Skip to main content
Erschienen in: Neuroinformatics 3/2022

01.07.2022 | Original Article

Controlling for Spurious Nonlinear Dependence in Connectivity Analyses

verfasst von: Craig Poskanzer, Mengting Fang, Aidas Aglinskas, Stefano Anzellotti

Erschienen in: Neuroinformatics | Ausgabe 3/2022

Einloggen, um Zugang zu erhalten

Abstract

Recent analysis methods can capture nonlinear interactions between brain regions. However, noise sources might induce spurious nonlinear relationships between the responses in different regions. Previous research has demonstrated that traditional denoising techniques effectively remove noise-induced linear relationships between brain areas, but it is unknown whether these techniques can remove spurious nonlinear relationships. To address this question, we analyzed fMRI responses while participants watched the film Forrest Gump. We tested whether nonlinear Multivariate Pattern Dependence Networks (MVPN) outperform linear MVPN in non-denoised data, and whether this difference is reduced after CompCor denoising. Whereas nonlinear MVPN outperformed linear MVPN in the non-denoised data, denoising removed these nonlinear interactions. We replicated our results using different neural network architectures as the bases of MVPN, different activation functions (ReLU and sigmoid), different dimensionality reduction techniques for CompCor (PCA and ICA), and multiple datasets, demonstrating that CompCor’s ability to remove nonlinear interactions is robust across these analysis choices and across different groups of participants. Finally, we asked whether information contributing to the removal of nonlinear interactions is localized to specific anatomical regions of no interest or to specific principal components. We denoised the data 8 separate times by regressing out 5 principal components extracted from combined white matter (WM) and cerebrospinal fluid (CSF), each of the 5 components separately, 5 components extracted from WM only, and 5 components extracted solely from CSF. In all cases, denoising was sufficient to remove the observed nonlinear interactions.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Albrecht, D. G., Geisler, W. S., & Crane, A. M. (2003). Nonlinear properties of visual cortex neurons: Temporal dynamics, stimulus selectivity, neural performance. The Visual Neurosciences, 1, 747–764.CrossRef Albrecht, D. G., Geisler, W. S., & Crane, A. M. (2003). Nonlinear properties of visual cortex neurons: Temporal dynamics, stimulus selectivity, neural performance. The Visual Neurosciences, 1, 747–764.CrossRef
Zurück zum Zitat Anzellotti, S., & Coutanche, M. N. (2018). Beyond functional connectivity: investigating networks of multivariate representations. Trends in Cognitive Sciences, 22(3), 258–269.PubMedCrossRef Anzellotti, S., & Coutanche, M. N. (2018). Beyond functional connectivity: investigating networks of multivariate representations. Trends in Cognitive Sciences, 22(3), 258–269.PubMedCrossRef
Zurück zum Zitat Anzellotti, S., Fedorenko, E., Kell, A. J. E., Caramazza, A., & Saxe, R. (2017b). Measuring and modeling nonlinear interactions between brain regions with fmri. bioRxiv, 074856. Anzellotti, S., Fedorenko, E., Kell, A. J. E., Caramazza, A., & Saxe, R. (2017b). Measuring and modeling nonlinear interactions between brain regions with fmri. bioRxiv, 074856.
Zurück zum Zitat Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction method (compcor) for bold and perfusion based fmri. NeuroImage, 37(1), 90–101.PubMedCrossRef Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction method (compcor) for bold and perfusion based fmri. NeuroImage, 37(1), 90–101.PubMedCrossRef
Zurück zum Zitat Bernier, M., Chamberland, M., Houde, J. -C., Descoteaux, M., & Whittingstall, K. (2014). Using fmri non-local means denoising to uncover activation in sub-cortical structures at 1.5 t for guided hardi tractography. Frontiers in Human Neuroscience, 8. Bernier, M., Chamberland, M., Houde, J. -C., Descoteaux, M., & Whittingstall, K. (2014). Using fmri non-local means denoising to uncover activation in sub-cortical structures at 1.5 t for guided hardi tractography. Frontiers in Human Neuroscience, 8.
