Skip to main content
Erschienen in: The Cerebellum 3/2008

01.09.2008

Calretinin-immunopositive Cells and Fibers in the Cerebellar Cortex of Normal Sheep

verfasst von: María-Isabel Álvarez, César Lacruz, Adolfo Toledano-Díaz, Eva Monleón, Marta Monzón, Juan-José Badiola, Adolfo Toledano

Erschienen in: The Cerebellum | Ausgabe 3/2008

Einloggen, um Zugang zu erhalten

Abstract

Calretinin (CR)-immunopositive cells and fibers in the cerebellar cortex (vermal archicerebellum—lobules X and IX—and neocerebellum—lobules VIIb and VIII) of two and 4-year-old Manchega and Rasa Aragonesa sheep were studied. CR-immunoreactivity was seen in subsets of all neurons and afferent fibers described in the cerebellar cortex. Generally, immunopositive cells were seen in very high densities in lobules X and IX, and in low density in lobule VIIb. Apparently, all unipolar brush cells were CR-immunopositive and showed a greater variety of shape than had been reported in other species. CR-immunoreactivity of Purkinje cells was either absent or varied from low to medium intensity. Few granule cell perikarya were immunostained (<5%) but a large number of their axons were CR-immunopositive. Subsets of stellate and basket cells were CR-immunoreactive—quite different to what is seen in most of mammalian species. Strongly CR-immunopositive mossy and climbing fibers, isolated or grouped, were observed in all lobules. Although we found neither a difference in CR-immunoreactivity between the two breds of sheep, nor between the two ages examined, we observed important differences in CR-immunoreactivity between sheep and other mammalian species. Our observation of neuronal clusters and groups of fibers with very high CR-immunopositivity supports the idea of a heterogeneous species-specific functional organization for the cerebellar cortex within an apparent homogeneous histological structure maintained throughout mammalian evolution. The results also suggest that the varied levels of CR expression may be related to the specific functions of these immunopositive neurons and fibers rather than to a general neuroprotective role played by calretinin in the cerebellar cortex.
Literatur
1.
Zurück zum Zitat Résibois A, Rogers JH (1992) Calretinin in rat brain: an immunohistochemical study. Neuroscience 46:101–134PubMedCrossRef Résibois A, Rogers JH (1992) Calretinin in rat brain: an immunohistochemical study. Neuroscience 46:101–134PubMedCrossRef
2.
Zurück zum Zitat De Felipe J (1997) Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex. J Chem Neuroanat 14:1–19CrossRef De Felipe J (1997) Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex. J Chem Neuroanat 14:1–19CrossRef
3.
Zurück zum Zitat Floris A, Dino M, Jacobowitz DM, Mugnaini E (1994) The unipolar brush cells of the rat cerebellar cortex and cochlear nucleus are calretinin-positive: a study by light and electron microscopic immunocytochemistry. Anat Embryol 189:495–520PubMedCrossRef Floris A, Dino M, Jacobowitz DM, Mugnaini E (1994) The unipolar brush cells of the rat cerebellar cortex and cochlear nucleus are calretinin-positive: a study by light and electron microscopic immunocytochemistry. Anat Embryol 189:495–520PubMedCrossRef
4.
Zurück zum Zitat Abbott LC, Jacobowitz DM (1995) Development of calretinin-immunoreactive unipolar brush-like cells and an afferent pathway to the embryonic and early postnatal mouse cerebellum. Anat Embryol 191:541–559PubMedCrossRef Abbott LC, Jacobowitz DM (1995) Development of calretinin-immunoreactive unipolar brush-like cells and an afferent pathway to the embryonic and early postnatal mouse cerebellum. Anat Embryol 191:541–559PubMedCrossRef
5.
Zurück zum Zitat Dino MR, Willard FH, Mugnaini E (1999) Distribution of unipolar brush cells and other calretinin immunoreactive components in the mammalian cerebellar cortex. J Neurocytol 28:99–123PubMedCrossRef Dino MR, Willard FH, Mugnaini E (1999) Distribution of unipolar brush cells and other calretinin immunoreactive components in the mammalian cerebellar cortex. J Neurocytol 28:99–123PubMedCrossRef
