Skip to main content
Erschienen in: Cardiovascular Toxicology 9/2022

25.07.2022

Cardiac Remodelling Following Cancer Therapy: A Review

verfasst von: Tan Panpan, Du Yuchen, Shi Xianyong, Liu Meng, He Ruijuan, Dong Ranran, Zhang Pengyan, Li Mingxi, Xie Rongrong

Erschienen in: Cardiovascular Toxicology | Ausgabe 9/2022

Einloggen, um Zugang zu erhalten

Abstract

Cardiac remodelling is characterized by abnormal changes in the function and morphological properties such as diameter, mass, normal diameter of cavities, heart shape, fibrosis, thickening of vessels and heart layers, cardiomyopathy, infiltration of inflammatory cells, and some others. These damages are associated with damage to systolic and diastolic abnormalities, damage to ventricular function, and vascular remodelling, which may lead to heart failure and death. Exposure of the heart to radiation or anti-cancer drugs including chemotherapy drugs such as doxorubicin, receptor tyrosine kinase inhibitors (RTKIs) such as imatinib, and immune checkpoint inhibitors (ICIs) can induce several abnormal changes in the heart structure and function through the induction of inflammation and fibrosis, vascular remodelling, hypertrophy, and some others. This review aims to explain the basic mechanisms behind cardiac remodelling following cancer therapy by different anti-cancer modalities.
Literatur
1.
Zurück zum Zitat Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Piñeros, M., Znaor, A., et al. (2021). Cancer statistics for the year 2020: An overview. International Journal of Cancer, 149(4), 778–789.CrossRef Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Piñeros, M., Znaor, A., et al. (2021). Cancer statistics for the year 2020: An overview. International Journal of Cancer, 149(4), 778–789.CrossRef
2.
Zurück zum Zitat Liu, Y.-Q., Wang, X.-L., He, D.-H., & Cheng, Y.-X. (2021). Protection against chemotherapy-and radiotherapy-induced side effects: A review based on the mechanisms and therapeutic opportunities of phytochemicals. Phytomedicine, 80, 153402.PubMedCrossRef Liu, Y.-Q., Wang, X.-L., He, D.-H., & Cheng, Y.-X. (2021). Protection against chemotherapy-and radiotherapy-induced side effects: A review based on the mechanisms and therapeutic opportunities of phytochemicals. Phytomedicine, 80, 153402.PubMedCrossRef
3.
Zurück zum Zitat Minami, M., Matsumoto, S., & Horiuchi, H. (2010). Cardiovascular side-effects of modern cancer therapy. Circulation Journal, 2010, 1008100855. Minami, M., Matsumoto, S., & Horiuchi, H. (2010). Cardiovascular side-effects of modern cancer therapy. Circulation Journal, 2010, 1008100855.
4.
Zurück zum Zitat Perez, I. E., Taveras Alam, S., Hernandez, G. A., & Sancassani, R. (2019). Cancer therapy-related cardiac dysfunction: An overview for the clinician. Clinical Medicine Insights: Cardiology, 13, 1179546819866445.PubMedPubMedCentral Perez, I. E., Taveras Alam, S., Hernandez, G. A., & Sancassani, R. (2019). Cancer therapy-related cardiac dysfunction: An overview for the clinician. Clinical Medicine Insights: Cardiology, 13, 1179546819866445.PubMedPubMedCentral
5.
Zurück zum Zitat Chen, D.-Y., Huang, W.-K., Wu, V.C.-C., Chang, W.-C., Chen, J.-S., Chuang, C.-K., et al. (2020). Cardiovascular toxicity of immune checkpoint inhibitors in cancer patients: A review when cardiology meets immuno-oncology. Journal of the Formosan Medical Association., 119(10), 1461–75.PubMedCrossRef Chen, D.-Y., Huang, W.-K., Wu, V.C.-C., Chang, W.-C., Chen, J.-S., Chuang, C.-K., et al. (2020). Cardiovascular toxicity of immune checkpoint inhibitors in cancer patients: A review when cardiology meets immuno-oncology. Journal of the Formosan Medical Association., 119(10), 1461–75.PubMedCrossRef
6.
Zurück zum Zitat Zagar, T. M., Cardinale, D. M., & Marks, L. B. (2016). Breast cancer therapy-associated cardiovascular disease. Nature Reviews Clinical Oncology., 13(3), 172–184.PubMedCrossRef Zagar, T. M., Cardinale, D. M., & Marks, L. B. (2016). Breast cancer therapy-associated cardiovascular disease. Nature Reviews Clinical Oncology., 13(3), 172–184.PubMedCrossRef
7.
Zurück zum Zitat Boopathi, E., & Thangavel, C. (2021). Dark side of cancer therapy: Cancer Treatment-induced cardiopulmonary inflammation, fibrosis, and immune modulation. International Journal of Molecular Sciences, 22(18), 10126.PubMedPubMedCentralCrossRef Boopathi, E., & Thangavel, C. (2021). Dark side of cancer therapy: Cancer Treatment-induced cardiopulmonary inflammation, fibrosis, and immune modulation. International Journal of Molecular Sciences, 22(18), 10126.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Du, X. L., Xia, R., Liu, C. C., Cormier, J. N., Xing, Y., Hardy, D., et al. (2009). Cardiac toxicity associated with anthracycline-containing chemotherapy in older women with breast cancer. Cancer, 115(22), 5296–5308.PubMedCrossRef Du, X. L., Xia, R., Liu, C. C., Cormier, J. N., Xing, Y., Hardy, D., et al. (2009). Cardiac toxicity associated with anthracycline-containing chemotherapy in older women with breast cancer. Cancer, 115(22), 5296–5308.PubMedCrossRef
9.
Zurück zum Zitat Cardinale, D., Colombo, A., Lamantia, G., Colombo, N., Civelli, M., De Giacomi, G., et al. (2010). Anthracycline-induced cardiomyopathy: Clinical relevance and response to pharmacologic therapy. Journal of the American College of Cardiology, 55(3), 213–220.PubMedCrossRef Cardinale, D., Colombo, A., Lamantia, G., Colombo, N., Civelli, M., De Giacomi, G., et al. (2010). Anthracycline-induced cardiomyopathy: Clinical relevance and response to pharmacologic therapy. Journal of the American College of Cardiology, 55(3), 213–220.PubMedCrossRef
10.
Zurück zum Zitat Grover, S. P., Hisada, Y. M., Kasthuri, R. S., Reeves, B. N., & Mackman, N. (2021). Cancer therapy-associated thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 41(4), 1291–1305.PubMedPubMedCentralCrossRef Grover, S. P., Hisada, Y. M., Kasthuri, R. S., Reeves, B. N., & Mackman, N. (2021). Cancer therapy-associated thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 41(4), 1291–1305.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Galvano, A., Guarini, A., Iacono, F., Castiglia, M., Rizzo, S., Tarantini, L., et al. (2019). An update on the conquests and perspectives of cardio-oncology in the field of tumor angiogenesis-targeting TKI-based therapy. Expert Opinion on Drug Safety., 18(6), 485–496.PubMedCrossRef Galvano, A., Guarini, A., Iacono, F., Castiglia, M., Rizzo, S., Tarantini, L., et al. (2019). An update on the conquests and perspectives of cardio-oncology in the field of tumor angiogenesis-targeting TKI-based therapy. Expert Opinion on Drug Safety., 18(6), 485–496.PubMedCrossRef
13.
Zurück zum Zitat Hochman, J. S., & Bulkley, B. H. (1982). Expansion of acute myocardial infarction: An experimental study. Circulation, 65(7), 1446–1450.PubMedCrossRef Hochman, J. S., & Bulkley, B. H. (1982). Expansion of acute myocardial infarction: An experimental study. Circulation, 65(7), 1446–1450.PubMedCrossRef
17.
