Skip to main content
Erschienen in: Inflammation Research 5/2024

27.03.2024 | Original Research Paper

Causal role of myeloid cells in Parkinson’s disease: Mendelian randomization study

verfasst von: Wei Quan, Yidan Qin, Jia Li, Lin Wang, Jia Song, Jing Xu, Jiajun Chen

Erschienen in: Inflammation Research | Ausgabe 5/2024

Einloggen, um Zugang zu erhalten

Abstract

Background

Previous studies have observed elevated myeloid cells in the peripheral blood of patients with Parkinson's disease (PD), but the causal relationship between them remains to be elucidated. We investigated whether there is a causal relationship between different subtypes of peripheral blood myeloid cells and PD using Mendelian randomization (MR) combined with bioinformatics analysis. Exploring the etiology of PD from the perspective of genetics can remove confounding factors and provide a more reliable theoretical basis for elucidating the pathogenesis of PD.

Methods

Comprehensive two-sample MR analysis and sensitivity analyses were conducted to explore the causal associations between 64 myeloid cell signatures and PD risk. The Venn diagram and protein-protein interaction network analysis of instrumental variables (IV) corresponding genes were used to further investigate the potential mechanism of myeloid cells influencing the pathogenesis of PD.

Results

We investigated the impact of four immunophenotypes on the risk of PD, including Im MDSC% CD33dim HLA DR CD66b (relative count), CD33dim HLA DR+ CD11b+% CD33dim HLA DR+ (relative count), and CD11b on Mo MDSC (MFI) and CD11b on CD33br HLA DR+ CD14dim (MFI), while an immunophenotype's protective effect on PD was observed CD45 on Im MDSC (MFI). The results of bioinformatics analysis showed that CD33, NTRK2, PLD2, GRIK2 and RELN had protein interactions with the risk genes of PD.