6.
Zurück zum Zitat Takacs J, Borostyankoi ZA, Veisenberger E, Vastagh C, Vig J, Gorcs TJ, Hamori J (2000) Postnatal development of unipolar brush cells in the cerebellar cortex of cat. J Neurosci Res 61:107–115PubMedCrossRef Takacs J, Borostyankoi ZA, Veisenberger E, Vastagh C, Vig J, Gorcs TJ, Hamori J (2000) Postnatal development of unipolar brush cells in the cerebellar cortex of cat. J Neurosci Res 61:107–115PubMedCrossRef
7.
Zurück zum Zitat Geurts FJ, Timmermans J, Shigemoto R, De Schutter E (2001) Morphological and neurochemical differentiation of large granular layer interneurons in the adult rat cerebellum. Neuroscience 104:499–512PubMedCrossRef Geurts FJ, Timmermans J, Shigemoto R, De Schutter E (2001) Morphological and neurochemical differentiation of large granular layer interneurons in the adult rat cerebellum. Neuroscience 104:499–512PubMedCrossRef
8.
Zurück zum Zitat Nunzi MG, Mugnaini E (2000) Unipolar brush cell axons form a large system of intrinsic mossy fibers in the postnatal vestibulocerebellum. J Comp Neurol 422:55–65PubMedCrossRef Nunzi MG, Mugnaini E (2000) Unipolar brush cell axons form a large system of intrinsic mossy fibers in the postnatal vestibulocerebellum. J Comp Neurol 422:55–65PubMedCrossRef
9.
Zurück zum Zitat Vig J, Takacs J, Abraham H, Kovacs GG, Hamori J (2005) Calretinin-immunoreactive unipolar brush cells in the developing human cerebellum. Int J Dev Neurosci 23:723–729PubMedCrossRef Vig J, Takacs J, Abraham H, Kovacs GG, Hamori J (2005) Calretinin-immunoreactive unipolar brush cells in the developing human cerebellum. Int J Dev Neurosci 23:723–729PubMedCrossRef
10.
Zurück zum Zitat Rogers JH (1989) Immunoreactivity for calretinin and other calcium-binding proteins in cerebellum. Neuroscience 31:711–721PubMedCrossRef Rogers JH (1989) Immunoreactivity for calretinin and other calcium-binding proteins in cerebellum. Neuroscience 31:711–721PubMedCrossRef
11.
Zurück zum Zitat Braak E, Braak H (1993) The new monodendritic neuronal type within the adult human cerebellar granule cell layer shows calretinin-immunoreactivity. Neurosci Lett 154:199–202PubMedCrossRef Braak E, Braak H (1993) The new monodendritic neuronal type within the adult human cerebellar granule cell layer shows calretinin-immunoreactivity. Neurosci Lett 154:199–202PubMedCrossRef
12.
Zurück zum Zitat Yan XX, Garey LJ (1996) Calretinin immunoreactivity in the monkey and cat cerebellum: cellular localisation and modular distribution. J Hirnforsch 37:409–419PubMed Yan XX, Garey LJ (1996) Calretinin immunoreactivity in the monkey and cat cerebellum: cellular localisation and modular distribution. J Hirnforsch 37:409–419PubMed
13.
Zurück zum Zitat Yan XX, Garey LJ (1998) Complementary distributions of calbindin, parvalbumin and calretinin in the cerebellar vermis of the adult cat. J Hirnforsch 39:9–14PubMed Yan XX, Garey LJ (1998) Complementary distributions of calbindin, parvalbumin and calretinin in the cerebellar vermis of the adult cat. J Hirnforsch 39:9–14PubMed
14.
Zurück zum Zitat Fortin M, Marchand R, Parent A (1998) Calcium-binding proteins in primate cerebellum. Neurosci Res 30:155–168PubMedCrossRef Fortin M, Marchand R, Parent A (1998) Calcium-binding proteins in primate cerebellum. Neurosci Res 30:155–168PubMedCrossRef
15.
Zurück zum Zitat Geurts FJ, De Schutter E, Dieudonne S (2003) Unraveling the cerebellar cortex: cytology and cellular physiology of large-sized interneurons in the granular layer. Cerebellum 2:290–299PubMedCrossRef Geurts FJ, De Schutter E, Dieudonne S (2003) Unraveling the cerebellar cortex: cytology and cellular physiology of large-sized interneurons in the granular layer. Cerebellum 2:290–299PubMedCrossRef