Zurück zum Zitat Lu, M., Qin, X., Yao, J., Yang, Y., Zhao, M., & Sun, L. (2020). Th17/Treg imbalance modulates rat myocardial fibrosis and heart failure by regulating LOX expression. Acta Physiologica, 230(3), e13537.PubMedCrossRef Lu, M., Qin, X., Yao, J., Yang, Y., Zhao, M., & Sun, L. (2020). Th17/Treg imbalance modulates rat myocardial fibrosis and heart failure by regulating LOX expression. Acta Physiologica, 230(3), e13537.PubMedCrossRef
18.
Zurück zum Zitat Shao, P.-P., Liu, C.-J., Xu, Q., Zhang, B., Li, S.-H., Wu, Y., et al. (2018). Eplerenone reverses cardiac fibrosis via the suppression of tregs by inhibition of Kv1. 3 channel. Frontiers in Physiology, 9, 899.PubMedPubMedCentralCrossRef Shao, P.-P., Liu, C.-J., Xu, Q., Zhang, B., Li, S.-H., Wu, Y., et al. (2018). Eplerenone reverses cardiac fibrosis via the suppression of tregs by inhibition of Kv1. 3 channel. Frontiers in Physiology, 9, 899.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Fung, T. H., Yang, K. Y., & Lui, K. O. (2020). An emerging role of regulatory T-cells in cardiovascular repair and regeneration. Theranostics, 10(20), 8924.PubMedPubMedCentralCrossRef Fung, T. H., Yang, K. Y., & Lui, K. O. (2020). An emerging role of regulatory T-cells in cardiovascular repair and regeneration. Theranostics, 10(20), 8924.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Xiao, H., Li, H., Wang, J.-J., Zhang, J.-S., Shen, J., An, X.-B., et al. (2018). IL-18 cleavage triggers cardiac inflammation and fibrosis upon β-adrenergic insult. European Heart Journal, 39(1), 60–69.PubMedCrossRef Xiao, H., Li, H., Wang, J.-J., Zhang, J.-S., Shen, J., An, X.-B., et al. (2018). IL-18 cleavage triggers cardiac inflammation and fibrosis upon β-adrenergic insult. European Heart Journal, 39(1), 60–69.PubMedCrossRef
23.
Zurück zum Zitat Hori, M., & Nishida, K. (2009). Oxidative stress and left ventricular remodelling after myocardial infarction. Cardiovascular Research, 81(3), 457–464.PubMedCrossRef Hori, M., & Nishida, K. (2009). Oxidative stress and left ventricular remodelling after myocardial infarction. Cardiovascular Research, 81(3), 457–464.PubMedCrossRef
24.
Zurück zum Zitat Briasoulis, A., Androulakis, E., Christophides, T., & Tousoulis, D. (2016). The role of inflammation and cell death in the pathogenesis, progression and treatment of heart failure. Heart Failure Reviews, 21(2), 169–176.PubMedCrossRef Briasoulis, A., Androulakis, E., Christophides, T., & Tousoulis, D. (2016). The role of inflammation and cell death in the pathogenesis, progression and treatment of heart failure. Heart Failure Reviews, 21(2), 169–176.PubMedCrossRef
25.
Zurück zum Zitat Grover, S., Lou, P., Bradbrook, C., Cheong, K., Kotasek, D., Leong, D., et al. (2015). Early and late changes in markers of aortic stiffness with breast cancer therapy. Internal Medicine Journal, 45(2), 140–147.PubMedCrossRef Grover, S., Lou, P., Bradbrook, C., Cheong, K., Kotasek, D., Leong, D., et al. (2015). Early and late changes in markers of aortic stiffness with breast cancer therapy. Internal Medicine Journal, 45(2), 140–147.PubMedCrossRef
26.
Zurück zum Zitat Raghunathan, D., Khilji, M. I., Hassan, S. A., & Yusuf, S. W. (2017). Radiation-induced cardiovascular disease. Current Atherosclerosis Reports, 19(5), 22.PubMedCrossRef Raghunathan, D., Khilji, M. I., Hassan, S. A., & Yusuf, S. W. (2017). Radiation-induced cardiovascular disease. Current Atherosclerosis Reports, 19(5), 22.PubMedCrossRef
27.
Zurück zum Zitat Yusuf, S. W., Venkatesulu, B. P., Mahadevan, L. S., & Krishnan, S. (2017). Radiation-induced cardiovascular disease: A clinical perspective. Frontiers in Cardiovascular Medicine., 4, 66.PubMedPubMedCentralCrossRef Yusuf, S. W., Venkatesulu, B. P., Mahadevan, L. S., & Krishnan, S. (2017). Radiation-induced cardiovascular disease: A clinical perspective. Frontiers in Cardiovascular Medicine., 4, 66.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Oun, R., & Rowan, E. (2017). Cisplatin induced arrhythmia; electrolyte imbalance or disturbance of the SA node? European Journal of Pharmacology, 811, 125–128.PubMedCrossRef Oun, R., & Rowan, E. (2017). Cisplatin induced arrhythmia; electrolyte imbalance or disturbance of the SA node? European Journal of Pharmacology, 811, 125–128.PubMedCrossRef
29.
Zurück zum Zitat Patanè, S. (2014). Cardiotoxicity: Cisplatin and long-term cancer survivors. International Journal of Cardiology., 175(1), 201–202.PubMedCrossRef Patanè, S. (2014). Cardiotoxicity: Cisplatin and long-term cancer survivors. International Journal of Cardiology., 175(1), 201–202.PubMedCrossRef
32.
Zurück zum Zitat Mizia-Stec, K., Gościńska, A., Mizia, M., Haberka, M., Chmiel, A., Poborski, W., et al. (2013). Anthracycline chemotherapy impairs the structure and diastolic function of the left ventricle and induces negative arterial remodelling. Kardiologia Polska, 71(7), 681–690.PubMedCrossRef Mizia-Stec, K., Gościńska, A., Mizia, M., Haberka, M., Chmiel, A., Poborski, W., et al. (2013). Anthracycline chemotherapy impairs the structure and diastolic function of the left ventricle and induces negative arterial remodelling. Kardiologia Polska, 71(7), 681–690.PubMedCrossRef
33.
Zurück zum Zitat Lupón, J., Gavidia-Bovadilla, G., Ferrer, E., de Antonio, M., Perera-Lluna, A., López-Ayerbe, J., et al. (2018). Dynamic trajectories of left ventricular ejection fraction in heart failure. Journal of the American College of Cardiology., 72(6), 591–601.PubMedCrossRef Lupón, J., Gavidia-Bovadilla, G., Ferrer, E., de Antonio, M., Perera-Lluna, A., López-Ayerbe, J., et al. (2018). Dynamic trajectories of left ventricular ejection fraction in heart failure. Journal of the American College of Cardiology., 72(6), 591–601.PubMedCrossRef
34.
Zurück zum Zitat Kumar, S., Marfatia, R., Tannenbaum, S., Yang, C., & Avelar, E. (2012). Doxorubicin-induced cardiomyopathy 17 years after chemotherapy. Texas Heart Institute Journal., 39(3), 424.PubMedPubMedCentral Kumar, S., Marfatia, R., Tannenbaum, S., Yang, C., & Avelar, E. (2012). Doxorubicin-induced cardiomyopathy 17 years after chemotherapy. Texas Heart Institute Journal., 39(3), 424.PubMedPubMedCentral
35.