Conclusions

Our study has demonstrated a close genetic correlation between different subtypes of myeloid cells and PD, providing guidance for early identification and immunotherapeutic development in patients with PD.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Massaquoi MS, Liguore WA, Churchill MJ, et al. Gait deficits and loss of striatal tyrosine hydroxlase/Trk-B are restored following 7,8-dihydroxyflavone treatment in a progressive MPTP mouse model of Parkinson’s Disease. Neuroscience. 2020;433:53–71.PubMedCrossRef Massaquoi MS, Liguore WA, Churchill MJ, et al. Gait deficits and loss of striatal tyrosine hydroxlase/Trk-B are restored following 7,8-dihydroxyflavone treatment in a progressive MPTP mouse model of Parkinson’s Disease. Neuroscience. 2020;433:53–71.PubMedCrossRef
2.
Zurück zum Zitat Fasano A, Visanji NP, Liu LW, et al. Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol. 2015;14(6):625–39.PubMedCrossRef Fasano A, Visanji NP, Liu LW, et al. Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol. 2015;14(6):625–39.PubMedCrossRef
3.
Zurück zum Zitat Nair AT, Ramachandran V, Joghee NM, et al. Gut microbiota dysfunction as reliable non-invasive early diagnostic biomarkers in the pathophysiology of Parkinson’s Disease: a critical review. J Neurogastroenterol Motil. 2018;24(1):30–42.PubMedPubMedCentralCrossRef Nair AT, Ramachandran V, Joghee NM, et al. Gut microbiota dysfunction as reliable non-invasive early diagnostic biomarkers in the pathophysiology of Parkinson’s Disease: a critical review. J Neurogastroenterol Motil. 2018;24(1):30–42.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Jankovic J, Tan EK. Parkinson’s disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry. 2020;91(8):795–808.PubMedCrossRef Jankovic J, Tan EK. Parkinson’s disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry. 2020;91(8):795–808.PubMedCrossRef
5.
Zurück zum Zitat Fasciani I, Petragnano F, Aloisi G, et al. A new threat to dopamine neurons: the downside of artificial light. Neuroscience. 2020;432:216–28.PubMedCrossRef Fasciani I, Petragnano F, Aloisi G, et al. A new threat to dopamine neurons: the downside of artificial light. Neuroscience. 2020;432:216–28.PubMedCrossRef
6.
Zurück zum Zitat Dantzer R, O’Connor JC, Freund GG, et al. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):46–56.PubMedPubMedCentralCrossRef Dantzer R, O’Connor JC, Freund GG, et al. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):46–56.PubMedPubMedCentralCrossRef
7.
8.
Zurück zum Zitat Lutters B, Foley P, Koehler PJ. The centennial lesson of encephalitis lethargica. Neurology. 2018;90(12):563–7.PubMedCrossRef Lutters B, Foley P, Koehler PJ. The centennial lesson of encephalitis lethargica. Neurology. 2018;90(12):563–7.PubMedCrossRef
9.
Zurück zum Zitat Bo RX, Li YY, Zhou TT, et al. The neuroinflammatory role of glucocerebrosidase in Parkinson’s disease. Neuropharmacology. 2022;207: 108964.PubMedCrossRef Bo RX, Li YY, Zhou TT, et al. The neuroinflammatory role of glucocerebrosidase in Parkinson’s disease. Neuropharmacology. 2022;207: 108964.PubMedCrossRef
10.
Zurück zum Zitat Yang L, Mao K, Yu H, et al. Neuroinflammatory responses and Parkinson’ Disease: pathogenic mechanisms and therapeutic targets. J Neuroimmune Pharmacol. 2020;15(4):830–7.PubMedCrossRef Yang L, Mao K, Yu H, et al. Neuroinflammatory responses and Parkinson’ Disease: pathogenic mechanisms and therapeutic targets. J Neuroimmune Pharmacol. 2020;15(4):830–7.PubMedCrossRef
11.
