Skip to main content
Erschienen in: Journal of Clinical Monitoring and Computing 3/2018

30.08.2017 | Original Research

Changes in transcranial motor evoked potentials during hemorrhage are associated with increased serum propofol concentrations

verfasst von: Jeremy A. Lieberman, John Feiner, Mark Rollins, Russ Lyon

Erschienen in: Journal of Clinical Monitoring and Computing | Ausgabe 3/2018

Einloggen, um Zugang zu erhalten

Abstract

Transcranial motor evoked potentials (TcMEPs) monitor the integrity of the spinal cord during spine surgery. Propofol-based anesthesia is favored in order to enhance TcMEP quality. During intraoperative hemorrhage, TcMEP amplitudes may be reduced. The serum concentration of propofol may increase during hemorrhage. No study has determined whether changes in TcMEPs due to hemorrhage are related to changes in propofol blood levels. We monitored TcMEPs, mean arterial pressure (MAP), and cardiac output (CO) and hemoglobin in pigs (n = 6) undergoing controlled progressive hemorrhage during a standardized anesthetic with infusions of propofol, ketamine, and fentanyl. We recorded TcMEPs from the rectus femoris (RF) and tibialis anterior (TA) muscles bilaterally. A pulmonary artery catheter was placed to measure CO. Progressive hemorrhage of 10% blood volume increments was done until TcMEP amplitude decreased by >60% from baseline. Serum propofol levels were also measured following removal of each 10% blood volume increment. TcMEP responses were elicited every 3 min using constant stimulation parameters. We removed between 20 and 50% of total blood volume in order to achieve the >60% reduction in TcMEP amplitude. MAP and CO decreased significantly from baseline. At maximum hemorrhage, TcMEP amplitude decreased in the RF and TA by an average of 73 and 62% respectively from baseline (P < 0.01). Serum propofol levels varied greatly among animals at baseline (range 410–1720 ng/mL) and increased in each animal during hemorrhage. The mean propofol concentration rose from 1190 ± 530 to 2483 ± 968 ng/mL (P < 0.01). The increased propofol concentration correlated with decreased CO. Multivariate analysis using hierarchical linear models indicated that the decline of TcMEP amplitude was primarily associated with rising propofol concentrations, but was also independently affected by reduced CO. We believe that the decrease in blood volume and CO during hemorrhage increased the serum concentration of propofol by reducing the volume of distribution and/or rate of hepatic metabolism of the drug. Despite wide acceptance of propofol as the preferred anesthetic when using TcMEPs, intravenous anesthetics are vulnerable to altered pharmacokinetics during conditions of hemorrhage and could contribute to false-positive TcMEP changes.
Literatur
1.
Zurück zum Zitat Deletis V, Sala F. Intraoperative neurophysiological monitoring of the spinal cord during spinal cord and spine surgery: a review focused on the corticospinal tracts. Clin Neurophysiol. 2008;119:248–64.CrossRefPubMed Deletis V, Sala F. Intraoperative neurophysiological monitoring of the spinal cord during spinal cord and spine surgery: a review focused on the corticospinal tracts. Clin Neurophysiol. 2008;119:248–64.CrossRefPubMed
2.
Zurück zum Zitat Malhotra N, Shaffrey C. Intraoperative electrophysiological monitoring in spine surgery. Spine. 2010;35:2167–79.CrossRefPubMed Malhotra N, Shaffrey C. Intraoperative electrophysiological monitoring in spine surgery. Spine. 2010;35:2167–79.CrossRefPubMed
3.