Zurück zum Zitat Trapani, D., Zagami, P., Nicolò, E., Pravettoni, G., & Curigliano, G. (2020). Management of cardiac toxicity induced by chemotherapy. Journal of Clinical Medicine., 9(9), 2885.PubMedCentralCrossRef Trapani, D., Zagami, P., Nicolò, E., Pravettoni, G., & Curigliano, G. (2020). Management of cardiac toxicity induced by chemotherapy. Journal of Clinical Medicine., 9(9), 2885.PubMedCentralCrossRef
36.
Zurück zum Zitat Hu, J.-R., Florido, R., Lipson, E. J., Naidoo, J., Ardehali, R., Tocchetti, C. G., et al. (2019). Cardiovascular toxicities associated with immune checkpoint inhibitors. Cardiovascular Research., 115(5), 854–868.PubMedPubMedCentralCrossRef Hu, J.-R., Florido, R., Lipson, E. J., Naidoo, J., Ardehali, R., Tocchetti, C. G., et al. (2019). Cardiovascular toxicities associated with immune checkpoint inhibitors. Cardiovascular Research., 115(5), 854–868.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Wu, Q.-Q., Xiao, Y., Yuan, Y., Ma, Z.-G., Liao, H.-H., Liu, C., et al. (2017). Mechanisms contributing to cardiac remodelling. Clinical Science., 131(18), 2319–2345.PubMedCrossRef Wu, Q.-Q., Xiao, Y., Yuan, Y., Ma, Z.-G., Liao, H.-H., Liu, C., et al. (2017). Mechanisms contributing to cardiac remodelling. Clinical Science., 131(18), 2319–2345.PubMedCrossRef
38.
Zurück zum Zitat Mortezaee, K., & Najafi, M. (2021). Immune system in cancer radiotherapy: Resistance mechanisms and therapy perspectives. Critical Reviews in Oncology/Hematology., 157, 103180.PubMedCrossRef Mortezaee, K., & Najafi, M. (2021). Immune system in cancer radiotherapy: Resistance mechanisms and therapy perspectives. Critical Reviews in Oncology/Hematology., 157, 103180.PubMedCrossRef
41.
Zurück zum Zitat Ranpura, V., Hapani, S., Chuang, J., & Wu, S. (2010). Risk of cardiac ischemia and arterial thromboembolic events with the angiogenesis inhibitor bevacizumab in cancer patients: A meta-analysis of randomized controlled trials. Acta Oncologica, 49(3), 287–297.PubMedCrossRef Ranpura, V., Hapani, S., Chuang, J., & Wu, S. (2010). Risk of cardiac ischemia and arterial thromboembolic events with the angiogenesis inhibitor bevacizumab in cancer patients: A meta-analysis of randomized controlled trials. Acta Oncologica, 49(3), 287–297.PubMedCrossRef
42.
Zurück zum Zitat Economopoulou, P., Kotsakis, A., Kapiris, I., & Kentepozidis, N. (2015). Cancer therapy and cardiovascular risk: Focus on bevacizumab. Cancer Management and Research, 7, 133.PubMedPubMedCentralCrossRef Economopoulou, P., Kotsakis, A., Kapiris, I., & Kentepozidis, N. (2015). Cancer therapy and cardiovascular risk: Focus on bevacizumab. Cancer Management and Research, 7, 133.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Ghatalia, P., Morgan, C. J., Je, Y., Nguyen, P. L., Trinh, Q.-D., Choueiri, T. K., et al. (2015). Congestive heart failure with vascular endothelial growth factor receptor tyrosine kinase inhibitors. Critical Reviews in Oncology/Hematology, 94(2), 228–237.PubMedCrossRef Ghatalia, P., Morgan, C. J., Je, Y., Nguyen, P. L., Trinh, Q.-D., Choueiri, T. K., et al. (2015). Congestive heart failure with vascular endothelial growth factor receptor tyrosine kinase inhibitors. Critical Reviews in Oncology/Hematology, 94(2), 228–237.PubMedCrossRef
44.
Zurück zum Zitat Khakoo, A. Y., Kassiotis, C. M., Tannir, N., Plana, J. C., Halushka, M., Bickford, C., et al. (2008). Heart failure associated with sunitinib malate: a multitargeted receptor tyrosine kinase inhibitor. Cancer: Interdisciplinary International Journal of the American Cancer Society., 112(11), 2500–2508.CrossRef Khakoo, A. Y., Kassiotis, C. M., Tannir, N., Plana, J. C., Halushka, M., Bickford, C., et al. (2008). Heart failure associated with sunitinib malate: a multitargeted receptor tyrosine kinase inhibitor. Cancer: Interdisciplinary International Journal of the American Cancer Society., 112(11), 2500–2508.CrossRef
45.
Zurück zum Zitat Pentassuglia, L., Graf, M., Lane, H., Kuramochi, Y., Cote, G., Timolati, F., et al. (2009). Inhibition of ErbB2 by receptor tyrosine kinase inhibitors causes myofibrillar structural damage without cell death in adult rat cardiomyocytes. Experimental Cell Research., 315(7), 1302–1312.PubMedPubMedCentralCrossRef Pentassuglia, L., Graf, M., Lane, H., Kuramochi, Y., Cote, G., Timolati, F., et al. (2009). Inhibition of ErbB2 by receptor tyrosine kinase inhibitors causes myofibrillar structural damage without cell death in adult rat cardiomyocytes. Experimental Cell Research., 315(7), 1302–1312.PubMedPubMedCentralCrossRef
46.
47.
Zurück zum Zitat Harel, S., Mayaki, D., Sanchez, V., & Hussain, S. N. (2017). NOX2, NOX4, and mitochondrial-derived reactive oxygen species contribute to angiopoietin-1 signaling and angiogenic responses in endothelial cells. Vascular Pharmacology, 92, 22–32.PubMedCrossRef Harel, S., Mayaki, D., Sanchez, V., & Hussain, S. N. (2017). NOX2, NOX4, and mitochondrial-derived reactive oxygen species contribute to angiopoietin-1 signaling and angiogenic responses in endothelial cells. Vascular Pharmacology, 92, 22–32.PubMedCrossRef
48.
Zurück zum Zitat Navarro-Yepes, J., Burns, M., Anandhan, A., Khalimonchuk, O., Del Razo, L. M., Quintanilla-Vega, B., et al. (2014). Oxidative stress, redox signaling, and autophagy: Cell death versus survival. Antioxidants & Redox Signaling., 21(1), 66–85.CrossRef Navarro-Yepes, J., Burns, M., Anandhan, A., Khalimonchuk, O., Del Razo, L. M., Quintanilla-Vega, B., et al. (2014). Oxidative stress, redox signaling, and autophagy: Cell death versus survival. Antioxidants & Redox Signaling., 21(1), 66–85.CrossRef
51.
Zurück zum Zitat Palaskas, N., Patel, A., & Yusuf, S. W. (2019). Radiation and cardiovascular disease. Annals of Translational Medicine S371. Palaskas, N., Patel, A., & Yusuf, S. W. (2019). Radiation and cardiovascular disease. Annals of Translational Medicine S371.
52.
Zurück zum Zitat Wang, B., Wang, H., Zhang, M., Ji, R., Wei, J., Xin, Y., et al. (2020). Radiation-induced myocardial fibrosis: Mechanisms underlying its pathogenesis and therapeutic strategies. Journal of Cellular and Molecular Medicine, 24(14), 7717–7729.PubMedPubMedCentralCrossRef Wang, B., Wang, H., Zhang, M., Ji, R., Wei, J., Xin, Y., et al. (2020). Radiation-induced myocardial fibrosis: Mechanisms underlying its pathogenesis and therapeutic strategies. Journal of Cellular and Molecular Medicine, 24(14), 7717–7729.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Arola, O. J., Saraste, A., Pulkki, K., Kallajoki, M., Parvinen, M., & Voipio-Pulkki, L.-M. (2000). Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis. Cancer Research, 60(7), 1789–1792.PubMed Arola, O. J., Saraste, A., Pulkki, K., Kallajoki, M., Parvinen, M., & Voipio-Pulkki, L.-M. (2000). Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis. Cancer Research, 60(7), 1789–1792.PubMed
54.