Zurück zum Zitat Schonhoff AM, Figge DA, Williams GP, et al. Border-associated macrophages mediate the neuroinflammatory response in an alpha-synuclein model of Parkinson disease. Nat Commun. 2023;14(1):3754.PubMedPubMedCentralCrossRef Schonhoff AM, Figge DA, Williams GP, et al. Border-associated macrophages mediate the neuroinflammatory response in an alpha-synuclein model of Parkinson disease. Nat Commun. 2023;14(1):3754.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Araújo B, Caridade-Silva R, Soares-Guedes C, et al. Neuroinflammation and Parkinson’s Disease-from neurodegeneration to therapeutic opportunities. Cells. 2022;11(18):2908.PubMedPubMedCentralCrossRef Araújo B, Caridade-Silva R, Soares-Guedes C, et al. Neuroinflammation and Parkinson’s Disease-from neurodegeneration to therapeutic opportunities. Cells. 2022;11(18):2908.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Ferrari CC, Pott Godoy MC, Tarelli R, et al. Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-1beta in the substantia nigra. Neurobiol Dis. 2006;24(1):183–93.PubMedCrossRef Ferrari CC, Pott Godoy MC, Tarelli R, et al. Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-1beta in the substantia nigra. Neurobiol Dis. 2006;24(1):183–93.PubMedCrossRef
14.
Zurück zum Zitat Hagar JA, Powell DA, Aachoui Y, et al. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science. 2013;341(6151):1250–3.PubMedPubMedCentralCrossRef Hagar JA, Powell DA, Aachoui Y, et al. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science. 2013;341(6151):1250–3.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Lee E, Hwang I, Park S, et al. MPTP-driven NLRP3 inflammasome activation in microglia plays a central role in dopaminergic neurodegeneration. Cell Death Differ. 2019;26(2):213–28.PubMedCrossRef Lee E, Hwang I, Park S, et al. MPTP-driven NLRP3 inflammasome activation in microglia plays a central role in dopaminergic neurodegeneration. Cell Death Differ. 2019;26(2):213–28.PubMedCrossRef
16.
Zurück zum Zitat Zhou X, Lu J, Wei K, et al. Neuroprotective effect of ceftriaxone on MPTP-induced Parkinson’s disease mouse model by regulating inflammation and intestinal microbiota. Oxid Med Cell Longev. 2021;2021:9424582.PubMedPubMedCentralCrossRef Zhou X, Lu J, Wei K, et al. Neuroprotective effect of ceftriaxone on MPTP-induced Parkinson’s disease mouse model by regulating inflammation and intestinal microbiota. Oxid Med Cell Longev. 2021;2021:9424582.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Chen S, Liu Y, Niu Y, et al. Increased abundance of myeloid-derived suppressor cells and Th17 cells in peripheral blood of newly-diagnosed Parkinson’s disease patients. Neurosci Lett. 2017;648:21–5.PubMedCrossRef Chen S, Liu Y, Niu Y, et al. Increased abundance of myeloid-derived suppressor cells and Th17 cells in peripheral blood of newly-diagnosed Parkinson’s disease patients. Neurosci Lett. 2017;648:21–5.PubMedCrossRef
18.
Zurück zum Zitat Grozdanov V, Bliederhaeuser C, Ruf WP, et al. Inflammatory dysregulation of blood monocytes in Parkinson’s disease patients. Acta Neuropathol. 2014;128(5):651–63.PubMedPubMedCentralCrossRef Grozdanov V, Bliederhaeuser C, Ruf WP, et al. Inflammatory dysregulation of blood monocytes in Parkinson’s disease patients. Acta Neuropathol. 2014;128(5):651–63.PubMedPubMedCentralCrossRef
19.
20.
Zurück zum Zitat Lucot KL, Stevens MY, Bonham TA, et al. Tracking innate immune activation in a mouse model of Parkinson’s Disease using TREM1 and TSPO PET tracers. J Nucl Med. 2022;63(10):1570–8.PubMedCrossRef Lucot KL, Stevens MY, Bonham TA, et al. Tracking innate immune activation in a mouse model of Parkinson’s Disease using TREM1 and TSPO PET tracers. J Nucl Med. 2022;63(10):1570–8.PubMedCrossRef
22.
Zurück zum Zitat Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23(R1):R89–98.PubMedPubMedCentralCrossRef Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23(R1):R89–98.PubMedPubMedCentralCrossRef
24.
25.
