover AJ, Hageman G, Humes HD (2012) Bioartificial renal epithelial cell system (BRECS): a compact, cryopreservable extracorporeal renal replacement device. Cell Med 4:33–43CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Johnston KA, Westover AJ, Rojas-Pena A, Buffington DA, Pino CJ, Smith PL, Humes HD (2016) Development of a wearable bioartificial kidney using the bioartificial renal epithelial cell system (BRECS). J Tissue Eng Regen Med. doi:10.1002/term.2206 PubMedCrossRef Johnston KA, Westover AJ, Rojas-Pena A, Buffington DA, Pino CJ, Smith PL, Humes HD (2016) Development of a wearable bioartificial kidney using the bioartificial renal epithelial cell system (BRECS). J Tissue Eng Regen Med. doi:10.​1002/​term.​2206 PubMedCrossRef
44.
Zurück zum Zitat Westover AJ, Buffington DA, Johnston KA, Smith PL, Pino CJ, Humes HD (2017) A bio-artificial renal epithelial cell system conveys survival advantage in a porcine model of septic shock. J Tissue Eng Regen Med 11:649–657CrossRefPubMed Westover AJ, Buffington DA, Johnston KA, Smith PL, Pino CJ, Humes HD (2017) A bio-artificial renal epithelial cell system conveys survival advantage in a porcine model of septic shock. J Tissue Eng Regen Med 11:649–657CrossRefPubMed
46.
48.
Zurück zum Zitat Safirstein R (1999) Renal regeneration: reiterating a developmental paradigm. Kidney Int 56:1599–1600CrossRefPubMed Safirstein R (1999) Renal regeneration: reiterating a developmental paradigm. Kidney Int 56:1599–1600CrossRefPubMed
49.
Zurück zum Zitat Nony PA, Schnellmann RG (2003) Mechanisms of renal cell repair and regeneration after acute renal failure. J Pharmacol Exp Ther 304:905–912CrossRefPubMed Nony PA, Schnellmann RG (2003) Mechanisms of renal cell repair and regeneration after acute renal failure. J Pharmacol Exp Ther 304:905–912CrossRefPubMed
50.
Zurück zum Zitat Herrera MB, Bussolati B, Bruno S, Fonsato V, Romanazzi GM, Camussi G (2004) Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury. Int J Mol Med 14:1035–1041PubMed Herrera MB, Bussolati B, Bruno S, Fonsato V, Romanazzi GM, Camussi G (2004) Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury. Int J Mol Med 14:1035–1041PubMed
51.
Zurück zum Zitat Kunter U, Rong S, Djuric Z, Boor P, Müller-Newen G, Yu D, Floege J (2006) Transplanted mesenchymal stem cells accelerate glomerular healing in experimental glomerulonephritis. J Am Soc Nephrol 17:2202–2212CrossRefPubMed Kunter U, Rong S, Djuric Z, Boor P, Müller-Newen G, Yu D, Floege J (2006) Transplanted mesenchymal stem cells accelerate glomerular healing in experimental glomerulonephritis. J Am Soc Nephrol 17:2202–2212CrossRefPubMed
52.
Zurück zum Zitat Bussolati B, Hauser PV, Carvalhosa R, Camussi G (2009) Contribution of stem cells to kidney repair. Curr Stem Cell Res Ther 4:2–8CrossRefPubMed Bussolati B, Hauser PV, Carvalhosa R, Camussi G (2009) Contribution of stem cells to kidney repair. Curr Stem Cell Res Ther 4:2–8CrossRefPubMed
53.
Zurück zum Zitat Li L, Black R, Ma Z, Yang Q, Wang A, Lin F (2012) Use of mouse hematopoietic stem and progenitor cells to treat acute kidney injury. Am J Physiol Renal Physiol 302:F9–F19CrossRefPubMed Li L, Black R, Ma Z, Yang Q, Wang A, Lin F (2012) Use of mouse hematopoietic stem and progenitor cells to treat acute kidney injury. Am J Physiol Renal Physiol 302:F9–F19CrossRefPubMed
54.
Zurück zum Zitat He J, Wang Y, Sun S, Yu M, Wang C, Pei X, Zhu B, Wu J, Zhao W (2012) Bone marrow stem cells-derived microvesicles protect against renal injury in the mouse remnant kidney model. Nephrology (Carlton) 17:493–500CrossRef He J, Wang Y, Sun S, Yu M, Wang C, Pei X, Zhu B, Wu J, Zhao W (2012) Bone marrow stem cells-derived microvesicles protect against renal injury in the mouse remnant kidney model. Nephrology (Carlton) 17:493–500CrossRef
55.