Zurück zum Zitat Fehlings M, Brodke D, Norvell D, et al. The evidence for intraoperative neurophysiological monitoring in spine surgery: does it make a difference?. Spine 2010;35:S37–46.PubMed Fehlings M, Brodke D, Norvell D, et al. The evidence for intraoperative neurophysiological monitoring in spine surgery: does it make a difference?. Spine 2010;35:S37–46.PubMed
4.
Zurück zum Zitat Sloan T. Anesthetic effects on electrophysiologic recordings. J Clin Neurophysiol. 1998;15:217–26.CrossRefPubMed Sloan T. Anesthetic effects on electrophysiologic recordings. J Clin Neurophysiol. 1998;15:217–26.CrossRefPubMed
5.
Zurück zum Zitat Balvin M, Song K, Slimp J. Effects of anesthetic regimens and other confounding factors affecting the interpretation of motor evoked potentials during pediatric spine surgery. Am J Electroneurodiagnostic Technol. 2010;50:219–44.PubMed Balvin M, Song K, Slimp J. Effects of anesthetic regimens and other confounding factors affecting the interpretation of motor evoked potentials during pediatric spine surgery. Am J Electroneurodiagnostic Technol. 2010;50:219–44.PubMed
6.
Zurück zum Zitat Tamkus A, Rice K, Kim H. Differential rates of false-positive findings in transcranial electric motor evoked potential monitoring when using inhalational anesthesia versus total intravenous anesthesia during spine surgeries. Spine J. 2013;13:1484–8. Tamkus A, Rice K, Kim H. Differential rates of false-positive findings in transcranial electric motor evoked potential monitoring when using inhalational anesthesia versus total intravenous anesthesia during spine surgeries. Spine J. 2013;13:1484–8.
7.
Zurück zum Zitat Lyon R, Lieberman J, Grabovac M, et al. Strategies for managing decreased Motor Evoked Potential signals while distracting the spine during correction of scoliosis. J Neurosurg Anesthesiol. 2004;16:167–70.CrossRefPubMed Lyon R, Lieberman J, Grabovac M, et al. Strategies for managing decreased Motor Evoked Potential signals while distracting the spine during correction of scoliosis. J Neurosurg Anesthesiol. 2004;16:167–70.CrossRefPubMed
8.
Zurück zum Zitat Lieberman J, Lyon R, Feiner J, et al. The efficacy of motor evoked potentials in fixed sagittal imbalance deformity correction surgery. Spine. 2008;33:E414–E24.CrossRefPubMed Lieberman J, Lyon R, Feiner J, et al. The efficacy of motor evoked potentials in fixed sagittal imbalance deformity correction surgery. Spine. 2008;33:E414–E24.CrossRefPubMed
9.
Zurück zum Zitat Schwartz D, Auerbach J, Dormans J, et al. Neurophysiological detection of impending spinal cord injury during scoliosis surgery. J Bone Joint Surg Am. 2007;89:2440–9.PubMed Schwartz D, Auerbach J, Dormans J, et al. Neurophysiological detection of impending spinal cord injury during scoliosis surgery. J Bone Joint Surg Am. 2007;89:2440–9.PubMed
10.
Zurück zum Zitat Noonan K, Walker T, Feinberg J, et al. Factors related to false- versus true-positive neuromonitoring changes in adolescent idiopathic scoliosis surgery. Spine. 2002;27:825–30.CrossRefPubMed Noonan K, Walker T, Feinberg J, et al. Factors related to false- versus true-positive neuromonitoring changes in adolescent idiopathic scoliosis surgery. Spine. 2002;27:825–30.CrossRefPubMed
11.
Zurück zum Zitat Cheh G, Lenke L, Padberg A, et al. Loss of spinal cord monitoring signals in children during thoracic kyphosis correction with spinal osteotomy: why does it occur and what should you do? Spine. 2008;33:1093–9.CrossRefPubMed Cheh G, Lenke L, Padberg A, et al. Loss of spinal cord monitoring signals in children during thoracic kyphosis correction with spinal osteotomy: why does it occur and what should you do? Spine. 2008;33:1093–9.CrossRefPubMed