Zurück zum Zitat Dhingra, R., Margulets, V., Chowdhury, S. R., Thliveris, J., Jassal, D., Fernyhough, P., et al. (2014). Bnip3 mediates doxorubicin-induced cardiac myocyte necrosis and mortality through changes in mitochondrial signaling. Proceedings of the National Academy of Sciences., 111(51), E5537–E5544.CrossRef Dhingra, R., Margulets, V., Chowdhury, S. R., Thliveris, J., Jassal, D., Fernyhough, P., et al. (2014). Bnip3 mediates doxorubicin-induced cardiac myocyte necrosis and mortality through changes in mitochondrial signaling. Proceedings of the National Academy of Sciences., 111(51), E5537–E5544.CrossRef
57.
Zurück zum Zitat Farhood, B., Ashrafizadeh, M., Hoseini-Ghahfarokhi, M., Afrashi, S., Musa, A. E., & Najafi, M. (2020). Targeting of cellular redox metabolism for mitigation of radiation injury. Life Sciences., 250, 117570.PubMedCrossRef Farhood, B., Ashrafizadeh, M., Hoseini-Ghahfarokhi, M., Afrashi, S., Musa, A. E., & Najafi, M. (2020). Targeting of cellular redox metabolism for mitigation of radiation injury. Life Sciences., 250, 117570.PubMedCrossRef
58.
Zurück zum Zitat Wijerathne, H., Langston, J., Yang, Q., Sun, S., Miyamoto, C., Kilpatrick, L. E., et al. (2021). Mechanisms of radiation-induced endothelium damage: Emerging models and technologies. Radiotherapy and Oncology., 158, 21–32.PubMedPubMedCentralCrossRef Wijerathne, H., Langston, J., Yang, Q., Sun, S., Miyamoto, C., Kilpatrick, L. E., et al. (2021). Mechanisms of radiation-induced endothelium damage: Emerging models and technologies. Radiotherapy and Oncology., 158, 21–32.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Tada, Y., & Suzuki, J.-I. (2016). Oxidative stress and myocarditis. Current Pharmaceutical Design., 22(4), 450–71.PubMedCrossRef Tada, Y., & Suzuki, J.-I. (2016). Oxidative stress and myocarditis. Current Pharmaceutical Design., 22(4), 450–71.PubMedCrossRef
62.
Zurück zum Zitat Bagchi, A. K., Malik, A., Akolkar, G., Jassal, D. S., & Singal, P. K. (2021). Endoplasmic reticulum stress promotes iNOS/NO and influences inflammation in the development of doxorubicin-induced cardiomyopathy. Antioxidants., 10(12), 1897.PubMedPubMedCentralCrossRef Bagchi, A. K., Malik, A., Akolkar, G., Jassal, D. S., & Singal, P. K. (2021). Endoplasmic reticulum stress promotes iNOS/NO and influences inflammation in the development of doxorubicin-induced cardiomyopathy. Antioxidants., 10(12), 1897.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Mahmood, S. S., Fradley, M. G., Cohen, J. V., Nohria, A., Reynolds, K. L., Heinzerling, L. M., et al. (2018). Myocarditis in patients treated with immune checkpoint inhibitors. Journal of the American College of Cardiology., 71(16), 1755–1764.PubMedPubMedCentralCrossRef Mahmood, S. S., Fradley, M. G., Cohen, J. V., Nohria, A., Reynolds, K. L., Heinzerling, L. M., et al. (2018). Myocarditis in patients treated with immune checkpoint inhibitors. Journal of the American College of Cardiology., 71(16), 1755–1764.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Johnson, D. B., Balko, J. M., Compton, M. L., Chalkias, S., Gorham, J., Xu, Y., et al. (2016). Fulminant myocarditis with combination immune checkpoint blockade. New England Journal of Medicine., 375(18), 1749–1755.PubMedCrossRef Johnson, D. B., Balko, J. M., Compton, M. L., Chalkias, S., Gorham, J., Xu, Y., et al. (2016). Fulminant myocarditis with combination immune checkpoint blockade. New England Journal of Medicine., 375(18), 1749–1755.PubMedCrossRef
66.
Zurück zum Zitat Ji, C., Roy, M. D., Golas, J., Vitsky, A., Ram, S., Kumpf, S. W., et al. (2019). Myocarditis in cynomolgus monkeys following treatment with immune checkpoint inhibitors. Clinical Cancer Research., 25(15), 4735–4748.PubMedCrossRef Ji, C., Roy, M. D., Golas, J., Vitsky, A., Ram, S., Kumpf, S. W., et al. (2019). Myocarditis in cynomolgus monkeys following treatment with immune checkpoint inhibitors. Clinical Cancer Research., 25(15), 4735–4748.PubMedCrossRef
67.
Zurück zum Zitat Berner, A., Sharma, A., Agarwal, S., Al-Sam, S., & Nathan, P. (2018). Fatal autoimmune myocarditis with anti–PD-L1 and tyrosine kinase inhibitor therapy for renal cell cancer. European Journal of Cancer., 101, 287–290.PubMedCrossRef Berner, A., Sharma, A., Agarwal, S., Al-Sam, S., & Nathan, P. (2018). Fatal autoimmune myocarditis with anti–PD-L1 and tyrosine kinase inhibitor therapy for renal cell cancer. European Journal of Cancer., 101, 287–290.PubMedCrossRef
68.
Zurück zum Zitat Burke, M. J., Walmsley, R., Munsey, T. S., & Smith, A. J. (2019). Receptor tyrosine kinase inhibitors cause dysfunction in adult rat cardiac fibroblasts in vitro. Toxicology in Vitro., 58, 178–186.PubMedCrossRef Burke, M. J., Walmsley, R., Munsey, T. S., & Smith, A. J. (2019). Receptor tyrosine kinase inhibitors cause dysfunction in adult rat cardiac fibroblasts in vitro. Toxicology in Vitro., 58, 178–186.PubMedCrossRef
69.
Zurück zum Zitat Rocca, C., De Francesco, E. M., Pasqua, T., Granieri, M. C., De Bartolo, A., Gallo Cantafio, M. E., et al. (2022). Mitochondrial determinants of anti-cancer drug-induced cardiotoxicity. Biomedicines., 10(3), 520.PubMedPubMedCentralCrossRef Rocca, C., De Francesco, E. M., Pasqua, T., Granieri, M. C., De Bartolo, A., Gallo Cantafio, M. E., et al. (2022). Mitochondrial determinants of anti-cancer drug-induced cardiotoxicity. Biomedicines., 10(3), 520.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Truell, J. S., Fishbein, M. C., & Figlin, R. (2005). Myocarditis temporally related to the use of gefitinib (Iressa). Archives of Pathology & Laboratory Medicine., 129(8), 1044–1046.CrossRef Truell, J. S., Fishbein, M. C., & Figlin, R. (2005). Myocarditis temporally related to the use of gefitinib (Iressa). Archives of Pathology & Laboratory Medicine., 129(8), 1044–1046.CrossRef
73.