Zurück zum Zitat Dorronsoro A, Robbins PD (2013) Regenerating the injured kidney with human umbilical cord mesenchymal stem cell-derived exosomes. Stem Cell Res Ther 4:39CrossRefPubMedPubMedCentral Dorronsoro A, Robbins PD (2013) Regenerating the injured kidney with human umbilical cord mesenchymal stem cell-derived exosomes. Stem Cell Res Ther 4:39CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat He J, Wang Y, Lu X, Zhu B, Pei X, Wu J, Zhao W (2015) Micro-vesicles derived from bone marrow stem cells protect the kidney both in vivo and in vitro by microRNA-dependent repairing. Nephrology (Carlton) 20:591–600CrossRef He J, Wang Y, Lu X, Zhu B, Pei X, Wu J, Zhao W (2015) Micro-vesicles derived from bone marrow stem cells protect the kidney both in vivo and in vitro by microRNA-dependent repairing. Nephrology (Carlton) 20:591–600CrossRef
57.
Zurück zum Zitat Li Q, Tian SF, Guo Y, Niu X, Hu B, Guo SC, Wang NS, Wang Y (2015) Transplantation of induced pluripotent stem cell-derived renal stem cells improved acute kidney injury. Cell Biosci 5:45CrossRefPubMedPubMedCentral Li Q, Tian SF, Guo Y, Niu X, Hu B, Guo SC, Wang NS, Wang Y (2015) Transplantation of induced pluripotent stem cell-derived renal stem cells improved acute kidney injury. Cell Biosci 5:45CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat Jia X, Xie X, Feng G, Lű H, Zhao Q, Che Y, Zheng Y, Han Z, Xu Y, Li Z, Kong D (2012) Bone marrow-derived cells can acquire renal stem cells properties and ameliorate ischemia-reperfusion induced acute renal injury. BMC Nephrol 13:105CrossRefPubMedPubMedCentral Jia X, Xie X, Feng G, Lű H, Zhao Q, Che Y, Zheng Y, Han Z, Xu Y, Li Z, Kong D (2012) Bone marrow-derived cells can acquire renal stem cells properties and ameliorate ischemia-reperfusion induced acute renal injury. BMC Nephrol 13:105CrossRefPubMedPubMedCentral
59.
60.
Zurück zum Zitat Steenhard BM, Isom KS, Cazcarro P, Dunmore JH, Godwin AR, St John PL, Abrahamson DR (2005) Integration of embryonic stem cells in metanephric kidney organ culture. J Am Soc Nephrol 16:1623–1631CrossRefPubMed Steenhard BM, Isom KS, Cazcarro P, Dunmore JH, Godwin AR, St John PL, Abrahamson DR (2005) Integration of embryonic stem cells in metanephric kidney organ culture. J Am Soc Nephrol 16:1623–1631CrossRefPubMed
61.
Zurück zum Zitat Kobayashi T, Tanaka H, Kuwana H, Inoshita S, Teraoka H, Sasaki S, Terada Y (2005) Wnt4-transformed mouse embryonic stem cells differentiate into renal tubular cells. Biochem Biophys Res Commun 336:585–595CrossRefPubMed Kobayashi T, Tanaka H, Kuwana H, Inoshita S, Teraoka H, Sasaki S, Terada Y (2005) Wnt4-transformed mouse embryonic stem cells differentiate into renal tubular cells. Biochem Biophys Res Commun 336:585–595CrossRefPubMed
62.
Zurück zum Zitat Kim D, Dressler GR (2005) Nephrogenic factors promote differentiation of mouse embryonic stem cells into renal epithelia. J Am Soc Nephrol 16:3527–3534CrossRefPubMed Kim D, Dressler GR (2005) Nephrogenic factors promote differentiation of mouse embryonic stem cells into renal epithelia. J Am Soc Nephrol 16:3527–3534CrossRefPubMed
63.
Zurück zum Zitat Morizane R, Monkawa T, Itoh H (2009) Differentiation of murine embryonic stem and induced pluripotent stem cells to renal lineage in vitro. Biochem Biophys Res Commun 390:1334–1339CrossRefPubMed Morizane R, Monkawa T, Itoh H (2009) Differentiation of murine embryonic stem and induced pluripotent stem cells to renal lineage in vitro. Biochem Biophys Res Commun 390:1334–1339CrossRefPubMed
64.
Zurück zum Zitat Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefPubMed Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefPubMed
65.
Zurück zum Zitat Esteban MA, Wang T, Qin B, Yang J, Qin D, Cai J, Li W, Weng Z, Chen J, Ni S, Chen K, Li Y, Liu X, Xu J, Zhang S, Li F, He W, Labuda K, Song Y, Peterbauer A, Wolbank S, Redl H, Zhong M, Cai D, Zeng L, Pei D (2010) Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 6:71–79CrossRefPubMed Esteban MA, Wang T, Qin B, Yang J, Qin D, Cai J, Li W, Weng Z, Chen J, Ni S, Chen K, Li Y, Liu X, Xu J, Zhang S, Li F, He W, Labuda K, Song Y, Peterbauer A, Wolbank S, Redl H, Zhong M, Cai D, Zeng L, Pei D (2010) Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 6:71–79CrossRefPubMed
66.