Zurück zum Zitat Gong Z, Liu Y, Ding F, et al. Natural killer cells-related immune traits and amyotrophic lateral sclerosis: A Mendelian randomization study. Front Neurosci. 2022;16: 981371.PubMedPubMedCentralCrossRef Gong Z, Liu Y, Ding F, et al. Natural killer cells-related immune traits and amyotrophic lateral sclerosis: A Mendelian randomization study. Front Neurosci. 2022;16: 981371.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Nalls MA, Blauwendraat C, Vallerga CL, et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 2019;18(12):1091–102.PubMedPubMedCentralCrossRef Nalls MA, Blauwendraat C, Vallerga CL, et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 2019;18(12):1091–102.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Orrù V, Steri M, Sidore C, et al. Complex genetic signatures in immune cells underlie autoimmunity and inform therapy. Nat Genet. 2020;52(10):1036–45.PubMedPubMedCentralCrossRef Orrù V, Steri M, Sidore C, et al. Complex genetic signatures in immune cells underlie autoimmunity and inform therapy. Nat Genet. 2020;52(10):1036–45.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Sidore C, Busonero F, Maschio A, et al. Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers. Nat Genet. 2015;47(11):1272–81.PubMedPubMedCentralCrossRef Sidore C, Busonero F, Maschio A, et al. Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers. Nat Genet. 2015;47(11):1272–81.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Yu XH, Yang YQ, Cao RR, et al. The causal role of gut microbiota in development of osteoarthritis. Osteoarthr Cartil. 2021;29(12):1741–50.CrossRef Yu XH, Yang YQ, Cao RR, et al. The causal role of gut microbiota in development of osteoarthritis. Osteoarthr Cartil. 2021;29(12):1741–50.CrossRef
30.
Zurück zum Zitat Auton A, Brooks LD, Durbin RM, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74.PubMedCrossRef Auton A, Brooks LD, Durbin RM, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74.PubMedCrossRef
31.
Zurück zum Zitat Burgess S, Small DS, Thompson SG. A review of instrumental variable estimators for Mendelian randomization. Stat Methods Med Res. 2017;26(5):2333–55.PubMedCrossRef Burgess S, Small DS, Thompson SG. A review of instrumental variable estimators for Mendelian randomization. Stat Methods Med Res. 2017;26(5):2333–55.PubMedCrossRef
32.
Zurück zum Zitat Yavorska OO, Burgess S. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. Int J Epidemiol. 2017;46(6):1734–9.PubMedPubMedCentralCrossRef Yavorska OO, Burgess S. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. Int J Epidemiol. 2017;46(6):1734–9.PubMedPubMedCentralCrossRef
33.
34.
Zurück zum Zitat Bowden J, Davey Smith G, Haycock PC, et al. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–14.PubMedPubMedCentralCrossRef Bowden J, Davey Smith G, Haycock PC, et al. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–14.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46(6):1985–98.PubMedPubMedCentralCrossRef Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46(6):1985–98.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Xiang M, Wang Y, Gao Z, et al. Exploring causal correlations between inflammatory cytokines and systemic lupus erythematosus: A Mendelian randomization. Front Immunol. 2022;13: 985729.PubMedCrossRef Xiang M, Wang Y, Gao Z, et al. Exploring causal correlations between inflammatory cytokines and systemic lupus erythematosus: A Mendelian randomization. Front Immunol. 2022;13: 985729.PubMedCrossRef
37.
Zurück zum Zitat Verbanck M, Chen CY, Neale B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(5):693–8.PubMedPubMedCentralCrossRef Verbanck M, Chen CY, Neale B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(5):693–8.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13.PubMedCrossRef Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13.PubMedCrossRef
40.