Zurück zum Zitat Najafi, M., Motevaseli, E., Geraily, G., Norouzi, F., Heidari, M., & Rezapoor, S. (2017). The melatonin immunomodulatory actions in radiotherapy. Biophysical Reviews, 9(2), 139–148.PubMedPubMedCentralCrossRef Najafi, M., Motevaseli, E., Geraily, G., Norouzi, F., Heidari, M., & Rezapoor, S. (2017). The melatonin immunomodulatory actions in radiotherapy. Biophysical Reviews, 9(2), 139–148.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Yang, C.-M., Lee, I.-T., Hsu, R.-C., Chi, P.-L., & Hsiao, L.-D. (2013). NADPH oxidase/ROS-dependent PYK2 activation is involved in TNF-α-induced matrix metalloproteinase-9 expression in rat heart-derived H9c2 cells. Toxicology and Applied Pharmacology, 272(2), 431–442.PubMedCrossRef Yang, C.-M., Lee, I.-T., Hsu, R.-C., Chi, P.-L., & Hsiao, L.-D. (2013). NADPH oxidase/ROS-dependent PYK2 activation is involved in TNF-α-induced matrix metalloproteinase-9 expression in rat heart-derived H9c2 cells. Toxicology and Applied Pharmacology, 272(2), 431–442.PubMedCrossRef
82.
Zurück zum Zitat Mann, D. L., & Spinale, F. G. (1998). Activation of matrix metalloproteinases in the failing human heart: Breaking the tie that binds. Circulation, 98(17), 1699–1702.PubMedCrossRef Mann, D. L., & Spinale, F. G. (1998). Activation of matrix metalloproteinases in the failing human heart: Breaking the tie that binds. Circulation, 98(17), 1699–1702.PubMedCrossRef
83.
Zurück zum Zitat Kizaki, K., Ito, R., Okada, M., Yoshioka, K., Uchide, T., Temma, K., et al. (2006). Enhanced gene expression of myocardial matrix metalloproteinases 2 and 9 after acute treatment with doxorubicin in mice. Pharmacological Research., 53(4), 341–346.PubMedCrossRef Kizaki, K., Ito, R., Okada, M., Yoshioka, K., Uchide, T., Temma, K., et al. (2006). Enhanced gene expression of myocardial matrix metalloproteinases 2 and 9 after acute treatment with doxorubicin in mice. Pharmacological Research., 53(4), 341–346.PubMedCrossRef
85.
Zurück zum Zitat Slezak, J., Kura, B., Babal, P., Barancik, M., Ferko, M., Frimmel, K., et al. (2017). Potential markers and metabolic processes involved in the mechanism of radiation-induced heart injury. Canadian Journal of Physiology and Pharmacology., 95(10), 1190–1203.PubMedCrossRef Slezak, J., Kura, B., Babal, P., Barancik, M., Ferko, M., Frimmel, K., et al. (2017). Potential markers and metabolic processes involved in the mechanism of radiation-induced heart injury. Canadian Journal of Physiology and Pharmacology., 95(10), 1190–1203.PubMedCrossRef
86.
Zurück zum Zitat Bai, P., Mabley, J. G., Liaudet, L., Virág, L., Szabó, C., & Pacher, P. (2004). Matrix metalloproteinase activation is an early event in doxorubicin-induced cardiotoxicity. Oncology Reports, 11(2), 505–508.PubMed Bai, P., Mabley, J. G., Liaudet, L., Virág, L., Szabó, C., & Pacher, P. (2004). Matrix metalloproteinase activation is an early event in doxorubicin-induced cardiotoxicity. Oncology Reports, 11(2), 505–508.PubMed
87.
Zurück zum Zitat O’Hanlon, R., Grasso, A., Roughton, M., Moon, J. C., Clark, S., Wage, R., et al. (2010). Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. Journal of the American College of Cardiology., 56(11), 867–874.PubMedCrossRef O’Hanlon, R., Grasso, A., Roughton, M., Moon, J. C., Clark, S., Wage, R., et al. (2010). Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. Journal of the American College of Cardiology., 56(11), 867–874.PubMedCrossRef
90.
Zurück zum Zitat de Groot, C., Beukema, J. C., Langendijk, J. A., van der Laan, H. P., van Luijk, P., van Melle, J. P., et al. (2021). Radiation-induced myocardial fibrosis in long-term esophageal cancer survivors. International Journal of Radiation Oncology Biology Physics, 110(4), 1013–1021.PubMedCrossRef de Groot, C., Beukema, J. C., Langendijk, J. A., van der Laan, H. P., van Luijk, P., van Melle, J. P., et al. (2021). Radiation-induced myocardial fibrosis in long-term esophageal cancer survivors. International Journal of Radiation Oncology Biology Physics, 110(4), 1013–1021.PubMedCrossRef
92.
Zurück zum Zitat Tandri, H., Saranathan, M., Rodriguez, E. R., Martinez, C., Bomma, C., Nasir, K., et al. (2005). Noninvasive detection of myocardial fibrosis in arrhythmogenic right ventricular cardiomyopathy using delayed-enhancement magnetic resonance imaging. Journal of the American College of Cardiology., 45(1), 98–103.PubMedCrossRef Tandri, H., Saranathan, M., Rodriguez, E. R., Martinez, C., Bomma, C., Nasir, K., et al. (2005). Noninvasive detection of myocardial fibrosis in arrhythmogenic right ventricular cardiomyopathy using delayed-enhancement magnetic resonance imaging. Journal of the American College of Cardiology., 45(1), 98–103.PubMedCrossRef
94.
Zurück zum Zitat Zhou, Z., Xu, L., Wang, R., Varga-Szemes, A., Durden, J. A., Joseph Schoepf, U., et al. (2019). Quantification of doxorubicin-induced interstitial myocardial fibrosis in a beagle model using equilibrium contrast-enhanced computed tomography: A comparative study with cardiac magnetic resonance T1-mapping. International Journal of Cardiology., 281, 150–155. https://doi.org/10.1016/j.ijcard.2019.01.021CrossRefPubMed Zhou, Z., Xu, L., Wang, R., Varga-Szemes, A., Durden, J. A., Joseph Schoepf, U., et al. (2019). Quantification of doxorubicin-induced interstitial myocardial fibrosis in a beagle model using equilibrium contrast-enhanced computed tomography: A comparative study with cardiac magnetic resonance T1-mapping. International Journal of Cardiology., 281, 150–155. https://​doi.​org/​10.​1016/​j.​ijcard.​2019.​01.​021CrossRefPubMed
95.
Zurück zum Zitat Zhou, Z., Wang, R., Wang, H., Liu, Y., Lu, D., Sun, Z., et al. (2021). Myocardial extracellular volume fraction quantification in an animal model of the doxorubicin-induced myocardial fibrosis: A synthetic hematocrit method using 3T cardiac magnetic resonance. Quantitative Imaging in Medicine and Surgery., 11(2), 510–520. https://doi.org/10.21037/qims-20-501CrossRefPubMedPubMedCentral Zhou, Z., Wang, R., Wang, H., Liu, Y., Lu, D., Sun, Z., et al. (2021). Myocardial extracellular volume fraction quantification in an animal model of the doxorubicin-induced myocardial fibrosis: A synthetic hematocrit method using 3T cardiac magnetic resonance. Quantitative Imaging in Medicine and Surgery., 11(2), 510–520. https://​doi.​org/​10.​21037/​qims-20-501CrossRefPubMedPubMedCentral
96.
Zurück zum Zitat De Angelis, A., Urbanek, K., Cappetta, D., Piegari, E., Ciuffreda, L. P., Rivellino, A., et al. (2016). Doxorubicin cardiotoxicity and target cells: A broader perspective. Cardio-Oncology., 2(1), 1–8.CrossRef De Angelis, A., Urbanek, K., Cappetta, D., Piegari, E., Ciuffreda, L. P., Rivellino, A., et al. (2016). Doxorubicin cardiotoxicity and target cells: A broader perspective. Cardio-Oncology., 2(1), 1–8.CrossRef
97.