Zurück zum Zitat Caballero, C., Mistry, S., Vero, J., & Torres, E. B. (2018). Characterization of noise signatures of involuntary head motion in the autism brain imaging data exchange repository. Frontiers in Integrative Neuroscience, 12, 7.PubMedPubMedCentralCrossRef Caballero, C., Mistry, S., Vero, J., & Torres, E. B. (2018). Characterization of noise signatures of involuntary head motion in the autism brain imaging data exchange repository. Frontiers in Integrative Neuroscience, 12, 7.PubMedPubMedCentralCrossRef
Zurück zum Zitat Caballero-Gaudes, C., & Reynolds, R. C. (2017). Methods for cleaning the bold fmri signal. NeuroImage, 154, 128–149.PubMedCrossRef Caballero-Gaudes, C., & Reynolds, R. C. (2017). Methods for cleaning the bold fmri signal. NeuroImage, 154, 128–149.PubMedCrossRef
Zurück zum Zitat Chen, J., Leong, Y. C., Honey, C. J., Yong, C. H., Norman, K., & Hasson, U. (2018). “sherlock”. Chen, J., Leong, Y. C., Honey, C. J., Yong, C. H., Norman, K., & Hasson, U. (2018). “sherlock”.
Zurück zum Zitat Chen, J., Leong, Y. C., Honey, C. J., Yong, C. H., Norman, K. A., & Hasson, U. (2017). Shared memories reveal shared structure in neural activity across individuals. Nature Neuroscience, 20, 115–125. Chen, J., Leong, Y. C., Honey, C. J., Yong, C. H., Norman, K. A., & Hasson, U. (2017). Shared memories reveal shared structure in neural activity across individuals. Nature Neuroscience, 20, 115–125.
Zurück zum Zitat Ciric, R., Wolf, D. H., Power, J. D., Roalf, D. R., Baum, G. L., Ruparel, K., et al. (2017). Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. Neuroimage, 154, 174–187.PubMedCrossRef Ciric, R., Wolf, D. H., Power, J. D., Roalf, D. R., Baum, G. L., Ruparel, K., et al. (2017). Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. Neuroimage, 154, 174–187.PubMedCrossRef
Zurück zum Zitat Cole, M. W., Ito, T., Schultz, D., Mill, R., Chen, R., & Cocuzza, C. (2019). Task activations produce spurious but systematic inflation of task functional connectivity estimates. Neuroimage, 189, 1–18.PubMedCrossRef Cole, M. W., Ito, T., Schultz, D., Mill, R., Chen, R., & Cocuzza, C. (2019). Task activations produce spurious but systematic inflation of task functional connectivity estimates. Neuroimage, 189, 1–18.PubMedCrossRef
Zurück zum Zitat Coutanche, M. N., & Thompson-Schill, S. L. (2013). Informational connectivity: identifying synchronized discriminability of multi-voxel patterns across the brain. Frontiers in Human Neuroscience, 7, 15.PubMedPubMedCentralCrossRef Coutanche, M. N., & Thompson-Schill, S. L. (2013). Informational connectivity: identifying synchronized discriminability of multi-voxel patterns across the brain. Frontiers in Human Neuroscience, 7, 15.PubMedPubMedCentralCrossRef
Zurück zum Zitat Dijk, K. R. V., Sabuncu, M. R., & Buckner, R. L. (2012). The influence of head motion on intrinsic functional connectivity mri. NeuroImage, 59, 431–438.PubMedCrossRef Dijk, K. R. V., Sabuncu, M. R., & Buckner, R. L. (2012). The influence of head motion on intrinsic functional connectivity mri. NeuroImage, 59, 431–438.PubMedCrossRef
Zurück zum Zitat Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe, A., et al. (2019). fmriprep: a robust preprocessing pipeline for functional mri. Nature Methods, 16, 111–116.PubMedCrossRef Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe, A., et al. (2019). fmriprep: a robust preprocessing pipeline for functional mri. Nature Methods, 16, 111–116.PubMedCrossRef
Zurück zum Zitat Fang, M., Aglinskas, A., Li, Y., & Anzellotti, S. (2019). Identifying hubs that integrate responses across multiple category-selective regions. PsyArXiv. Fang, M., Aglinskas, A., Li, Y., & Anzellotti, S. (2019). Identifying hubs that integrate responses across multiple category-selective regions. PsyArXiv.