16.
Zurück zum Zitat Schafer BW, Heizmann CW (1996) The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci 21:134–140PubMed Schafer BW, Heizmann CW (1996) The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci 21:134–140PubMed
17.
Zurück zum Zitat Kawasaki H, Nakayama S, Kretsinger RH (1998) Classification and evolution of EF-hand proteins. Biometals 11:277–295PubMedCrossRef Kawasaki H, Nakayama S, Kretsinger RH (1998) Classification and evolution of EF-hand proteins. Biometals 11:277–295PubMedCrossRef
18.
Zurück zum Zitat Schwaller B, Meyer M, Schiffmann S (2000) “New” functions for “old” proteins: the role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum 1:241–258CrossRef Schwaller B, Meyer M, Schiffmann S (2000) “New” functions for “old” proteins: the role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum 1:241–258CrossRef
19.
Zurück zum Zitat Morona R, Moreno N, López JM, González A (2006) Immunohistochemical localization of calbindin-D28k and calretinin in the spinal cord of Xenopus laevis. J Comp Neurol 494:763–783PubMedCrossRef Morona R, Moreno N, López JM, González A (2006) Immunohistochemical localization of calbindin-D28k and calretinin in the spinal cord of Xenopus laevis. J Comp Neurol 494:763–783PubMedCrossRef
20.
Zurück zum Zitat Grateron L, Cebada-Sanchez S, Marcos P, Mohedano-Moriano A, Insausti AM, Muñoz M et al (2003) Postnatal development of calcium-binding proteins immunoreactivity (parvalbumin, calbindin, calretinin) in the human entorhinal cortex. J Chem Neuroanat 26:311–316PubMedCrossRef Grateron L, Cebada-Sanchez S, Marcos P, Mohedano-Moriano A, Insausti AM, Muñoz M et al (2003) Postnatal development of calcium-binding proteins immunoreactivity (parvalbumin, calbindin, calretinin) in the human entorhinal cortex. J Chem Neuroanat 26:311–316PubMedCrossRef
21.
Zurück zum Zitat Melchitzky DS, Eggan SM, Lewis DA (2005) Synaptic targets of calretinin-containing axon terminals in macaque monkey prefrontal cortex. Neuroscience 130:185–195PubMedCrossRef Melchitzky DS, Eggan SM, Lewis DA (2005) Synaptic targets of calretinin-containing axon terminals in macaque monkey prefrontal cortex. Neuroscience 130:185–195PubMedCrossRef
22.
Zurück zum Zitat Zaitsev AV, Gonzalez-Burgos G, Povysheva NV, Kroner S, Lewis DA, Krimer LS (2005) Localization of calcium-binding proteins in physiologically and morphologically characterized interneurons of monkey dorsolateral prefrontal cortex. Cereb Cortex 15:1178–1186PubMedCrossRef Zaitsev AV, Gonzalez-Burgos G, Povysheva NV, Kroner S, Lewis DA, Krimer LS (2005) Localization of calcium-binding proteins in physiologically and morphologically characterized interneurons of monkey dorsolateral prefrontal cortex. Cereb Cortex 15:1178–1186PubMedCrossRef
23.
Zurück zum Zitat Bastianelli E (2003) Distribution of calcium-binding proteins in the cerebellum. Cerebellum 2:242–262PubMedCrossRef Bastianelli E (2003) Distribution of calcium-binding proteins in the cerebellum. Cerebellum 2:242–262PubMedCrossRef
24.
Zurück zum Zitat Dino MR, Perachio AA, Mugnaini E (2001) Cerebellar unipolar brush cells are targets of primary vestibular afferents: an experimental study in the gerbil. Exp Brain Res 140:162–170PubMedCrossRef Dino MR, Perachio AA, Mugnaini E (2001) Cerebellar unipolar brush cells are targets of primary vestibular afferents: an experimental study in the gerbil. Exp Brain Res 140:162–170PubMedCrossRef
25.
Zurück zum Zitat Nunzi MG, Birnstiel S, Bhattacharyya BJ, Slater NT, Mugnaini E (2001) Unipolar brush cells form a glutamatergic projection system within the mouse cerebellar cortex. J Comp Neurol 434:329–341PubMedCrossRef Nunzi MG, Birnstiel S, Bhattacharyya BJ, Slater NT, Mugnaini E (2001) Unipolar brush cells form a glutamatergic projection system within the mouse cerebellar cortex. J Comp Neurol 434:329–341PubMedCrossRef
26.