Zurück zum Zitat Thome AD, Atassi F, Wang J, et al. Ex vivo expansion of dysfunctional regulatory T lymphocytes restores suppressive function in Parkinson’s disease. NPJ Parkinsons Dis. 2021;7(1):41.PubMedPubMedCentralCrossRef Thome AD, Atassi F, Wang J, et al. Ex vivo expansion of dysfunctional regulatory T lymphocytes restores suppressive function in Parkinson’s disease. NPJ Parkinsons Dis. 2021;7(1):41.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Wang B, Ma Y, Li S, et al. GSDMD in peripheral myeloid cells regulates microglial immune training and neuroinflammation in Parkinson’s disease. Acta Pharm Sin B. 2023;13(6):2663–79.PubMedPubMedCentralCrossRef Wang B, Ma Y, Li S, et al. GSDMD in peripheral myeloid cells regulates microglial immune training and neuroinflammation in Parkinson’s disease. Acta Pharm Sin B. 2023;13(6):2663–79.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Zhang QS, Heng Y, Yuan YH, et al. Pathological α-synuclein exacerbates the progression of Parkinson’s disease through microglial activation. Toxicol Lett. 2017;265:30–7.PubMedCrossRef Zhang QS, Heng Y, Yuan YH, et al. Pathological α-synuclein exacerbates the progression of Parkinson’s disease through microglial activation. Toxicol Lett. 2017;265:30–7.PubMedCrossRef
43.
Zurück zum Zitat Cao S, Standaert DG, Harms AS. The gamma chain subunit of Fc receptors is required for alpha-synuclein-induced pro-inflammatory signaling in microglia. J Neuroinflammation. 2012;9:259.PubMedPubMedCentralCrossRef Cao S, Standaert DG, Harms AS. The gamma chain subunit of Fc receptors is required for alpha-synuclein-induced pro-inflammatory signaling in microglia. J Neuroinflammation. 2012;9:259.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Landoni VI, Martire-Greco D, Rodriguez-Rodrigues N, et al. Immature myeloid Gr-1+ CD11b+ cells from lipopolysaccharide-immunosuppressed mice acquire inhibitory activity in the bone marrow and migrate to lymph nodes to exert their suppressive function. Clin Sci (Lond). 2016;130(4):259–71.PubMedCrossRef Landoni VI, Martire-Greco D, Rodriguez-Rodrigues N, et al. Immature myeloid Gr-1+ CD11b+ cells from lipopolysaccharide-immunosuppressed mice acquire inhibitory activity in the bone marrow and migrate to lymph nodes to exert their suppressive function. Clin Sci (Lond). 2016;130(4):259–71.PubMedCrossRef
45.
Zurück zum Zitat Zhang Y, Xie J, Han G, et al. Detection and clinical significance of myeloid-derived suppressor cells in peripheral blood of patients with rectal carcinoma. Zhonghua Wei Chang Wai Ke Za Zhi. 2017;20(7):798–802.PubMed Zhang Y, Xie J, Han G, et al. Detection and clinical significance of myeloid-derived suppressor cells in peripheral blood of patients with rectal carcinoma. Zhonghua Wei Chang Wai Ke Za Zhi. 2017;20(7):798–802.PubMed
46.
Zurück zum Zitat Kauppinen A, Kaarniranta K, Salminen A. Potential role of myeloid-derived suppressor cells (MDSCs) in age-related macular degeneration (AMD). Front Immunol. 2020;11:384.PubMedPubMedCentralCrossRef Kauppinen A, Kaarniranta K, Salminen A. Potential role of myeloid-derived suppressor cells (MDSCs) in age-related macular degeneration (AMD). Front Immunol. 2020;11:384.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Hu S, Li S, Ning W, et al. Identifying crosstalk genetic biomarkers linking a neurodegenerative disease, Parkinson’s disease, and periodontitis using integrated bioinformatics analyses. Front Aging Neurosci. 2022;14:1032401.PubMedPubMedCentralCrossRef Hu S, Li S, Ning W, et al. Identifying crosstalk genetic biomarkers linking a neurodegenerative disease, Parkinson’s disease, and periodontitis using integrated bioinformatics analyses. Front Aging Neurosci. 2022;14:1032401.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Ostanin DV, Bhattacharya D. Myeloid-derived suppressor cells in the inflammatory bowel diseases. Inflamm Bowel Dis. 2013;19(11):2468–77.PubMedCrossRef Ostanin DV, Bhattacharya D. Myeloid-derived suppressor cells in the inflammatory bowel diseases. Inflamm Bowel Dis. 2013;19(11):2468–77.PubMedCrossRef
49.
Zurück zum Zitat Hoechst B, Gamrekelashvili J, Manns MP, et al. Plasticity of human Th17 cells and iTregs is orchestrated by different subsets of myeloid cells. Blood. 2011;117(24):6532–41.PubMedCrossRef Hoechst B, Gamrekelashvili J, Manns MP, et al. Plasticity of human Th17 cells and iTregs is orchestrated by different subsets of myeloid cells. Blood. 2011;117(24):6532–41.PubMedCrossRef