Zurück zum Zitat Friston, K. J., Josephs, O., Zarahn, E., Holmes, A. P., Rouquette, S., & Poline, J. B. (2000). To smooth or not to smooth?: Bias and efficiency in fmri time-series analysis. Neuroimage, 12(2), 196–208.PubMedCrossRef Friston, K. J., Josephs, O., Zarahn, E., Holmes, A. P., Rouquette, S., & Poline, J. B. (2000). To smooth or not to smooth?: Bias and efficiency in fmri time-series analysis. Neuroimage, 12(2), 196–208.PubMedCrossRef
Zurück zum Zitat Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S. J., & Turner, R. (1996). Movement-related effects in fmri time-series. Magnetic Resonance in Medicine, 35(3), 346–355.PubMedCrossRef Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S. J., & Turner, R. (1996). Movement-related effects in fmri time-series. Magnetic Resonance in Medicine, 35(3), 346–355.PubMedCrossRef
Zurück zum Zitat Geerligs, L., & Henson, R. N. (2016). Functional connectivity and structural covariance between regions of interest can be measured more accurately using multivariate distance correlation. NeuroImage, 135, 16–31.PubMedCrossRef Geerligs, L., & Henson, R. N. (2016). Functional connectivity and structural covariance between regions of interest can be measured more accurately using multivariate distance correlation. NeuroImage, 135, 16–31.PubMedCrossRef
Zurück zum Zitat Geerligs, L., Renken, R. J., Saliasi, E., Maurits, N. M., & Lorist, M. M. (2015). A brain-wide study of age-related changes in functional connectivity. Cerebral Cortex, 25(7), 1987–1999.PubMedCrossRef Geerligs, L., Renken, R. J., Saliasi, E., Maurits, N. M., & Lorist, M. M. (2015). A brain-wide study of age-related changes in functional connectivity. Cerebral Cortex, 25(7), 1987–1999.PubMedCrossRef
Zurück zum Zitat Hahamy, A., Calhoun, V., Pearlson, G., Harel, M., Stern, N., Attar, F., & Salomon, R. M. R. (2014). Save the global: Global signal connectivity as a tool for studying clinical populations with functional magnetic resonance imaging. Brain Connectivity, 4, 395–403.PubMedPubMedCentralCrossRef Hahamy, A., Calhoun, V., Pearlson, G., Harel, M., Stern, N., Attar, F., & Salomon, R. M. R. (2014). Save the global: Global signal connectivity as a tool for studying clinical populations with functional magnetic resonance imaging. Brain Connectivity, 4, 395–403.PubMedPubMedCentralCrossRef
Zurück zum Zitat Hallett, M., de Haan, W., Deco, G., Dengler, R., Iorio, R. D., Gallea, C., et al. (2020). Human brain connectivity: Clinical applications for clinical neurophysiology. Clinical Neurophysiology, 131, 1388–2457.CrossRef Hallett, M., de Haan, W., Deco, G., Dengler, R., Iorio, R. D., Gallea, C., et al. (2020). Human brain connectivity: Clinical applications for clinical neurophysiology. Clinical Neurophysiology, 131, 1388–2457.CrossRef
Zurück zum Zitat Hanke, M., Adelhöfer, N., Kottke, D., Iacovella, V., Sengupta, A., Kaule, F. R., et al. (2016). A studyforrest extension, simultaneous fmri and eye gaze recordings during prolonged natural stimulation. Scientific Data, 3, 160092.PubMedPubMedCentralCrossRef Hanke, M., Adelhöfer, N., Kottke, D., Iacovella, V., Sengupta, A., Kaule, F. R., et al. (2016). A studyforrest extension, simultaneous fmri and eye gaze recordings during prolonged natural stimulation. Scientific Data, 3, 160092.PubMedPubMedCentralCrossRef
Zurück zum Zitat Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507. Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507.
Zurück zum Zitat Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4700–4708. Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4700–4708.