Zurück zum Zitat Nunzi MG, Shigemoto R, Mugnaini E (2002) Differential expression of calretinin and metabotropic glutamate receptor mGluR1alpha defines subsets of unipolar brush cells in mouse cerebellum. J Comp Neurol 451:189–199PubMedCrossRef Nunzi MG, Shigemoto R, Mugnaini E (2002) Differential expression of calretinin and metabotropic glutamate receptor mGluR1alpha defines subsets of unipolar brush cells in mouse cerebellum. J Comp Neurol 451:189–199PubMedCrossRef
27.
Zurück zum Zitat Gall D, Roussel C, Nieus T, Cheron G, Servais L, D'Angelo E, Schiffmann SN (2006) Role of calcium binding proteins in the control of cerebellar granule cell neuronal excitability: experimental and modeling studies. Prog Brain Res 148:321–328CrossRef Gall D, Roussel C, Nieus T, Cheron G, Servais L, D'Angelo E, Schiffmann SN (2006) Role of calcium binding proteins in the control of cerebellar granule cell neuronal excitability: experimental and modeling studies. Prog Brain Res 148:321–328CrossRef
28.
Zurück zum Zitat Gall D, Roussel C, Susa I, D'Angelo E, Rossi P, Bearzatto B et al (2003) Altered neuronal excitability in cerebellar granule cells of mice lacking calretinin. J Neurosci 23:9320–9327PubMed Gall D, Roussel C, Susa I, D'Angelo E, Rossi P, Bearzatto B et al (2003) Altered neuronal excitability in cerebellar granule cells of mice lacking calretinin. J Neurosci 23:9320–9327PubMed
29.
Zurück zum Zitat Schiffmann SN, Cheron G, Lohof A, d'Alcantara P, Meyer M, Parmentier M, Schurmans S (1999) Impaired motor coordination and Purkinje cell excitability in mice lacking calretinin. Proc Natl Acad Sci 96:5257–5262PubMedCrossRef Schiffmann SN, Cheron G, Lohof A, d'Alcantara P, Meyer M, Parmentier M, Schurmans S (1999) Impaired motor coordination and Purkinje cell excitability in mice lacking calretinin. Proc Natl Acad Sci 96:5257–5262PubMedCrossRef
30.
Zurück zum Zitat Servais L, Cheron G (2005) Purkinje cell rhythmicity and synchronicity during modulation of fast cerebellar oscillation. Neuroscience 134:1247–1259PubMedCrossRef Servais L, Cheron G (2005) Purkinje cell rhythmicity and synchronicity during modulation of fast cerebellar oscillation. Neuroscience 134:1247–1259PubMedCrossRef
31.
Zurück zum Zitat Bearzatto B, Servais L, Roussel C, Gall D, Baba-Aissa F, Schurmans S et al (2006) Targeted calretinin expression in granule cells of calretinin-null mice restores normal cerebellar functions. FASEB J 20:380–382PubMed Bearzatto B, Servais L, Roussel C, Gall D, Baba-Aissa F, Schurmans S et al (2006) Targeted calretinin expression in granule cells of calretinin-null mice restores normal cerebellar functions. FASEB J 20:380–382PubMed
32.
Zurück zum Zitat Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216:136–144PubMedCrossRef Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216:136–144PubMedCrossRef
33.
Zurück zum Zitat Scott MR, Peretz D, Nguyen HO, DeArmond SJ, Prusiner SB (2005) Transmission barriers for bovine, ovine, and human prions in transgenic mice. J Virol 79:5259–5271PubMedCrossRef Scott MR, Peretz D, Nguyen HO, DeArmond SJ, Prusiner SB (2005) Transmission barriers for bovine, ovine, and human prions in transgenic mice. J Virol 79:5259–5271PubMedCrossRef
34.
Zurück zum Zitat Jeffrey M, González L (2007) Classical sheep transmissible spongiform encephalopathies: pathogenesis, pathological phenotypes and clinical disease. Neuropathol Appl Neurobiol 33:373–394PubMedCrossRef Jeffrey M, González L (2007) Classical sheep transmissible spongiform encephalopathies: pathogenesis, pathological phenotypes and clinical disease. Neuropathol Appl Neurobiol 33:373–394PubMedCrossRef
35.