12.
Zurück zum Zitat Othman Z, Lenke LG, Bolon S, et al. Hypotension-induced loss of intraoperative monitoring data during surgical correction of scheuermann kyphosis: a case report. Spine. 2004;29:E258-65.CrossRefPubMed Othman Z, Lenke LG, Bolon S, et al. Hypotension-induced loss of intraoperative monitoring data during surgical correction of scheuermann kyphosis: a case report. Spine. 2004;29:E258-65.CrossRefPubMed
13.
Zurück zum Zitat Lieberman J, Feiner J, Lyon R, et al. Effect of hemorrhage and hypotension on transcranial motor-evoked potentials in swine. Anesthesiology. 2013;119:1109–19.CrossRefPubMed Lieberman J, Feiner J, Lyon R, et al. Effect of hemorrhage and hypotension on transcranial motor-evoked potentials in swine. Anesthesiology. 2013;119:1109–19.CrossRefPubMed
14.
Zurück zum Zitat De Paepe P, Belpaire F, Rosseel M, et al. Influence of hypovolemia on the pharmacokinetics and the electroencephalographic effect of propofol in the rat. Anesthesiology. 2000;93:1482–90.CrossRefPubMed De Paepe P, Belpaire F, Rosseel M, et al. Influence of hypovolemia on the pharmacokinetics and the electroencephalographic effect of propofol in the rat. Anesthesiology. 2000;93:1482–90.CrossRefPubMed
15.
Zurück zum Zitat Johnson K, Egan T, Kern S, et al. The influence of hemorrhagic shock on propofol: a pharmacokinetic and pharmacodynamic analysis. Anesthesiology. 2003;99:409–20.CrossRefPubMed Johnson K, Egan T, Kern S, et al. The influence of hemorrhagic shock on propofol: a pharmacokinetic and pharmacodynamic analysis. Anesthesiology. 2003;99:409–20.CrossRefPubMed
16.
Zurück zum Zitat Kazama T, Kurita T, Morita K, et al. Influence of hemorrhage on propofol pseudo-steady state concentration. Anesthesiology. 2002;97:1156–61.CrossRefPubMed Kazama T, Kurita T, Morita K, et al. Influence of hemorrhage on propofol pseudo-steady state concentration. Anesthesiology. 2002;97:1156–61.CrossRefPubMed
17.
Zurück zum Zitat Kurita T, Morita K, Kazama T, et al. Influence of cardiac output on plasma propofol concentrations during constant infusion in swine. Anesthesiology. 2002;96:1498–503.CrossRefPubMed Kurita T, Morita K, Kazama T, et al. Influence of cardiac output on plasma propofol concentrations during constant infusion in swine. Anesthesiology. 2002;96:1498–503.CrossRefPubMed
18.
Zurück zum Zitat Mok J, Lyon R, Lieberman J, et al. Monitoring of nerve root injury using transcranial motor-evoked potentials in a pig model. Spine. 2008;33:E465–73.CrossRefPubMed Mok J, Lyon R, Lieberman J, et al. Monitoring of nerve root injury using transcranial motor-evoked potentials in a pig model. Spine. 2008;33:E465–73.CrossRefPubMed
19.
Zurück zum Zitat Lyon R, Burch S, Lieberman J. Mixed-muscle electrode placement (“jumping” muscles) may produce false-negative results when using transcranial motor evoked potentials to detect an isolated nerve root injury in a porcine model. J Clin Monit Comput. 2009;23:403–8.CrossRefPubMed Lyon R, Burch S, Lieberman J. Mixed-muscle electrode placement (“jumping” muscles) may produce false-negative results when using transcranial motor evoked potentials to detect an isolated nerve root injury in a porcine model. J Clin Monit Comput. 2009;23:403–8.CrossRefPubMed
20.