50.
Zurück zum Zitat Yang L, Guo C, Zhu J, et al. Increased levels of pro-inflammatory and anti-inflammatory cellular responses in Parkinson’s disease patients: search for a disease indicator. Med Sci Monit. 2017;23:2972–8.PubMedPubMedCentralCrossRef Yang L, Guo C, Zhu J, et al. Increased levels of pro-inflammatory and anti-inflammatory cellular responses in Parkinson’s disease patients: search for a disease indicator. Med Sci Monit. 2017;23:2972–8.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Chen CK, Wu YT, Chang YC. Periodontal inflammatory disease is associated with the risk of Parkinson’s disease: a population-based retrospective matched-cohort study. PeerJ. 2017;5: e3647.PubMedPubMedCentralCrossRef Chen CK, Wu YT, Chang YC. Periodontal inflammatory disease is associated with the risk of Parkinson’s disease: a population-based retrospective matched-cohort study. PeerJ. 2017;5: e3647.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Park J, Lee JW, Cooper SC, et al. Parkinson disease-associated LRRK2 G2019S transgene disrupts marrow myelopoiesis and peripheral Th17 response. J Leukoc Biol. 2017;102(4):1093–102.PubMedPubMedCentralCrossRef Park J, Lee JW, Cooper SC, et al. Parkinson disease-associated LRRK2 G2019S transgene disrupts marrow myelopoiesis and peripheral Th17 response. J Leukoc Biol. 2017;102(4):1093–102.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Kim KS, Marcogliese PC, Yang J, et al. Regulation of myeloid cell phagocytosis by LRRK2 via WAVE2 complex stabilization is altered in Parkinson’s disease. Proc Natl Acad Sci U S A. 2018;115(22):E5164–73.PubMedPubMedCentralCrossRef Kim KS, Marcogliese PC, Yang J, et al. Regulation of myeloid cell phagocytosis by LRRK2 via WAVE2 complex stabilization is altered in Parkinson’s disease. Proc Natl Acad Sci U S A. 2018;115(22):E5164–73.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Li A, Peng Y, Taiclet LM, et al. Analysis of hidradenitis suppurativa-linked mutations in four genes and the effects of PSEN1-P242LfsX11 on cytokine and chemokine expression in macrophages. Hum Mol Genet. 2019;28(7):1173–82.PubMedCrossRef Li A, Peng Y, Taiclet LM, et al. Analysis of hidradenitis suppurativa-linked mutations in four genes and the effects of PSEN1-P242LfsX11 on cytokine and chemokine expression in macrophages. Hum Mol Genet. 2019;28(7):1173–82.PubMedCrossRef
55.
Zurück zum Zitat Tian Q, Sun X, Li C, et al. CD33 polymorphisms and Parkinson’s disease Parkinson’s disease in northern Chinese Han population: A case-control study. Neurosci Lett. 2023;812: 137400.PubMedCrossRef Tian Q, Sun X, Li C, et al. CD33 polymorphisms and Parkinson’s disease Parkinson’s disease in northern Chinese Han population: A case-control study. Neurosci Lett. 2023;812: 137400.PubMedCrossRef
56.
Zurück zum Zitat Siokas V, Arseniou S, Aloizou AM, et al. CD33 rs3865444 as a risk factor for Parkinson’s disease. Neurosci Lett. 2021;748: 135709.PubMedCrossRef Siokas V, Arseniou S, Aloizou AM, et al. CD33 rs3865444 as a risk factor for Parkinson’s disease. Neurosci Lett. 2021;748: 135709.PubMedCrossRef
57.
Zurück zum Zitat Hakami MA, Alotaibi BS, Hazazi A, et al. Identification of potential inhibitors of tropomyosin receptor kinase B targeting CNS-related disorders and cancers. J Biomol Struct Dyn. 2023;42(6):2965–75.PubMedCrossRef Hakami MA, Alotaibi BS, Hazazi A, et al. Identification of potential inhibitors of tropomyosin receptor kinase B targeting CNS-related disorders and cancers. J Biomol Struct Dyn. 2023;42(6):2965–75.PubMedCrossRef
58.