Zurück zum Zitat Hull, J. V., Dokovna, L. B., Jacokes, Z. J., Torgerson, C. M., Irimia, A., & Van Horn, J. D. (2017). Resting-state functional connectivity in autism spectrum disorders: a review. Frontiers in Psychiatry, 7, 205.PubMedPubMedCentralCrossRef Hull, J. V., Dokovna, L. B., Jacokes, Z. J., Torgerson, C. M., Irimia, A., & Van Horn, J. D. (2017). Resting-state functional connectivity in autism spectrum disorders: a review. Frontiers in Psychiatry, 7, 205.PubMedPubMedCentralCrossRef
Zurück zum Zitat Ito, T., Hearne, L., Mill, R., Cocuzza, C., & Cole, M. W. (2020). Discovering the computational relevance of brain network organization. Trends in Cognitive Sciences, 24(1), 25–38.PubMedCrossRef Ito, T., Hearne, L., Mill, R., Cocuzza, C., & Cole, M. W. (2020). Discovering the computational relevance of brain network organization. Trends in Cognitive Sciences, 24(1), 25–38.PubMedCrossRef
Zurück zum Zitat Jenkinson, M., Bannister, P., Brady, J. M., & Smith, S. M. (2002). Improved optimisation for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17(2), 825–841.PubMedCrossRef Jenkinson, M., Bannister, P., Brady, J. M., & Smith, S. M. (2002). Improved optimisation for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17(2), 825–841.PubMedCrossRef
Zurück zum Zitat Kay, K. N., Winawer, J., Mezer, A., & Wandell, B. A. (2013). Compressive spatial summation in human visual cortex. Journal of Neurophysiology, 110(2), 481–494.PubMedPubMedCentralCrossRef Kay, K. N., Winawer, J., Mezer, A., & Wandell, B. A. (2013). Compressive spatial summation in human visual cortex. Journal of Neurophysiology, 110(2), 481–494.PubMedPubMedCentralCrossRef
Zurück zum Zitat Khaligh-Razavi, S. -M., & Kriegeskorte, N. (2014). Deep supervised, but not unsupervised, models may explain it cortical representation. PLoS Computational Biology, 10(11), e1003915.PubMedPubMedCentralCrossRef Khaligh-Razavi, S. -M., & Kriegeskorte, N. (2014). Deep supervised, but not unsupervised, models may explain it cortical representation. PLoS Computational Biology, 10(11), e1003915.PubMedPubMedCentralCrossRef
Zurück zum Zitat Kong, X. -Z., Zhen, Z., Li, X., Lu, H. -H., Wang, R., Liu, L., He, Y., Zang, Y., & Liu., J. (2014). Individual differences in impulsivity predict head motion during magnetic resonance imaging. PloS One, 9(8). Kong, X. -Z., Zhen, Z., Li, X., Lu, H. -H., Wang, R., Liu, L., He, Y., Zang, Y., & Liu., J. (2014). Individual differences in impulsivity predict head motion during magnetic resonance imaging. PloS One, 9(8).
Zurück zum Zitat Krüger, G., & Glover, G. H. (2001). Physiological noise in oxygenation-sensitive magnetic resonance imaging. Magnetic Resonance in Medicine, 46(4), 631–637.PubMedCrossRef Krüger, G., & Glover, G. H. (2001). Physiological noise in oxygenation-sensitive magnetic resonance imaging. Magnetic Resonance in Medicine, 46(4), 631–637.PubMedCrossRef
Zurück zum Zitat Li, Y., Saxe, R., & Anzellotti, S. (2019). Intersubject mvpd: Empirical comparison of fmri denoising methods for connectivity analysis. PLoS One, 14, e0222914.PubMedPubMedCentralCrossRef Li, Y., Saxe, R., & Anzellotti, S. (2019). Intersubject mvpd: Empirical comparison of fmri denoising methods for connectivity analysis. PLoS One, 14, e0222914.PubMedPubMedCentralCrossRef
Zurück zum Zitat Liu, C. -S. J., Miki, A., Hulvershorn, J., Bloy, L., Gualtieri, E. E., Liu, G. T., et al. (2006). Spatial and temporal characteristics of physiological noise in fmri at 3t. Academic Radiology, 13(3), 313–323.PubMedCrossRef Liu, C. -S. J., Miki, A., Hulvershorn, J., Bloy, L., Gualtieri, E. E., Liu, G. T., et al. (2006). Spatial and temporal characteristics of physiological noise in fmri at 3t. Academic Radiology, 13(3), 313–323.PubMedCrossRef
Zurück zum Zitat Liu, T. T. (2016). Noise contributions to the fmri signal: An overview. NeuroImage, 143, 141–151.PubMedCrossRef Liu, T. T. (2016). Noise contributions to the fmri signal: An overview. NeuroImage, 143, 141–151.PubMedCrossRef
Zurück zum Zitat Lizier, J. T., Heinzle, J., Horstmann, A., Haynes, J. -D., & Prokopenko, M. (2011). Multivariate information-theoretic measures reveal directed information structure and task relevant changes in fmri connectivity. Journal of Computational Neuroscience, 30(1), 85–107.PubMedCrossRef Lizier, J. T., Heinzle, J., Horstmann, A., Haynes, J. -D., & Prokopenko, M. (2011). Multivariate information-theoretic measures reveal directed information structure and task relevant changes in fmri connectivity. Journal of Computational Neuroscience, 30(1), 85–107.PubMedCrossRef
Zurück zum Zitat Macey, P. M., Macey, K. E., Kumar, R., & Harper, R. M. (2004). A method for removal of global effects from fmri time series. Neuroimage, 22(1), 360–366.PubMedCrossRef Macey, P. M., Macey, K. E., Kumar, R., & Harper, R. M. (2004). A method for removal of global effects from fmri time series. Neuroimage, 22(1), 360–366.PubMedCrossRef
Zurück zum Zitat MATLAB. (2018). version 9.5.0.944444 (r2018b). MATLAB. (2018). version 9.5.0.944444 (r2018b).