Zurück zum Zitat Lyon R, Gibson A, Burch S, et al. Increases in voltage may produce false-negatives when using transcranial motor evoked potentials to detect an isolated nerve root injury. J Clin Monit Comput. 2010;24:441–8.CrossRefPubMed Lyon R, Gibson A, Burch S, et al. Increases in voltage may produce false-negatives when using transcranial motor evoked potentials to detect an isolated nerve root injury. J Clin Monit Comput. 2010;24:441–8.CrossRefPubMed
21.
Zurück zum Zitat Raudenbush S, Bryk A. Hierarchical linear models—applications and data analysis methods. 2nd ed. Thousand Oaks: Sage; 2002. Raudenbush S, Bryk A. Hierarchical linear models—applications and data analysis methods. 2nd ed. Thousand Oaks: Sage; 2002.
22.
Zurück zum Zitat Padberg AM, Wilson-Holden TJ, Lenke LG, et al. Somatosensory- and motor-evoked potential monitoring without a wake-up test during idiopathic scoliosis surgery. An accepted standard of care. Spine. 1998;23:1392–400.CrossRefPubMed Padberg AM, Wilson-Holden TJ, Lenke LG, et al. Somatosensory- and motor-evoked potential monitoring without a wake-up test during idiopathic scoliosis surgery. An accepted standard of care. Spine. 1998;23:1392–400.CrossRefPubMed
23.
Zurück zum Zitat Pelosi L, Lamb J, Grevitt M, et al. Combined monitoring of motor and somatosensory evoked potentials in orthopaedic spinal surgery. Clin Neurophysiol. 2002;113:1082–91.CrossRefPubMed Pelosi L, Lamb J, Grevitt M, et al. Combined monitoring of motor and somatosensory evoked potentials in orthopaedic spinal surgery. Clin Neurophysiol. 2002;113:1082–91.CrossRefPubMed
24.
Zurück zum Zitat MacDonald D, Al Zayed Z, Khoudeir I, et al. Monitoring scoliosis surgery with combined multiple pulse transcranial electric motor and cortical somatosensory-evoked potentials from the lower and upper extremities. Spine. 2006;28:194–203.CrossRef MacDonald D, Al Zayed Z, Khoudeir I, et al. Monitoring scoliosis surgery with combined multiple pulse transcranial electric motor and cortical somatosensory-evoked potentials from the lower and upper extremities. Spine. 2006;28:194–203.CrossRef
25.
Zurück zum Zitat Kelleher M, Tan G, Sarjeant R, et al. Predictive value of intraoperative neurophysiological monitoring during cervical spine surgery: a prospective analysis of 1055 consecutive patients. J Neurosurg Spine. 2008;8:215–21.CrossRefPubMed Kelleher M, Tan G, Sarjeant R, et al. Predictive value of intraoperative neurophysiological monitoring during cervical spine surgery: a prospective analysis of 1055 consecutive patients. J Neurosurg Spine. 2008;8:215–21.CrossRefPubMed
26.
Zurück zum Zitat Chen B, Chen Y, Yang J, et al. Comparison of the wake-up test and combined TES-MEP and CSEP monitoring in spinal surgery. J Spinal Disord Tech. 2015;28:335–40.CrossRefPubMed Chen B, Chen Y, Yang J, et al. Comparison of the wake-up test and combined TES-MEP and CSEP monitoring in spinal surgery. J Spinal Disord Tech. 2015;28:335–40.CrossRefPubMed
27.
Zurück zum Zitat Ben-David B, Haller G, Taylor P. Anterior spinal fusion complicated by paraplegia. A case report of a false-negative somatosensory-evoked potential. Spine. 1987;12:536–9.CrossRefPubMed Ben-David B, Haller G, Taylor P. Anterior spinal fusion complicated by paraplegia. A case report of a false-negative somatosensory-evoked potential. Spine. 1987;12:536–9.CrossRefPubMed
28.
Zurück zum Zitat Minahan RE, Sepkuty JP, Lesser RP, et al. Anterior spinal cord injury with preserved neurogenic ‘motor’ evoked potentials. Clin Neurophysiol. 2001;112:1442–50.CrossRefPubMed Minahan RE, Sepkuty JP, Lesser RP, et al. Anterior spinal cord injury with preserved neurogenic ‘motor’ evoked potentials. Clin Neurophysiol. 2001;112:1442–50.CrossRefPubMed