Zurück zum Zitat Zhu G, Li J, He L, et al. MPTP-induced changes in hippocampal synaptic plasticity and memory are prevented by memantine through the BDNF-TrkB pathway. Br J Pharmacol. 2015;172(9):2354–68.PubMedPubMedCentralCrossRef Zhu G, Li J, He L, et al. MPTP-induced changes in hippocampal synaptic plasticity and memory are prevented by memantine through the BDNF-TrkB pathway. Br J Pharmacol. 2015;172(9):2354–68.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Luo D, Shi Y, Wang J, et al. 7,8-dihydroxyflavone protects 6-OHDA and MPTP induced dopaminergic neurons degeneration through activation of TrkB in rodents. Neurosci Lett. 2016;620:43–9.PubMedCrossRef Luo D, Shi Y, Wang J, et al. 7,8-dihydroxyflavone protects 6-OHDA and MPTP induced dopaminergic neurons degeneration through activation of TrkB in rodents. Neurosci Lett. 2016;620:43–9.PubMedCrossRef
60.
Zurück zum Zitat Payton JE, Perrin RJ, Woods WS, et al. Structural determinants of PLD2 inhibition by alpha-synuclein. J Mol Biol. 2004;337(4):1001–9.PubMedCrossRef Payton JE, Perrin RJ, Woods WS, et al. Structural determinants of PLD2 inhibition by alpha-synuclein. J Mol Biol. 2004;337(4):1001–9.PubMedCrossRef
61.
Zurück zum Zitat Mendez-Gomez HR, Singh J, Meyers C, et al. The lipase activity of phospholipase D2 is responsible for nigral neurodegeneration in a rat model of Parkinson’s Disease. Neuroscience. 2018;377:174–83.PubMedCrossRef Mendez-Gomez HR, Singh J, Meyers C, et al. The lipase activity of phospholipase D2 is responsible for nigral neurodegeneration in a rat model of Parkinson’s Disease. Neuroscience. 2018;377:174–83.PubMedCrossRef
62.
Zurück zum Zitat Pan B, Niu B, He Y, et al. Integrative multilevel exploration of the mechanism by which Er-Zhi-Wan alleviates the Parkinson’s disease (PD)-like phenotype in the MPTP-induced PD mouse model. Biomed Pharmacother. 2023;165: 115021.PubMedCrossRef Pan B, Niu B, He Y, et al. Integrative multilevel exploration of the mechanism by which Er-Zhi-Wan alleviates the Parkinson’s disease (PD)-like phenotype in the MPTP-induced PD mouse model. Biomed Pharmacother. 2023;165: 115021.PubMedCrossRef
63.
Zurück zum Zitat Alieva AK, Rudenok MM, Novosadova EV, et al. Whole-transcriptome analysis of dermal fibroblasts, derived from three pairs of monozygotic twins, discordant for Parkinson’s Disease. J Mol Neurosci. 2020;70(2):284–93.PubMedCrossRef Alieva AK, Rudenok MM, Novosadova EV, et al. Whole-transcriptome analysis of dermal fibroblasts, derived from three pairs of monozygotic twins, discordant for Parkinson’s Disease. J Mol Neurosci. 2020;70(2):284–93.PubMedCrossRef
64.
Zurück zum Zitat Mishra A, Malik R, Hachiya T, et al. Stroke genetics informs drug discovery and risk prediction across ancestries. Nature. 2022;611(7934):115–23.PubMedPubMedCentralCrossRef Mishra A, Malik R, Hachiya T, et al. Stroke genetics informs drug discovery and risk prediction across ancestries. Nature. 2022;611(7934):115–23.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Abdelmoaty MM, Machhi J, Yeapuri P, et al. Monocyte biomarkers define sargramostim treatment outcomes for Parkinson’s disease. Clin Transl Med. 2022;12(7): e958.PubMedPubMedCentralCrossRef Abdelmoaty MM, Machhi J, Yeapuri P, et al. Monocyte biomarkers define sargramostim treatment outcomes for Parkinson’s disease. Clin Transl Med. 2022;12(7): e958.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Olson KE, Namminga KL, Lu Y, et al. Safety, tolerability, and immune-biomarker profiling for year-long sargramostim treatment of Parkinson’s disease. EBioMedicine. 2021;67: 103380.PubMedPubMedCentralCrossRef Olson KE, Namminga KL, Lu Y, et al. Safety, tolerability, and immune-biomarker profiling for year-long sargramostim treatment of Parkinson’s disease. EBioMedicine. 2021;67: 103380.PubMedPubMedCentralCrossRef
Metadaten
Titel
Causal role of myeloid cells in Parkinson’s disease: Mendelian randomization study
verfasst von
Wei Quan
Yidan Qin
Jia Li
Lin Wang
Jia Song
Jing Xu
Jiajun Chen
Publikationsdatum
27.03.2024
Verlag
Springer International Publishing
Erschienen in
Inflammation Research / Ausgabe 5/2024
Print ISSN: 1023-3830
Elektronische ISSN: 1420-908X
DOI
https://doi.org/10.1007/s00011-024-01867-8

Weitere Artikel der Ausgabe 5/2024

Inflammation Research 5/2024 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.