Zurück zum Zitat Muschelli, J., Nebel, M. B., Caffo, B. S., Barber, A. D., Pekar, J. J., & Mostofsky, S. H. (2014). Reduction of motion-related artifacts in resting state fmri using acompcor. NeuroImage, 96, 22–35.PubMedCrossRef Muschelli, J., Nebel, M. B., Caffo, B. S., Barber, A. D., Pekar, J. J., & Mostofsky, S. H. (2014). Reduction of motion-related artifacts in resting state fmri using acompcor. NeuroImage, 96, 22–35.PubMedCrossRef
Zurück zum Zitat Parkes, L., Fulcher, B., Yücel, M., & Fornito, A. (2018). An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional mri. Neuroimage, 171, 415–436.PubMedCrossRef Parkes, L., Fulcher, B., Yücel, M., & Fornito, A. (2018). An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional mri. Neuroimage, 171, 415–436.PubMedCrossRef
Zurück zum Zitat Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity mri networks arise from subject motion. NeuroImage, 59, 2142–2154.PubMedCrossRef Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity mri networks arise from subject motion. NeuroImage, 59, 2142–2154.PubMedCrossRef
Zurück zum Zitat Power, J. D., Plitt, M., Laumann, T. O., & Martin, A. (2017). Sources and implications of whole-brain fmri signals in humans. Neuroimage, 146, 609–625.PubMedCrossRef Power, J. D., Plitt, M., Laumann, T. O., & Martin, A. (2017). Sources and implications of whole-brain fmri signals in humans. Neuroimage, 146, 609–625.PubMedCrossRef
Zurück zum Zitat Power, J. D., Schlaggar, B. L., & Petersen, S. E. (2015). Recent progress and outstanding issues in motion correction in resting state fmri. Neuroimage, 105, 536–551.PubMedCrossRef Power, J. D., Schlaggar, B. L., & Petersen, S. E. (2015). Recent progress and outstanding issues in motion correction in resting state fmri. Neuroimage, 105, 536–551.PubMedCrossRef
Zurück zum Zitat Pruim, R. H., Mennes, M., van Rooij, D., Llera, A., Buitelaar, J. K., & Beckmann, C. F. (2015). Ica-aroma: A robust ica-based strategy for removing motion artifacts from fmri data. Neuroimage, 112, 267–277.PubMedCrossRef Pruim, R. H., Mennes, M., van Rooij, D., Llera, A., Buitelaar, J. K., & Beckmann, C. F. (2015). Ica-aroma: A robust ica-based strategy for removing motion artifacts from fmri data. Neuroimage, 112, 267–277.PubMedCrossRef
Zurück zum Zitat Richardson, H. (2019). Development of brain networks for social functions: Confirmatory analyses in a large open source dataset. Developmental Cognitive Neuroscience, 37, 100598.PubMedCrossRef Richardson, H. (2019). Development of brain networks for social functions: Confirmatory analyses in a large open source dataset. Developmental Cognitive Neuroscience, 37, 100598.PubMedCrossRef
Zurück zum Zitat Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nature Neuroscience, 2, 1019–1025.PubMedCrossRef Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nature Neuroscience, 2, 1019–1025.PubMedCrossRef
Zurück zum Zitat Satterthwaite, T. D., Wolf, D. H., Loughead, J., Ruparel, K., Elliott, M. A., Hakonarson, H., et al. (2012). Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth. Neuroimage, 60(1), 623–632.PubMedCrossRef Satterthwaite, T. D., Wolf, D. H., Loughead, J., Ruparel, K., Elliott, M. A., Hakonarson, H., et al. (2012). Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth. Neuroimage, 60(1), 623–632.PubMedCrossRef