Zurück zum Zitat Piegari, E., De Angelis, A., Cappetta, D., Russo, R., Esposito, G., Costantino, S., et al. (2013). Doxorubicin induces senescence and impairs function of human cardiac progenitor cells. Basic Research in Cardiology., 108(2), 1–18.CrossRef Piegari, E., De Angelis, A., Cappetta, D., Russo, R., Esposito, G., Costantino, S., et al. (2013). Doxorubicin induces senescence and impairs function of human cardiac progenitor cells. Basic Research in Cardiology., 108(2), 1–18.CrossRef
98.
100.
Zurück zum Zitat Farhood, B., Hoseini-Ghahfarokhi, M., Motevaseli, E., Mirtavoos-Mahyari, H., Musa, A. E., & Najafi, M. (2020). TGF-β in radiotherapy: Mechanisms of tumor resistance and normal tissues injury. Pharmacological Research., 155, 104745.PubMedCrossRef Farhood, B., Hoseini-Ghahfarokhi, M., Motevaseli, E., Mirtavoos-Mahyari, H., Musa, A. E., & Najafi, M. (2020). TGF-β in radiotherapy: Mechanisms of tumor resistance and normal tissues injury. Pharmacological Research., 155, 104745.PubMedCrossRef
101.
Zurück zum Zitat Amini, P., Rezapoor, S., Shabeeb, D., Musa, A. E., Najafi, M., & Motevaseli, E. (2018). Evaluating the protective effect of a combination of curcumin and selenium-L-methionine on radiation induced dual oxidase upregulation. Pharmaceutical Sciences., 24(4), 340–345.CrossRef Amini, P., Rezapoor, S., Shabeeb, D., Musa, A. E., Najafi, M., & Motevaseli, E. (2018). Evaluating the protective effect of a combination of curcumin and selenium-L-methionine on radiation induced dual oxidase upregulation. Pharmaceutical Sciences., 24(4), 340–345.CrossRef
102.
Zurück zum Zitat Lin, F., Wang, N., & Zhang, T. C. (2012). The role of endothelial–mesenchymal transition in development and pathological process. IUBMB Life, 64(9), 717–723.PubMedCrossRef Lin, F., Wang, N., & Zhang, T. C. (2012). The role of endothelial–mesenchymal transition in development and pathological process. IUBMB Life, 64(9), 717–723.PubMedCrossRef
103.
Zurück zum Zitat Song, S., Zhang, R., Cao, W., Fang, G., Yu, Y., Wan, Y., et al. (2019). Foxm1 is a critical driver of TGF-β-induced EndMT in endothelial cells through Smad2/3 and binds to the Snail promoter. Journal of Cellular Physiology., 234(6), 9052–9064.PubMedCrossRef Song, S., Zhang, R., Cao, W., Fang, G., Yu, Y., Wan, Y., et al. (2019). Foxm1 is a critical driver of TGF-β-induced EndMT in endothelial cells through Smad2/3 and binds to the Snail promoter. Journal of Cellular Physiology., 234(6), 9052–9064.PubMedCrossRef
104.
Zurück zum Zitat Choi, K. J., Nam, J.-K., Kim, J.-H., Choi, S.-H., & Lee, Y.-J. (2020). Endothelial-to-mesenchymal transition in anticancer therapy and normal tissue damage. Experimental & Molecular Medicine., 52(5), 781–792.CrossRef Choi, K. J., Nam, J.-K., Kim, J.-H., Choi, S.-H., & Lee, Y.-J. (2020). Endothelial-to-mesenchymal transition in anticancer therapy and normal tissue damage. Experimental & Molecular Medicine., 52(5), 781–792.CrossRef
107.
Zurück zum Zitat Tsai, T.-H., Lin, C.-J., Hang, C.-L., & Chen, W.-Y. (2019). Calcitriol attenuates doxorubicin-induced cardiac dysfunction and inhibits endothelial-to-mesenchymal transition in mice. Cells, 8(8), 865.PubMedCentralCrossRef Tsai, T.-H., Lin, C.-J., Hang, C.-L., & Chen, W.-Y. (2019). Calcitriol attenuates doxorubicin-induced cardiac dysfunction and inhibits endothelial-to-mesenchymal transition in mice. Cells, 8(8), 865.PubMedCentralCrossRef
108.
Zurück zum Zitat Nie, L., Liu, M., Chen, J., Wu, Q., Li, Y., Yi, J., et al. (2021). Hydrogen sulfide ameliorates doxorubicin-induced myocardial fibrosis in rats via the PI3K/AKT/mTOR pathway. Molecular Medicine Reports, 23(4), 1–11.CrossRef Nie, L., Liu, M., Chen, J., Wu, Q., Li, Y., Yi, J., et al. (2021). Hydrogen sulfide ameliorates doxorubicin-induced myocardial fibrosis in rats via the PI3K/AKT/mTOR pathway. Molecular Medicine Reports, 23(4), 1–11.CrossRef
110.
Zurück zum Zitat Arafa, M. H., Mohammad, N. S., Atteia, H. H., & Abd-Elaziz, H. R. (2014). Protective effect of resveratrol against doxorubicin-induced cardiac toxicity and fibrosis in male experimental rats. Journal of Physiology and Biochemistry, 70(3), 701–711.PubMedCrossRef Arafa, M. H., Mohammad, N. S., Atteia, H. H., & Abd-Elaziz, H. R. (2014). Protective effect of resveratrol against doxorubicin-induced cardiac toxicity and fibrosis in male experimental rats. Journal of Physiology and Biochemistry, 70(3), 701–711.PubMedCrossRef
111.
Zurück zum Zitat Saleh, M. A., Antar, S. A., Hazem, R. M., & El-Azab, M. F. (2020). Pirfenidone and vitamin D ameliorate cardiac fibrosis induced by doxorubicin in ehrlich ascites carcinoma bearing mice: Modulation of monocyte chemoattractant protein-1 and Jun N-terminal kinase-1 pathways. Pharmaceuticals, 13(11), 348.PubMedCentralCrossRef Saleh, M. A., Antar, S. A., Hazem, R. M., & El-Azab, M. F. (2020). Pirfenidone and vitamin D ameliorate cardiac fibrosis induced by doxorubicin in ehrlich ascites carcinoma bearing mice: Modulation of monocyte chemoattractant protein-1 and Jun N-terminal kinase-1 pathways. Pharmaceuticals, 13(11), 348.PubMedCentralCrossRef
112.
Zurück zum Zitat Sahna, E., Parlakpinar, H., Ozer, M. K., Ozturk, F., Ozugurlu, F., & Acet, A. (2003). Melatonin protects against myocardial doxorubicin toxicity in rats: Role of physiological concentrations. Journal of Pineal Research, 35(4), 257–261.PubMedCrossRef Sahna, E., Parlakpinar, H., Ozer, M. K., Ozturk, F., Ozugurlu, F., & Acet, A. (2003). Melatonin protects against myocardial doxorubicin toxicity in rats: Role of physiological concentrations. Journal of Pineal Research, 35(4), 257–261.PubMedCrossRef
113.
Zurück zum Zitat Shaty, M. H., Arif, I. S., Al-Ezzi, M. I., & Hanna, D. B. (2018). Metformin attenuate fibrosis in both acute and chronic doxorubicin cardiotoxicity in rabbits. Journal of Pharmaceutical Sciences and Research, 10(6), 1559–1565. Shaty, M. H., Arif, I. S., Al-Ezzi, M. I., & Hanna, D. B. (2018). Metformin attenuate fibrosis in both acute and chronic doxorubicin cardiotoxicity in rabbits. Journal of Pharmaceutical Sciences and Research, 10(6), 1559–1565.
114.