29.
Zurück zum Zitat Zhou HH, Zhu C. Comparison of isoflurane effects on motor evoked potential and F wave. Anesthesiology 2000; 93:32–8.CrossRefPubMed Zhou HH, Zhu C. Comparison of isoflurane effects on motor evoked potential and F wave. Anesthesiology 2000; 93:32–8.CrossRefPubMed
30.
Zurück zum Zitat Pechstein U, Nadstawek J, Zentner J, et al. Isoflurane plus nitrous oxide versus propofol for recording of motor evoked potentials after high frequency repetitive electrical stimulation. Electroencephalogr Clin Neurophysiol. 1998;108:175–81.CrossRefPubMed Pechstein U, Nadstawek J, Zentner J, et al. Isoflurane plus nitrous oxide versus propofol for recording of motor evoked potentials after high frequency repetitive electrical stimulation. Electroencephalogr Clin Neurophysiol. 1998;108:175–81.CrossRefPubMed
31.
Zurück zum Zitat van Dongen E, ter Beek H, Aarts L, et al. The effect of two low-dose propofol infusions on the relationship between six-pulse transcranial electrical stimulation and the evoked lower extremity muscle response. Acta Anaesthesiol Scand. 2000;44:799–803.CrossRefPubMed van Dongen E, ter Beek H, Aarts L, et al. The effect of two low-dose propofol infusions on the relationship between six-pulse transcranial electrical stimulation and the evoked lower extremity muscle response. Acta Anaesthesiol Scand. 2000;44:799–803.CrossRefPubMed
32.
Zurück zum Zitat Pelosi L, Stevenson M, Hobbs G, et al. Intraoperative motor evoked potentials to transcranial electrical stimulation during two anaesthetic regimens. Clin Neurophysiol. 2001;112:1076–87.CrossRefPubMed Pelosi L, Stevenson M, Hobbs G, et al. Intraoperative motor evoked potentials to transcranial electrical stimulation during two anaesthetic regimens. Clin Neurophysiol. 2001;112:1076–87.CrossRefPubMed
33.
Zurück zum Zitat Nathan N, Tabaraud F, Lacroix F, et al. Influence of propofol concentrations on multipulse transcranial motor evoked potentials. Br J Anaesth. 2003;91:493–7.CrossRefPubMed Nathan N, Tabaraud F, Lacroix F, et al. Influence of propofol concentrations on multipulse transcranial motor evoked potentials. Br J Anaesth. 2003;91:493–7.CrossRefPubMed
34.
Zurück zum Zitat Woodforth I, Hicks R, Crawford M, et al. Depression of I waves in corticospinal volleys by sevoflurane, thiopental, and propofol. Anesth Analg. 1999;89:1182–7.CrossRefPubMed Woodforth I, Hicks R, Crawford M, et al. Depression of I waves in corticospinal volleys by sevoflurane, thiopental, and propofol. Anesth Analg. 1999;89:1182–7.CrossRefPubMed
35.
Zurück zum Zitat Kakinohana M, Fuchigami T, Nakamura S, et al. Propofol reduces spinal motor neuron excitability in humans. Anesth Analg. 2002;94:1586–8.PubMed Kakinohana M, Fuchigami T, Nakamura S, et al. Propofol reduces spinal motor neuron excitability in humans. Anesth Analg. 2002;94:1586–8.PubMed
36.
Zurück zum Zitat Baars J, Dangel C, Herold K, et al. Suppression of the human spinal H-reflex by propofol: a quantitative analysis. Acta Anaesthesiol Scand. 2006;50:193–200.CrossRefPubMed Baars J, Dangel C, Herold K, et al. Suppression of the human spinal H-reflex by propofol: a quantitative analysis. Acta Anaesthesiol Scand. 2006;50:193–200.CrossRefPubMed
37.
Zurück zum Zitat DiPiro J, Hooker K, Sherman J, et al. Effect of experimental hemorrhagic shock on hepatic drug elimination. Crit Care Med. 1992;20:810–5.CrossRefPubMed DiPiro J, Hooker K, Sherman J, et al. Effect of experimental hemorrhagic shock on hepatic drug elimination. Crit Care Med. 1992;20:810–5.CrossRefPubMed