Zurück zum Zitat Saigal RP, Karamanlidis AN, Voogd J, Michaloudi H, Mangana O (1980) Cerebellar afferents from motor nuclei of cranial nerves, the nucleus of the solitary tract, and nuclei coeruleus and parabrachialis in sheep, demonstrated with retrograde transport of horseradish peroxidase. Brain Res 197:200–206PubMedCrossRef Saigal RP, Karamanlidis AN, Voogd J, Michaloudi H, Mangana O (1980) Cerebellar afferents from motor nuclei of cranial nerves, the nucleus of the solitary tract, and nuclei coeruleus and parabrachialis in sheep, demonstrated with retrograde transport of horseradish peroxidase. Brain Res 197:200–206PubMedCrossRef
36.
Zurück zum Zitat Shu S, Ju G, Fan L (1988) The glucose oxidase-DAB-nickel method in peroxidase histochemistry of the nervous system. Neurosci Lett 85:169–171PubMedCrossRef Shu S, Ju G, Fan L (1988) The glucose oxidase-DAB-nickel method in peroxidase histochemistry of the nervous system. Neurosci Lett 85:169–171PubMedCrossRef
37.
Zurück zum Zitat Altman J, Bayer SA (1977) Time of origin and distribution of a new cell type in the rat cerebellar cortex. Exp Brain Res 29:265–274PubMedCrossRef Altman J, Bayer SA (1977) Time of origin and distribution of a new cell type in the rat cerebellar cortex. Exp Brain Res 29:265–274PubMedCrossRef
38.
Zurück zum Zitat Álvarez MI, Lloréns M, Lacruz C, Toledano A (2004) Nueva célula “en cepillo” (“brush cell”) o célula monopolar, del cerebelo. Características y posible función. Rev Neurol 38:339–346 Álvarez MI, Lloréns M, Lacruz C, Toledano A (2004) Nueva célula “en cepillo” (“brush cell”) o célula monopolar, del cerebelo. Características y posible función. Rev Neurol 38:339–346
39.
Zurück zum Zitat Laine J, Axelrad H (2002) Extending the cerebellar Lugaro cell class. Neuroscience 115:363–374PubMedCrossRef Laine J, Axelrad H (2002) Extending the cerebellar Lugaro cell class. Neuroscience 115:363–374PubMedCrossRef
40.
Zurück zum Zitat Arai R, Jacobowitz DM, Deura S (1993) Ultrastructural localization of calretinin immunoreactivity in lobule V of the rat cerebellum. Brain Res 613:300–304PubMedCrossRef Arai R, Jacobowitz DM, Deura S (1993) Ultrastructural localization of calretinin immunoreactivity in lobule V of the rat cerebellum. Brain Res 613:300–304PubMedCrossRef
41.
Zurück zum Zitat Saigal RP, Karamanlidis AN, Voogd J, Michaloudi H, Mangana O (1982) Cerebellar cortical afferents from the dorsal column nuclei in sheep, demonstrated with retrograde transport of horseradish peroxidase. Neurosci Lett 29:7–12PubMedCrossRef Saigal RP, Karamanlidis AN, Voogd J, Michaloudi H, Mangana O (1982) Cerebellar cortical afferents from the dorsal column nuclei in sheep, demonstrated with retrograde transport of horseradish peroxidase. Neurosci Lett 29:7–12PubMedCrossRef
42.
Zurück zum Zitat Saigal RP, Karamanlidis AN, Voogd J, Michaloudi H, Mangana O (1983) Olivocerebellar connections in sheep studied with the retrograde transport of horseradish peroxidase. J Comp Neurol 217:440–448PubMedCrossRef Saigal RP, Karamanlidis AN, Voogd J, Michaloudi H, Mangana O (1983) Olivocerebellar connections in sheep studied with the retrograde transport of horseradish peroxidase. J Comp Neurol 217:440–448PubMedCrossRef
43.
Zurück zum Zitat Dino MR, Schuerger RJ, Liu Y, Slater NT, Mugnaini E (2000) Unipolar brush cell: a potential feedforward excitatory interneuron of the cerebellum. Neuroscience 98:625–636PubMedCrossRef Dino MR, Schuerger RJ, Liu Y, Slater NT, Mugnaini E (2000) Unipolar brush cell: a potential feedforward excitatory interneuron of the cerebellum. Neuroscience 98:625–636PubMedCrossRef
Metadaten
Titel
Calretinin-immunopositive Cells and Fibers in the Cerebellar Cortex of Normal Sheep
verfasst von
María-Isabel Álvarez
César Lacruz
Adolfo Toledano-Díaz
Eva Monleón
Marta Monzón
Juan-José Badiola
Adolfo Toledano
Publikationsdatum
01.09.2008
Verlag
Springer-Verlag
Erschienen in
The Cerebellum / Ausgabe 3/2008
Print ISSN: 1473-4222
Elektronische ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-008-0044-x

Weitere Artikel der Ausgabe 3/2008

The Cerebellum 3/2008 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.