Zurück zum Zitat Sengupta, A., Kaule, F. R., Guntupalli, J. S., Hoffmann, M. B., Häusler, C., Stadler, J., & Hanke, M. (2016). A studyforrest extension, retinotopic mapping and localization of higher visual areas. Scientific Data, 3, 160093.PubMedPubMedCentralCrossRef Sengupta, A., Kaule, F. R., Guntupalli, J. S., Hoffmann, M. B., Häusler, C., Stadler, J., & Hanke, M. (2016). A studyforrest extension, retinotopic mapping and localization of higher visual areas. Scientific Data, 3, 160093.PubMedPubMedCentralCrossRef
Zurück zum Zitat Seto, E., Sela, G., McIlroy, W., Black, S., Staines, W., Bronskill, M., et al. (2001). Quantifying head motion associated with motor tasks used in fmri. Neuroimage, 14(2), 284–297.PubMedCrossRef Seto, E., Sela, G., McIlroy, W., Black, S., Staines, W., Bronskill, M., et al. (2001). Quantifying head motion associated with motor tasks used in fmri. Neuroimage, 14(2), 284–297.PubMedCrossRef
Zurück zum Zitat Smyser, C. D., Inder, T. E., Shimony, J. S., Hill, J. E., Degnan, A. J., Snyder, A. Z., & Neil, J. J. (2010). Longitudinal analysis of neural network development in preterm infants. Cerebral Cortex, 20(12), 2852–2862.PubMedPubMedCentralCrossRef Smyser, C. D., Inder, T. E., Shimony, J. S., Hill, J. E., Degnan, A. J., Snyder, A. Z., & Neil, J. J. (2010). Longitudinal analysis of neural network development in preterm infants. Cerebral Cortex, 20(12), 2852–2862.PubMedPubMedCentralCrossRef
Zurück zum Zitat SnPM. (2013). Statistical non parametric mapping toolbox (snpm). SnPM. (2013). Statistical non parametric mapping toolbox (snpm).
Zurück zum Zitat Song, J., Desphande, A. S., Meier, T. B., Tudorascu, D. L., Vergun, S., Nair, V. A., Biswal, B. B., Meyerand, M. E., Birn, R. M., Bellec, P., et al. (2012). Age-related differences in test-retest reliability in resting-state brain functional connectivity. PLoS One, 7(12). Song, J., Desphande, A. S., Meier, T. B., Tudorascu, D. L., Vergun, S., Nair, V. A., Biswal, B. B., Meyerand, M. E., Birn, R. M., Bellec, P., et al. (2012). Age-related differences in test-retest reliability in resting-state brain functional connectivity. PLoS One, 7(12).
Zurück zum Zitat Stephan, K. E., Kasper, L., Harrison, L. M., Daunizeau, J., den Ouden, H. E., Breakspear, M., & Friston, K. J. (2008). Nonlinear dynamic causal models for fmri. Neuroimage, 42(2), 649–662.PubMedCrossRef Stephan, K. E., Kasper, L., Harrison, L. M., Daunizeau, J., den Ouden, H. E., Breakspear, M., & Friston, K. J. (2008). Nonlinear dynamic causal models for fmri. Neuroimage, 42(2), 649–662.PubMedCrossRef
Zurück zum Zitat Turner, B. O., Lopez, B., Santander, T., & Miller, M. B. (2015). One dataset, many conclusions: Bold variabilitys complicated relationships with age and motion artifacts. Brain Imaging and Behavior, 9(1), 115–127.PubMedCrossRef Turner, B. O., Lopez, B., Santander, T., & Miller, M. B. (2015). One dataset, many conclusions: Bold variabilitys complicated relationships with age and motion artifacts. Brain Imaging and Behavior, 9(1), 115–127.PubMedCrossRef
Zurück zum Zitat Tyszka, J. M., Kennedy, D. P., Paul, L. K., & Adolphs, R. (2014). Largely typical patterns of resting-state functional connectivity in high-functioning adults with autism. Cerebral Cortex, 24(7), 1894–1905.PubMedCrossRef Tyszka, J. M., Kennedy, D. P., Paul, L. K., & Adolphs, R. (2014). Largely typical patterns of resting-state functional connectivity in high-functioning adults with autism. Cerebral Cortex, 24(7), 1894–1905.PubMedCrossRef
Zurück zum Zitat Wilke, M. (2012). An alternative approach towards assessing and accounting for individual motion in fmri timeseries. Neuroimage, 59(3), 2062–2072.PubMedCrossRef Wilke, M. (2012). An alternative approach towards assessing and accounting for individual motion in fmri timeseries. Neuroimage, 59(3), 2062–2072.PubMedCrossRef