38.
Zurück zum Zitat Takizawa D, Takizawa E, Miyoshi S, et al. The increase in total and unbound propofol concentrations during accidental hemorrhagic shock in patients undergoing liver transplantation. Anesth Analg. 2006;103:1339–40.CrossRefPubMed Takizawa D, Takizawa E, Miyoshi S, et al. The increase in total and unbound propofol concentrations during accidental hemorrhagic shock in patients undergoing liver transplantation. Anesth Analg. 2006;103:1339–40.CrossRefPubMed
39.
Zurück zum Zitat Hoymark S, Raeder J, Grimsmo B, et al. Bispectral index, serum drug concentrations and emergence associated with individually adjusted target-controlled infusions of remifentanil and propofol for laparoscopic surgery. Br J Anaesth. 2003;91:773–80.CrossRef Hoymark S, Raeder J, Grimsmo B, et al. Bispectral index, serum drug concentrations and emergence associated with individually adjusted target-controlled infusions of remifentanil and propofol for laparoscopic surgery. Br J Anaesth. 2003;91:773–80.CrossRef
40.
Zurück zum Zitat McGaughran L, Voss LJ, Oliver R, et al. Rapid measurement of blood propofol levels: a proof of concept study. J Clin Monit Comput. 2006;20:109–15.CrossRefPubMed McGaughran L, Voss LJ, Oliver R, et al. Rapid measurement of blood propofol levels: a proof of concept study. J Clin Monit Comput. 2006;20:109–15.CrossRefPubMed
41.
Zurück zum Zitat Takita A, Masui K, Kazama T. On-line monitoring of end-tidal propofol concentration in anesthetized patients. Anesthesiology. 2007;106:659–64.CrossRefPubMed Takita A, Masui K, Kazama T. On-line monitoring of end-tidal propofol concentration in anesthetized patients. Anesthesiology. 2007;106:659–64.CrossRefPubMed
42.
Zurück zum Zitat Kamysek S, Fuchs P, Schwoebel H, et al. Drug detection in breath: effects of pulmonary blood flow and cardiac output on propofol exhalation. Anal Bioanal Chem. 2011;401:2093–102.CrossRefPubMed Kamysek S, Fuchs P, Schwoebel H, et al. Drug detection in breath: effects of pulmonary blood flow and cardiac output on propofol exhalation. Anal Bioanal Chem. 2011;401:2093–102.CrossRefPubMed
Metadaten
Titel
Changes in transcranial motor evoked potentials during hemorrhage are associated with increased serum propofol concentrations
verfasst von
Jeremy A. Lieberman
John Feiner
Mark Rollins
Russ Lyon
Publikationsdatum
30.08.2017
Verlag
Springer Netherlands
Erschienen in
Journal of Clinical Monitoring and Computing / Ausgabe 3/2018
Print ISSN: 1387-1307
Elektronische ISSN: 1573-2614
DOI
https://doi.org/10.1007/s10877-017-0057-4

Weitere Artikel der Ausgabe 3/2018

Journal of Clinical Monitoring and Computing 3/2018 Zur Ausgabe

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Medizinstudium Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Häufigste Gründe für Brustschmerzen bei Kindern

06.05.2024 Pädiatrische Diagnostik Nachrichten

Akute Brustschmerzen sind ein Alarmsymptom par exellence, schließlich sind manche Auslöser lebensbedrohlich. Auch Kinder klagen oft über Schmerzen in der Brust. Ein Studienteam ist den Ursachen nachgegangen.

Aquatherapie bei Fibromyalgie wirksamer als Trockenübungen

03.05.2024 Fibromyalgiesyndrom Nachrichten

Bewegungs-, Dehnungs- und Entspannungsübungen im Wasser lindern die Beschwerden von Patientinnen mit Fibromyalgie besser als das Üben auf trockenem Land. Das geht aus einer spanisch-brasilianischen Vergleichsstudie hervor.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärzte und Psychotherapeuten.

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.