Zurück zum Zitat Katamura, M., Iwai-Kanai, E., Nakaoka, M., Okawa, Y., Ariyoshi, M., Mita, Y., et al. (2014). Curcumin attenuates doxorubicin-induced cardiotoxicity by inducing autophagy via the regulation of JNK phosphorylation. Journal of Clinical and Experimental Cardiology, 5(09), 1–8.CrossRef Katamura, M., Iwai-Kanai, E., Nakaoka, M., Okawa, Y., Ariyoshi, M., Mita, Y., et al. (2014). Curcumin attenuates doxorubicin-induced cardiotoxicity by inducing autophagy via the regulation of JNK phosphorylation. Journal of Clinical and Experimental Cardiology, 5(09), 1–8.CrossRef
116.
Zurück zum Zitat Vatanen, A., Sarkola, T., Ojala, T. H., Turanlahti, M., Jahnukainen, T., Saarinen-Pihkala, U. M., et al. (2015). Radiotherapy-related arterial intima thickening and plaque formation in childhood cancer survivors detected with very-high resolution ultrasound during young adulthood. Pediatric Blood & Cancer, 62(11), 2000–2006.CrossRef Vatanen, A., Sarkola, T., Ojala, T. H., Turanlahti, M., Jahnukainen, T., Saarinen-Pihkala, U. M., et al. (2015). Radiotherapy-related arterial intima thickening and plaque formation in childhood cancer survivors detected with very-high resolution ultrasound during young adulthood. Pediatric Blood & Cancer, 62(11), 2000–2006.CrossRef
117.
Zurück zum Zitat Huang, T. L., Hsu, H. C., Chen, H. C., Lin, H. C., Chien, C. Y., Fang, F. M., et al. (2013). Long-term effects on carotid intima-media thickness after radiotherapy in patients with nasopharyngeal carcinoma. Radiation Oncology., 8(1), 1–6.CrossRef Huang, T. L., Hsu, H. C., Chen, H. C., Lin, H. C., Chien, C. Y., Fang, F. M., et al. (2013). Long-term effects on carotid intima-media thickness after radiotherapy in patients with nasopharyngeal carcinoma. Radiation Oncology., 8(1), 1–6.CrossRef
119.
Zurück zum Zitat Berliner, S., Rahima, M., Sidi, Y., Teplitsky, Y., Zohar, Y., Nussbaum, B., et al. (1990). Acute coronary events following cisplatin-based chemotherapy. Cancer Investigation, 8(6), 583–586.PubMedCrossRef Berliner, S., Rahima, M., Sidi, Y., Teplitsky, Y., Zohar, Y., Nussbaum, B., et al. (1990). Acute coronary events following cisplatin-based chemotherapy. Cancer Investigation, 8(6), 583–586.PubMedCrossRef
121.
Zurück zum Zitat Vogelzang, N. J., Frenning, D. H., & Kennedy, B. J. (1980). Coronary artery disease after treatment with bleomycin and vinblastine. Cancer Treatment Reports, 64(10–11), 1159–1160.PubMed Vogelzang, N. J., Frenning, D. H., & Kennedy, B. J. (1980). Coronary artery disease after treatment with bleomycin and vinblastine. Cancer Treatment Reports, 64(10–11), 1159–1160.PubMed
124.
Zurück zum Zitat Haubner, F., Ohmann, E., Pohl, F., Prantl, L., Strutz, J., & Gassner, H. G. (2013). Effects of radiation on the expression of adhesion molecules and cytokines in a static model of human dermal microvascular endothelial cells. Clinical Hemorheology and Microcirculation, 54(4), 371–379. https://doi.org/10.3233/ch-2012-1626CrossRefPubMed Haubner, F., Ohmann, E., Pohl, F., Prantl, L., Strutz, J., & Gassner, H. G. (2013). Effects of radiation on the expression of adhesion molecules and cytokines in a static model of human dermal microvascular endothelial cells. Clinical Hemorheology and Microcirculation, 54(4), 371–379. https://​doi.​org/​10.​3233/​ch-2012-1626CrossRefPubMed
126.
Zurück zum Zitat Hoving, S., Heeneman, S., Gijbels, M. J., te Poele, J. A., Russell, N. S., Daemen, M. J., et al. (2008). Single-dose and fractionated irradiation promote initiation and progression of atherosclerosis and induce an inflammatory plaque phenotype in ApoE(-/-) mice. International Journal of Radiation Oncology Biology Physics, 71(3), 848–857. https://doi.org/10.1016/j.ijrobp.2008.02.031CrossRefPubMed Hoving, S., Heeneman, S., Gijbels, M. J., te Poele, J. A., Russell, N. S., Daemen, M. J., et al. (2008). Single-dose and fractionated irradiation promote initiation and progression of atherosclerosis and induce an inflammatory plaque phenotype in ApoE(-/-) mice. International Journal of Radiation Oncology Biology Physics, 71(3), 848–857. https://​doi.​org/​10.​1016/​j.​ijrobp.​2008.​02.​031CrossRefPubMed
131.
Zurück zum Zitat Carta, S., Castellani, P., Delfino, L., Tassi, S., Vene, R., & Rubartelli, A. (2009). DAMPs and inflammatory processes: The role of redox in the different outcomes. Journal of Leukocyte Biology, 86(3), 549–555.PubMedCrossRef Carta, S., Castellani, P., Delfino, L., Tassi, S., Vene, R., & Rubartelli, A. (2009). DAMPs and inflammatory processes: The role of redox in the different outcomes. Journal of Leukocyte Biology, 86(3), 549–555.PubMedCrossRef
135.
Zurück zum Zitat Sato, A., Yoshihisa, A., Miyata-Tatsumi, M., Oikawa, M., Kobayashi, A., Ishida, T., et al. (2019). Valvular heart disease as a possible predictor of trastuzumab-induced cardiotoxicity in patients with breast cancer. Molecular and Clinical Oncology, 10(1), 37–42.PubMed Sato, A., Yoshihisa, A., Miyata-Tatsumi, M., Oikawa, M., Kobayashi, A., Ishida, T., et al. (2019). Valvular heart disease as a possible predictor of trastuzumab-induced cardiotoxicity in patients with breast cancer. Molecular and Clinical Oncology, 10(1), 37–42.PubMed
136.
Zurück zum Zitat Cella, L., Oh, J. H., Deasy, J. O., Palma, G., Liuzzi, R., D’avino, V., et al. (2015). Predicting radiation-induced valvular heart damage. Acta Oncologica., 54(10), 1796–1804.PubMedCrossRef Cella, L., Oh, J. H., Deasy, J. O., Palma, G., Liuzzi, R., D’avino, V., et al. (2015). Predicting radiation-induced valvular heart damage. Acta Oncologica., 54(10), 1796–1804.PubMedCrossRef
137.
Zurück zum Zitat Bijl, J. M., Roos, M. M., van Leeuwen-Segarceanu, E. M., Vos, J. M., Bos, W.-J.W., Biesma, D. H., et al. (2016). Assessment of valvular disorders in survivors of Hodgkin’s lymphoma treated by mediastinal radiotherapy±chemotherapy. The American Journal of Cardiology., 117(4), 691–696.PubMedCrossRef Bijl, J. M., Roos, M. M., van Leeuwen-Segarceanu, E. M., Vos, J. M., Bos, W.-J.W., Biesma, D. H., et al. (2016). Assessment of valvular disorders in survivors of Hodgkin’s lymphoma treated by mediastinal radiotherapy±chemotherapy. The American Journal of Cardiology., 117(4), 691–696.PubMedCrossRef
138.
