01.12.2018 | Research | Ausgabe 1/2018 Open Access

Can probiotics be an alternative to chlorhexidine for oral care in the mechanically ventilated patient? A multicentre, prospective, randomised controlled open trial
- Zeitschrift:
- Critical Care > Ausgabe 1/2018
Background
Methods
Statistics
Results
Lp299 group
|
Control group
|
|
---|---|---|
Characteristic
|
||
Age
|
66 (57–76)
|
65.5 (53.75–75)
|
Sex, male/female
|
40/29
|
36/32
|
APACHE II score
|
22 (18–27)
|
24 (18.75–28)
|
SAPS 3
a
|
64.5 (54–75)
|
64.0 (54.5–76.5)
|
ICU mortality (
n)
|
10
|
11
|
Additional in-hospital mortality (
n)
|
14
|
12
|
ICU stay (days)
|
7.67 (3.58–11.54)
|
6.59 (3.24–9.82)
|
Ventilator days (invasive)
|
4.79 (0.38–24.52)
|
4.23 (0.75–22)
|
Diagnosis at ICU admission (
n)
|
||
Sepsis, bacteraemia, septic shock, meningitis
|
19
|
15
|
Cardiac arrest and cardiac failure
|
20
|
20
|
Respiratory insufficiency
|
6
|
11
|
Abdominal condition
|
8
|
9
|
Vascular condition
|
2
|
4
|
Trauma
|
5
|
2
|
Other
|
9
|
7
|
Microbiological results
Microorganism
|
Pilot study (
n = 50)
|
Second part (
n =100)
|
All patients (
n =150)
|
||||
---|---|---|---|---|---|---|---|
Lp
|
C
|
Lp
|
C
|
Lp (G+)
a
|
C (G+)
a
|
||
Airway bacteria
|
|||||||
Oropharyngeal samples
|
1
|
0
|
1
|
1
|
2 (1)
|
2 (0)
|
|
Tracheal secretions
|
1
|
0
|
4
|
1
|
4 (2)
|
1 (0)
|
|
Staphylococci
|
|||||||
Oropharyngeal samples
|
1
|
0
|
6
|
6
|
7 (7)
|
4 (4)
|
|
Tracheal secretions
|
1
|
0
|
7
|
1
|
8 (8)
|
2 (2)
|
|
Enteric bacteria
|
|||||||
Oropharyngeal samples
|
8
|
13
|
22
|
16
|
31 (0)
|
29 (1)
|
|
Tracheal secretions
|
4
|
8
|
15
|
9
|
19 (1)
|
17 (1)
|
|
Fungi
|
|||||||
Oropharyngeal samples
|
6
|
8
|
8
|
14
|
14 (NA)
|
22 (NA)
|
|
Tracheal secretions
|
6
|
3
|
9
|
11
|
15 (NA)
|
14 (NA)
|
Species
|
Oropharyngeal samples
|
Tracheal secretions
|
||||||
---|---|---|---|---|---|---|---|---|
Inclusion
|
Subsequent
|
Inclusion
|
Subsequent
|
|||||
Lp
|
C
|
Lp
|
C
|
Lp
|
C
|
Lp
|
C
|
|
1.
Haemophilus influenzae
|
4
|
1
|
1
|
1
|
4
|
7
|
3
|
1
|
2.
Moraxella catarrhalis
|
2
|
0
|
0
|
1
|
2
|
3
|
1
|
0
|
3. Beta-Streptococcus group G
|
1
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
4.
Streptococcus pneumoniae
|
1
|
1
|
1
|
0
|
2
|
2
|
4
|
0
|
5.
Streptococcus pyogenes
|
1
|
1
|
0
|
0
|
1
|
1
|
0
|
0
|
1–5. Airway bacteria
|
9
|
3
|
3
|
1
|
9
|
13
|
8
|
1
|
6.
Staphylococcus aureus
a
|
8
|
8
|
8
|
5
|
8
|
6
|
7
|
2
|
7. Coagulase-negative Staphylococci
|
0
|
0
|
2
|
0
|
0
|
0
|
0
|
0
|
8.
Aeromonas hydrophila
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
9.
Chryseobacterium indologenes
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
1
|
10.
Citrobacter Koseri
|
0
|
1
|
0
|
1
|
0
|
0
|
0
|
1
|
11.
Citrobacter freundii
|
1
|
0
|
1
|
0
|
0
|
0
|
1
|
0
|
12.