Zurück zum Zitat Woolrich, M. W., Ripley, B. D., Brady, M., & Smith, S. M. (2001). Temporal autocorrelation in univariate linear modeling of fmri data. Neuroimage, 14(6), 1370–1386.PubMedCrossRef Woolrich, M. W., Ripley, B. D., Brady, M., & Smith, S. M. (2001). Temporal autocorrelation in univariate linear modeling of fmri data. Neuroimage, 14(6), 1370–1386.PubMedCrossRef
Zurück zum Zitat Yamins, D. L., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D., & DiCarlo, J. J. (2014). Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proceedings of the National Academy of Sciences, 111(23), 8619–8624.CrossRef Yamins, D. L., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D., & DiCarlo, J. J. (2014). Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proceedings of the National Academy of Sciences, 111(23), 8619–8624.CrossRef
Zurück zum Zitat Yan, C., Li, Z., Zhang, Y., Liu, Y., Ji, X., & Zhang, Y. (2020). Depth image denoising using nuclear norm and learning graph model. arXiv. Yan, C., Li, Z., Zhang, Y., Liu, Y., Ji, X., & Zhang, Y. (2020). Depth image denoising using nuclear norm and learning graph model. arXiv.
Zurück zum Zitat Yan, C. -G., Cheung, B., Kelly, C., Colcombe, S., Craddock, R. C., Di Martino, A., et al. (2013). A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage, 76, 183–201.PubMedCrossRef Yan, C. -G., Cheung, B., Kelly, C., Colcombe, S., Craddock, R. C., Di Martino, A., et al. (2013). A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage, 76, 183–201.PubMedCrossRef
Zurück zum Zitat Yan, Z., Guo, S., Xiao, G., & Zhang, H. (2019). On combining cnn with non-local self-similarity based image denoising methods. IEEE Access, 8, 14789–14797.CrossRef Yan, Z., Guo, S., Xiao, G., & Zhang, H. (2019). On combining cnn with non-local self-similarity based image denoising methods. IEEE Access, 8, 14789–14797.CrossRef
Zurück zum Zitat Zhang, X., Hou, G., Ma, J., Yang, W., Lin, B., Xu, Y., et al. (2014). Denoising mr images using non-local means filter with combined patch and pixel similarity. PLoS One, 9, e100240.PubMedPubMedCentralCrossRef Zhang, X., Hou, G., Ma, J., Yang, W., Lin, B., Xu, Y., et al. (2014). Denoising mr images using non-local means filter with combined patch and pixel similarity. PLoS One, 9, e100240.PubMedPubMedCentralCrossRef
Zurück zum Zitat Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain mr images through a hidden markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Images, 20(1), 45–57.CrossRef Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain mr images through a hidden markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Images, 20(1), 45–57.CrossRef
Zurück zum Zitat Zhang, Y., Liu, J., Li, M., & Guo, Z. (2014). Joint image denoising using adaptive principal component analysis and self-similarity. Information Sciences, 259, 128–141.CrossRef Zhang, Y., Liu, J., Li, M., & Guo, Z. (2014). Joint image denoising using adaptive principal component analysis and self-similarity. Information Sciences, 259, 128–141.CrossRef
Metadaten
Titel
Controlling for Spurious Nonlinear Dependence in Connectivity Analyses
verfasst von
Craig Poskanzer
Mengting Fang
Aidas Aglinskas
Stefano Anzellotti
Publikationsdatum
01.07.2022
Verlag
Springer US
Erschienen in
Neuroinformatics / Ausgabe 3/2022
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-021-09540-9

Weitere Artikel der Ausgabe 3/2022

Neuroinformatics 3/2022 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.