Zurück zum Zitat Horster MF, Braun GS, Huber SM (1999) Embryonic renal epithelia: induction, nephrogenesis, and cell differentiation. Physiol Rev 79:1157–1191CrossRefPubMed Horster MF, Braun GS, Huber SM (1999) Embryonic renal epithelia: induction, nephrogenesis, and cell differentiation. Physiol Rev 79:1157–1191CrossRefPubMed
67.
Zurück zum Zitat Woolf AS, Palmer SJ, Snow ML, Fine LG (1990) Creation of a functioning chimeric mammalian kidney. Kidney Int 38:991–997CrossRefPubMed Woolf AS, Palmer SJ, Snow ML, Fine LG (1990) Creation of a functioning chimeric mammalian kidney. Kidney Int 38:991–997CrossRefPubMed
68.
Zurück zum Zitat Rogers SA, Lowell JA, Hammerman NA, Hammerman MR (1998) Transplantation of developing metanephroi into adult rats. Kidney Int 54:27–37CrossRefPubMed Rogers SA, Lowell JA, Hammerman NA, Hammerman MR (1998) Transplantation of developing metanephroi into adult rats. Kidney Int 54:27–37CrossRefPubMed
69.
Zurück zum Zitat Hammerman MR (2003) Therapeutic promise of embryonic kidney transplantation. Nephron Exp Nephrol 93:e58CrossRefPubMed Hammerman MR (2003) Therapeutic promise of embryonic kidney transplantation. Nephron Exp Nephrol 93:e58CrossRefPubMed
70.
Zurück zum Zitat Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27:3675–3683PubMed Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27:3675–3683PubMed
71.
Zurück zum Zitat Ross EA, Williams MJ, Hamazaki T, Terada N, Clapp WL, Adin C, Ellison GW, Jorgensen M, Batich CD (2009) Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds. J Am Soc Nephrol 20:2338–2347CrossRefPubMedPubMedCentral Ross EA, Williams MJ, Hamazaki T, Terada N, Clapp WL, Adin C, Ellison GW, Jorgensen M, Batich CD (2009) Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds. J Am Soc Nephrol 20:2338–2347CrossRefPubMedPubMedCentral
72.
Zurück zum Zitat Nakayama KH, Batchelder CA, Lee CI, Tarantal AF (2010) Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering. Tissue Eng Part A 16:2207–2216CrossRefPubMedPubMedCentral Nakayama KH, Batchelder CA, Lee CI, Tarantal AF (2010) Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering. Tissue Eng Part A 16:2207–2216CrossRefPubMedPubMedCentral
73.
Zurück zum Zitat Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC (2013) Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med 19:646–651CrossRefPubMedPubMedCentral Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC (2013) Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med 19:646–651CrossRefPubMedPubMedCentral
74.
75.
Zurück zum Zitat Mirmalek-Sani SH, Sullivan DC, Zimmerman C, Shupe TD, Petersen BE (2013) Immunogenicity of decellularized porcine liver for bioengineered hepatic tissue. Am J Pathol 183:558–565CrossRefPubMedPubMedCentral Mirmalek-Sani SH, Sullivan DC, Zimmerman C, Shupe TD, Petersen BE (2013) Immunogenicity of decellularized porcine liver for bioengineered hepatic tissue. Am J Pathol 183:558–565CrossRefPubMedPubMedCentral
76.
Zurück zum Zitat Salvatori M, Peloso A, Katari R, Soker S, Lerut JP, Stratta RJ, Orlando G (2015) Semi-xenotransplantation: the regenerative medicine-based approach to immunosuppression-free transplantation and to meet the organ demand. Xenotransplantation 22:1–6CrossRefPubMed Salvatori M, Peloso A, Katari R, Soker S, Lerut JP, Stratta RJ, Orlando G (2015) Semi-xenotransplantation: the regenerative medicine-based approach to immunosuppression-free transplantation and to meet the organ demand. Xenotransplantation 22:1–6CrossRefPubMed
77.
Zurück zum Zitat Hull CW (1986) Apparatus for production of three-dimensional objects by stereolithography. US4575330 A (Google Patents, 1986) Hull CW (1986) Apparatus for production of three-dimensional objects by stereolithography. US4575330 A (Google Patents, 1986)
78.
Zurück zum Zitat Zopf DA, Hollister SJ, Nelson ME, Ohye RG, Green GE (2013) Bioresorbable airway splint created with a three-dimensional printer. N Engl J Med 368:2043–2045CrossRefPubMed Zopf DA, Hollister SJ, Nelson ME, Ohye RG, Green GE (2013) Bioresorbable airway splint created with a three-dimensional printer. N Engl J Med 368:2043–2045CrossRefPubMed
79.
Metadaten
Titel
Bioengineering in renal transplantation: technological advances and novel options
verfasst von
Wee-Song Yeo
Yao-Chun Zhang
Publikationsdatum
06.06.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Pediatric Nephrology / Ausgabe 7/2018
Print ISSN: 0931-041X
Elektronische ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-017-3706-4

Weitere Artikel der Ausgabe 7/2018

Pediatric Nephrology 7/2018 Zur Ausgabe

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.