Zurück zum Zitat Gujral, D. M., Lloyd, G., & Bhattacharyya, S. (2016). Radiation-induced valvular heart disease. Heart, 102(4), 269–276.PubMedCrossRef Gujral, D. M., Lloyd, G., & Bhattacharyya, S. (2016). Radiation-induced valvular heart disease. Heart, 102(4), 269–276.PubMedCrossRef
139.
Zurück zum Zitat Nadlonek, N. A., Weyant, M. J., Jessica, A. Y., Cleveland, J. C., Jr., Reece, T. B., Meng, X., et al. (2012). Radiation induces osteogenesis in human aortic valve interstitial cells. The Journal of Thoracic and Cardiovascular Surgery., 144(6), 1466–1470.PubMedPubMedCentralCrossRef Nadlonek, N. A., Weyant, M. J., Jessica, A. Y., Cleveland, J. C., Jr., Reece, T. B., Meng, X., et al. (2012). Radiation induces osteogenesis in human aortic valve interstitial cells. The Journal of Thoracic and Cardiovascular Surgery., 144(6), 1466–1470.PubMedPubMedCentralCrossRef
141.
Zurück zum Zitat Barrick, C. J., Roberts, R. B., Rojas, M., Rajamannan, N. M., Suitt, C. B., O’Brien, K. D., et al. (2009). Reduced EGFR causes abnormal valvular differentiation leading to calcific aortic stenosis and left ventricular hypertrophy in C57BL/6J but not 129S1/SvImJ mice. American Journal of Physiology-Heart and Circulatory Physiology., 297(1), H65–H75.PubMedPubMedCentralCrossRef Barrick, C. J., Roberts, R. B., Rojas, M., Rajamannan, N. M., Suitt, C. B., O’Brien, K. D., et al. (2009). Reduced EGFR causes abnormal valvular differentiation leading to calcific aortic stenosis and left ventricular hypertrophy in C57BL/6J but not 129S1/SvImJ mice. American Journal of Physiology-Heart and Circulatory Physiology., 297(1), H65–H75.PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat Grela-Wojewoda, A., Niemiec, J., Sas-Korczyńska, B., Zemełka, T., Puskulluoglu, M., & Wysocki, W. M. et al. (2022). Adjuvant combined therapy with trastuzumab in patients with HER2-positive breast cancer and cardiac alterations: Implications for optimal cardio-oncology care. Polish Archives of Internal Medicine. Grela-Wojewoda, A., Niemiec, J., Sas-Korczyńska, B., Zemełka, T., Puskulluoglu, M., & Wysocki, W. M. et al. (2022). Adjuvant combined therapy with trastuzumab in patients with HER2-positive breast cancer and cardiac alterations: Implications for optimal cardio-oncology care. Polish Archives of Internal Medicine.
148.
Zurück zum Zitat Ewer, S. M., & Ewer, M. S. (2008). Cardiotoxicity profile of trastuzumab. Drug Safety, 31(6), 459–467.PubMedCrossRef Ewer, S. M., & Ewer, M. S. (2008). Cardiotoxicity profile of trastuzumab. Drug Safety, 31(6), 459–467.PubMedCrossRef
150.
Zurück zum Zitat Saiki, H., Moulay, G., Guenzel, A. J., Liu, W., Decklever, T. D., Classic, K. L., et al. (2017). Experimental cardiac radiation exposure induces ventricular diastolic dysfunction with preserved ejection fraction. American Journal of Physiology-Heart and Circulatory Physiology., 313(2), H392–H407.PubMedPubMedCentralCrossRef Saiki, H., Moulay, G., Guenzel, A. J., Liu, W., Decklever, T. D., Classic, K. L., et al. (2017). Experimental cardiac radiation exposure induces ventricular diastolic dysfunction with preserved ejection fraction. American Journal of Physiology-Heart and Circulatory Physiology., 313(2), H392–H407.PubMedPubMedCentralCrossRef
153.
Zurück zum Zitat Luk, A., Ahn, E., Soor, G. S., & Butany, J. (2009). Dilated cardiomyopathy: A review. Journal of Clinical Pathology., 62(3), 219–225.PubMedCrossRef Luk, A., Ahn, E., Soor, G. S., & Butany, J. (2009). Dilated cardiomyopathy: A review. Journal of Clinical Pathology., 62(3), 219–225.PubMedCrossRef
156.
Zurück zum Zitat Maisel, W. H., & Stevenson, L. W. (2003). Atrial fibrillation in heart failure: Epidemiology, pathophysiology, and rationale for therapy. The American Journal of Cardiology., 91(6), 2–8.CrossRef Maisel, W. H., & Stevenson, L. W. (2003). Atrial fibrillation in heart failure: Epidemiology, pathophysiology, and rationale for therapy. The American Journal of Cardiology., 91(6), 2–8.CrossRef
157.
Zurück zum Zitat Stevenson, W. G., & Stevenson, L. W. (1999). Atrial fibrillation in heart failure (pp. 910–911). Waltham: Mass Medical Soc. Stevenson, W. G., & Stevenson, L. W. (1999). Atrial fibrillation in heart failure (pp. 910–911). Waltham: Mass Medical Soc.
158.
Zurück zum Zitat O’Neal, W. T., Lakoski, S. G., Qureshi, W., Judd, S. E., Howard, G., Howard, V. J., et al. (2015). Relation between cancer and atrial fibrillation (from the REasons for Geographic And Racial Differences in Stroke Study). The American Journal of Cardiology., 115(8), 1090–1094.PubMedPubMedCentralCrossRef O’Neal, W. T., Lakoski, S. G., Qureshi, W., Judd, S. E., Howard, G., Howard, V. J., et al. (2015). Relation between cancer and atrial fibrillation (from the REasons for Geographic And Racial Differences in Stroke Study). The American Journal of Cardiology., 115(8), 1090–1094.PubMedPubMedCentralCrossRef
164.
Zurück zum Zitat Benjanuwattra, J., Siri-Angkul, N., Chattipakorn, S. C., & Chattipakorn, N. (2020). Doxorubicin and its proarrhythmic effects: A comprehensive review of the evidence from experimental and clinical studies. Pharmacological Research., 151, 104542.PubMedCrossRef Benjanuwattra, J., Siri-Angkul, N., Chattipakorn, S. C., & Chattipakorn, N. (2020). Doxorubicin and its proarrhythmic effects: A comprehensive review of the evidence from experimental and clinical studies. Pharmacological Research., 151, 104542.PubMedCrossRef
166.
Zurück zum Zitat Zhao, L. (2019). Protective effects of trimetazidine and coenzyme Q10 on cisplatin-induced cardiotoxicity by alleviating oxidative stress and mitochondrial dysfunction. Anatolian Journal of Cardiology., 22(5), 232.PubMedPubMedCentral Zhao, L. (2019). Protective effects of trimetazidine and coenzyme Q10 on cisplatin-induced cardiotoxicity by alleviating oxidative stress and mitochondrial dysfunction. Anatolian Journal of Cardiology., 22(5), 232.PubMedPubMedCentral
167.
Zurück zum Zitat Darling, H. (2015). Cisplatin induced bradycardia. International Journal of Cardiology., 182, 304–306.PubMedCrossRef Darling, H. (2015). Cisplatin induced bradycardia. International Journal of Cardiology., 182, 304–306.PubMedCrossRef
Metadaten
Titel
Cardiac Remodelling Following Cancer Therapy: A Review
verfasst von
Tan Panpan
Du Yuchen
Shi Xianyong
Liu Meng
He Ruijuan
Dong Ranran
Zhang Pengyan
Li Mingxi
Xie Rongrong
Publikationsdatum
25.07.2022
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 9/2022
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-022-09762-6

Weitere Artikel der Ausgabe 9/2022

Cardiovascular Toxicology 9/2022 Zur Ausgabe