Citrobacter sp.
|
0
|
0
|
1
|
0
|
0
|
0
|
1
|
0
|
13.
Escherichia coli
|
4
|
6
|
2
|
3
|
4
|
4
|
1
|
2
|
14.
Enterobacter aerogenes
|
3
|
3
|
1
|
0
|
0
|
1
|
2
|
1
|
15.
Enterococcus faecalis
|
1
|
3
|
8
|
8
|
0
|
3
|
2
|
6
|
16.
Enterococcus faecium
|
6
|
1
|
7
|
5
|
2
|
0
|
4
|
4
|
17.
Enterobacter cloacae
|
2
|
2
|
2
|
4
|
2
|
2
|
1
|
2
|
18.
Hafnia alvei
|
1
|
0
|
1
|
4
|
0
|
0
|
1
|
0
|
19.
Klebsiella oxytoca
|
0
|
3
|
2
|
1
|
0
|
6
|
2
|
1
|
20.
Klebsiella pneumoniae
|
0
|
3
|
4
|
1
|
0
|
3
|
4
|
1
|
21.
Morganella morgani
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
22.
Proteus mirabilis
|
0
|
1
|
3
|
1
|
1
|
1
|
0
|
1
|
23.
Proteus vulgaris
|
0
|
0
|
1
|
1
|
0
|
1
|
1
|
1
|
24.
Pseudomonas aeruginosa
|
0
|
2
|
2
|
3
|
2
|
3
|
0
|
2
|
25.
Pseudomonas sp.
|
0
|
0
|
1
|
1
|
0
|
1
|
2
|
0
|
26.
Serratia marcescens
|
2
|
1
|
1
|
0
|
0
|
0
|
3
|
0
|
27.
Serratia sp.
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
28.
Stenotroph. maltophilia
|
2
|
0
|
4
|
7
|
1
|
1
|
3
|
2
|
29.
Streptococcus agalactiae
|
2
|
2
|
1
|
0
|
0
|
1
|
0
|
1
|
30.
Streptococcus dysgalactiae
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
31. Anaerobic mixed flora
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
7–31. Enteric bacteria
|
24
|
28
|
43
|
42
|
14
|
27
|
28
|
27
|
32.
Candida albicans
|
12
|
16
|
17
|
20
|
9
|
14
|
12
|
14
|
33.
Candida dubliniensis
|
0
|
0
|
1
|
0
|
1
|
0
|
1
|
0
|
34.
Candida glabrata
|
0
|
0
|
2
|
3
|
1
|
0
|
1
|
2
|
35.
Candida guilliermondii
|
0
|
0
|
1
|
1
|
0
|
0
|
0
|
0
|
36.
Candida parapsilosis
|
0
|
0
|
2
|
0
|
0
|
0
|
1
|
0
|
37.
Candida tropicalis
|
0
|
0
|
1
|
0
|
0
|
1
|
1
|
0
|
38.
Aspergillus fumigatus
|
1
|
0
|
0
|
0
|
1
|
1
|
0
|
1
|
32–38. Fungi
|
13
|
16
|
24
|
24
|
12
|
16
|
16
|
17
|
Microbe
|
Sample
|
Risk ratio (95% confidence interval)
|
---|---|---|
Airway bacteria
|
Oropharyngeal
|
0.99 (0.14–6.79)
|
Tracheal
|
4.12 (0.47–35.95)
|
|
Staphylococci
|
Oropharyngeal
|
1.81 (0.55–5.89)
|
Tracheal
|
4.33 (0.95–19.65)
|
|
Enteric bacteria
|
Oropharyngeal
|
1.10 (0.75–1.60)
|
Tracheal
|
1.14 (0.65–2.00)
|
|
Fungi
|
Oropharyngeal
|
0.53 (0.30–0.95)
|
Tracheal
|
1.07 (0.56–2.05)
|
Discussion
Conclusion
Key messages
-
Lp299 used for oral care in intubated, mechanically ventilated, critically ill patients is as effective as CHX in inhibiting the incidence of emerging potentially pathogenic bacteria in the oropharynx.
-
No adverse effects was observed when the oral care procedure was performed using the probiotic bacterium Lp299.
-
Probiotics may be a suitable alternative to other procedures aimed at reducing the burden of pathogenic microorganisms in the mouth and the oropharynx, and thereby may also lower the risk of developing VAP. When using probiotics, the risk for development of resistant bacteria is essentially negligible.